1
|
Sharma NS, Karan A, Tran HQ, John JV, Andrabi SM, Shatil Shahriar SM, Xie J. Decellularized extracellular matrix-decorated 3D nanofiber scaffolds enhance cellular responses and tissue regeneration. Acta Biomater 2024; 184:81-97. [PMID: 38908416 DOI: 10.1016/j.actbio.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
The use of decellularized extracellular matrix products in tissue regeneration is quite alluring yet practically challenging due to the limitations of its availability, harsh processing techniques, and host rejection. Scaffolds obtained by either incorporating extracellular matrix (ECM) material or coating the surface can resolve these challenges to some extent. However, these scaffolds lack the complex 3D network formed by proteins and growth factors observed in natural ECM. This study introduces an approach utilizing 3D nanofiber scaffolds decorated with dECM to enhance cellular responses and promote tissue regeneration. Notably, the dECM can be customized according to specific cellular requirements, offering a tailored environment for enhanced therapeutic outcomes. Two types of 3D expanded scaffolds, namely radially aligned scaffolds (RAS) and laterally expanded scaffolds (LES) fabricated by the gas-foaming expansion were utilized. To demonstrate the proof-of-concept, human dermal fibroblasts (HDFs) seeded on these scaffolds for up to 8 weeks, resulted in uniform and highly aligned cells which deposited ECM on the scaffolds. These cellular components were then removed from the scaffolds through decellularization (e.g., SDS treatment and freeze-thaw cycles). The dECM-decorated 3D expanded nanofiber scaffolds can direct and support cell alignment and proliferation along the underlying fibers upon recellularization. An in vitro inflammation assay indicates that dECM-decorated LES induces a lower immune response than dECM-decorated RAS. Further, subcutaneous implantation of dECM-decorated RAS and LES shows higher cell infiltration and angiogenesis within 7 and 14 days than RAS and LES without dECM decoration. Taken together, dECM-decorated 3D expanded nanofiber scaffolds hold great potential in tissue regeneration and tissue modeling. STATEMENT OF SIGNIFICANCE: Decellularized ECM scaffolds have attained widespread attention in biomedical applications due to their intricate 3D framework of proteins and growth factors. Mimicking such a complicated architecture is a clinical challenge. In this study, we developed natural ECM-decorated 3D electrospun nanofiber scaffolds with controlled alignments to mimic human tissue. Fibroblasts were cultured on these scaffolds for 8 weeks to deposit natural ECM and decellularized by either freeze-thawing or detergent to obtain decellularized ECM scaffolds. These scaffolds were tested in both in-vitro and in-vivo conditions. They displayed higher cellular attributes with lower immune response making them a good grafting tool in tissue regeneration.
Collapse
Affiliation(s)
- Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center Omaha, NE 68198, United States
| | - Anik Karan
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center Omaha, NE 68198, United States
| | - Huy Quang Tran
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center Omaha, NE 68198, United States
| | - Johnson V John
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States
| | - Syed Muntazir Andrabi
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center Omaha, NE 68198, United States
| | - S M Shatil Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center Omaha, NE 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center Omaha, NE 68198, United States; Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
2
|
Pálos V, Nagy KS, Pázmány R, Juriga-Tóth K, Budavári B, Domokos J, Szabó D, Zsembery Á, Jedlovszky-Hajdu A. Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:781-796. [PMID: 38979523 PMCID: PMC11228618 DOI: 10.3762/bjnano.15.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
In this research, we applied electrospinning to create a two-component biodegradable polymeric scaffold containing polysuccinimide (PSI) and antibacterial salts. Antibacterial agents for therapeutical purposes mostly contain silver ions which are associated with high environmental impact and, in some cases, may cause undesired immune reactions. In our work, we prepared nanofibrous systems containing antibacterial and tissue-regenerating salts of zinc acetate or strontium nitrate in different concentrations, whose structures may be suitable for developing biomedical wound dressing systems in the future. Several experiments have been conducted to optimize the physicochemical, mechanical, and biological properties of the scaffolds developed for application as wound dressings. The scaffold systems obtained by PSI synthesis, salt addition, and fiber formation were first investigated by scanning electron microscopy. In almost all cases, different salts caused a decrease in the fiber diameter of PSI polymer-based systems (<500 nm). Fourier-transform infrared spectroscopy was applied to verify the presence of salts in the scaffolds and to determine the interaction between the salt and the polymer. Another analysis, energy-dispersive X-ray spectroscopy, was carried out to determine strontium and zinc atoms in the scaffolds. Our result showed that the salts influence the mechanical properties of the polymer scaffold, both in terms of specific load capacity and relative elongation values. According to the dissolution experiments, the whole amount of strontium nitrate was dissolved from the scaffold in 8 h; however, only 50% of the zinc acetate was dissolved. In addition, antibacterial activity tests were performed with four different bacterial strains relevant to skin surface injuries, leading to the appearance of inhibition zones around the scaffold discs in most cases. We also investigated the potential cytotoxicity of the scaffolds on human tumorous and healthy cells. Except for the ones containing zinc acetate salt, the scaffolds are not cytotoxic to either tumor or healthy cells.
Collapse
Affiliation(s)
- Veronika Pálos
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Krisztina S Nagy
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Rita Pázmány
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Krisztina Juriga-Tóth
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Bálint Budavári
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Judit Domokos
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Angela Jedlovszky-Hajdu
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| |
Collapse
|
3
|
Afshar M, Rezaei A, Eghbali S, Nasirizadeh S, Alemzadeh E, Alemzadeh E, Shadi M, Sedighi M. Nanomaterial strategies in wound healing: A comprehensive review of nanoparticles, nanofibres and nanosheets. Int Wound J 2024; 21:e14953. [PMID: 38949185 PMCID: PMC11215686 DOI: 10.1111/iwj.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Wound healing is a complex process that orchestrates the coordinated action of various cells, cytokines and growth factors. Nanotechnology offers exciting new possibilities for enhancing the healing process by providing novel materials and approaches to deliver bioactive molecules to the wound site. This article elucidates recent advancements in utilizing nanoparticles, nanofibres and nanosheets for wound healing. It comprehensively discusses the advantages and limitations of each of these materials, as well as their potential applications in various types of wounds. Each of these materials, despite sharing common properties, can exhibit distinct practical characteristics that render them particularly valuable for healing various types of wounds. In this review, our primary focus is to provide a comprehensive overview of the current state-of-the-art in applying nanoparticles, nanofibres, nanosheets and their combinations to wound healing, serving as a valuable resource to guide researchers in their appropriate utilization of these nanomaterials in wound-healing research. Further studies are necessary to gain insight into the application of this type of nanomaterials in clinical settings.
Collapse
Affiliation(s)
- Mohammad Afshar
- Department of Anatomy, Faculty of MedicineBirjand University of Medical SciencesBirjandIran
- Medical Toxicology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Alireza Rezaei
- Anatomical Clinical PathologistIslamic Azad University of Medical SciencesMashhadIran
| | - Samira Eghbali
- Department of Pharmacognosy and Traditional PharmacySchool of Pharmacy, Birjand University of Medical SciencesBirjandIran
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Samira Nasirizadeh
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
- Department of Pharmaceutics and NanotechnologySchool of Pharmacy, Birjand university of Medical SciencesBirjandIran
| | - Effat Alemzadeh
- Infectious Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Esmat Alemzadeh
- Department of Medical BiotechnologyFaculty of Medicine, Birjand University of Medical SciencesBirjandIran
| | - Mehri Shadi
- Department of Anatomy, Faculty of MedicineBirjand University of Medical SciencesBirjandIran
| | - Mahsa Sedighi
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
- Department of Pharmaceutics and NanotechnologySchool of Pharmacy, Birjand university of Medical SciencesBirjandIran
| |
Collapse
|
4
|
Wu L, Morrow B, Hong L, Rajasingh J. Preparation of Monodispersed Nanofibrous Gelatin Microspheres Using Homebuilt Microfluidics. Methods Mol Biol 2024; 2835:325-337. [PMID: 39105928 DOI: 10.1007/978-1-0716-3995-5_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Gelatin, a protein derivative from collagen, is a versatile material with promising applications in tissue engineering. Among the various forms of gelatin scaffolds, nanofibrous gelatin microspheres (NFGMs) are attracting research efforts due to their fibrous nature and injectability. However, current methods for synthesizing nanofibrous gelatin microspheres (NFGMs) have limitations, such as wide size distributions and the use of toxic solvents. To address these challenges, the article introduces a novel approach. First, it describes the creation of a microfluidic device using readily available supplies. Subsequently, it outlines a unique process for producing monodispersed NFGMs through a combination of the microfluidic device and thermally induced phase separation (TIPS). This innovative method eliminates the need for sieving and the use of toxic solvents, making it a more ecofriendly and efficient alternative.
Collapse
Affiliation(s)
- Linfeng Wu
- Department of Pediatric Dentistry & Community Oral Health, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Brian Morrow
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Liang Hong
- Department of Pediatric Dentistry & Community Oral Health, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
5
|
Ali F, Al Rashid A, Kalva SN, Koç M. Mg-Doped PLA Composite as a Potential Material for Tissue Engineering-Synthesis, Characterization, and Additive Manufacturing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6506. [PMID: 37834643 PMCID: PMC10573778 DOI: 10.3390/ma16196506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Magnesium (Mg)/Polylactic acid (PLA) composites are promising materials for bone regeneration and tissue engineering applications. PLA is a biodegradable and biocompatible polymer that can be easily processed into various shapes and structures, such as scaffolds, films, and fibers, but has low biodegradability. Mg is a biocompatible metal that has been proven to have good biodegradability and osteoconductivity, which makes it suitable for bone tissue engineering. In this study, we prepared and characterized a Mg/PLA composite as a potential material for direct ink writing (DIW) in 3D printing. The results showed that the addition of Mg has a significant impact on PLA's thermal and structural properties and has also significantly increased the degradation of PLA. XRD was used to determine the degree of crystallinity in the PLA/Mg composite, which provides insight into its thermal stability and degradation behavior. The crystallization temperature of PLA increased from 168 to 172 °C for a 15 wt% Mg incorporation, and the melting temperature reduced from 333 °C to 285 °C. The surface morphology and composition of these films were analyzed with SEM. The films with 5 wt% of Mg particles displayed the best-ordered honeycomb structure in their film form. Such structures are considered to affect the mechanical, biological and heat/mass transfer properties of the Mg/PLA composites and products. Finally, the composite ink was used as a feed for direct ink writing in 3D printing, and the preliminary 3D printing experiments were successful in resulting in dimensionally and structurally integral scaffold samples. The shape fidelity was not very good, and some research is needed to improve the rheological properties of the ink for DIW 3D printing.
Collapse
Affiliation(s)
- Fawad Ali
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar; (A.A.R.); (S.N.K.); (M.K.)
| | | | | | | |
Collapse
|
6
|
Zahra FT, Quick Q, Mu R. Electrospun PVA Fibers for Drug Delivery: A Review. Polymers (Basel) 2023; 15:3837. [PMID: 37765691 PMCID: PMC10536586 DOI: 10.3390/polym15183837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Innovation in biomedical science is always a field of interest for researchers. Drug delivery, being one of the key areas of biomedical science, has gained considerable significance. The utilization of simple yet effective techniques such as electrospinning has undergone significant development in the field of drug delivery. Various polymers such as PEG (polyethylene glycol), PLGA (Poly(lactic-co-glycolic acid)), PLA(Polylactic acid), and PCA (poly(methacrylate citric acid)) have been utilized to prepare electrospinning-based drug delivery systems (DDSs). Polyvinyl alcohol (PVA) has recently gained attention because of its biocompatibility, biodegradability, non-toxicity, and ideal mechanical properties as these are the key factors in developing DDSs. Moreover, it has shown promising results in developing DDSs individually and when combined with natural and synthetic polymers such as chitosan and polycaprolactone (PCL). Considering the outstanding properties of PVA, the aim of this review paper was therefore to summarize these recent advances by highlighting the potential of electrospun PVA for drug delivery systems.
Collapse
Affiliation(s)
- Fatima T. Zahra
- TIGER Institute, Tennessee State University, Nashville, TN 37209, USA
| | - Quincy Quick
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Richard Mu
- TIGER Institute, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
7
|
Zena Y, Tesfaye M, Tumssa Z, Periyasamy S. Effects of modified elastin-collagen matrix on the thermal and mechanical properties of Poly (lactic acid). Heliyon 2023; 9:e19598. [PMID: 37809474 PMCID: PMC10558821 DOI: 10.1016/j.heliyon.2023.e19598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Poly (lactic acid) (PLA) has distinctive characteristics, including biodegradability, biocompatibility, thermal process ability, high transparency and good film-forming ability. However, PLA has some poor properties that limit its wide applicability. These properties include a low crystallization rate, poor thermal stability, and high brittleness. The main objective of this research was to investigate the effect of a modified elastin-collagen (m-ELA-COLL) matrix on the properties of PLA. The ELA-COLL matrix was extracted from broiler skin waste and modified by grafting using lactic acid monomer to facilitate compatibility with PLA. The extracted and modified ELA-COLL matrix was investigated using FTIR, and α-helix and β-sheet structures were confirmed in both cases (pre- and post-modifications). Modified elastin-collagen dispersed Poly (lactic acid) (PLA-m-ELA-COLL) blend films were prepared using the solution casting method and characterized using DSC and UTM. The effect of m-ELA-COLL as a nucleating agent resulted in the degree of crystallinity improvement of 58.8% with 10 wt% m-ELA/COLL loading, and the elongation at break was improved by 161.3% for PLA-40%-m-ELA-COLL with a tensile strength of 33.75 MPa. The results obtained revealed that the biofilms can be considered as a good candidate to be studied further in the packaging industry.
Collapse
Affiliation(s)
- Yezihalem Zena
- Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Melakuu Tesfaye
- Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Zelalem Tumssa
- Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
8
|
Szewczyk PK, Berniak K, Knapczyk-Korczak J, Karbowniczek JE, Marzec MM, Bernasik A, Stachewicz U. Mimicking natural electrical environment with cellulose acetate scaffolds enhances collagen formation of osteoblasts. NANOSCALE 2023; 15:6890-6900. [PMID: 36960764 DOI: 10.1039/d3nr00014a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The medical field is continuously seeking new solutions and materials, where cellulose materials due to their high biocompatibility have great potential. Here we investigate the applicability of cellulose acetate (CA) electrospun fibers for bone tissue regeneration. For the first time we show the piezoelectric properties of electrospun CA fibers via high voltage switching spectroscopy piezoresponse force microscopy (HVSS-PFM) tests, which are followed by surface potential studies using Kelvin probe force microscopy (KPFM) and zeta potential measurements. Piezoelectric coefficient for CA fibers of 6.68 ± 1.70 pmV-1 along with high surface (718 mV) and zeta (-12.2 mV) potentials allowed us to mimic natural electrical environment favoring bone cell attachment and growth. Importantly, the synergy between increased surface potential and highly developed structure of the fibrous scaffold led to the formation of a vast 3D network of collagen produced by osteoblasts only after 7 days of in vitro culture. We clearly show the advantages of CA scaffolds as a bone replacement material, when long-lasting structural support is needed.
Collapse
Affiliation(s)
- Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Krzysztof Berniak
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Joanna Knapczyk-Korczak
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Joanna E Karbowniczek
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Mateusz M Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Poland
| | - Andrzej Bernasik
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Poland
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland.
| |
Collapse
|
9
|
He Y, Gao Y, Ma Q, Zhang X, Zhang Y, Song W. Nanotopographical cues for regulation of macrophages and osteoclasts: emerging opportunities for osseointegration. J Nanobiotechnology 2022; 20:510. [PMID: 36463225 PMCID: PMC9719660 DOI: 10.1186/s12951-022-01721-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotopographical cues of bone implant surface has direct influences on various cell types during the establishment of osseointegration, a prerequisite of implant bear-loading. Given the important roles of monocyte/macrophage lineage cells in bone regeneration and remodeling, the regulation of nanotopographies on macrophages and osteoclasts has arisen considerable attentions recently. However, compared to osteoblastic cells, how nanotopographies regulate macrophages and osteoclasts has not been properly summarized. In this review, the roles and interactions of macrophages, osteoclasts and osteoblasts at different stages of bone healing is firstly presented. Then, the diversity and preparation methods of nanotopographies are summarized. Special attentions are paid to the regulation characterizations of nanotopographies on macrophages polarization and osteoclast differentiation, as well as the focal adhesion-cytoskeleton mediated mechanism. Finally, an outlook is indicated of coordinating nanotopographies, macrophages and osteoclasts to achieve better osseointegration. These comprehensive discussions may not only help to guide the optimization of bone implant surface nanostructures, but also provide an enlightenment to the osteoimmune response to external implant.
Collapse
Affiliation(s)
- Yide He
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Yuanxue Gao
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Qianli Ma
- grid.5510.10000 0004 1936 8921Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Xige Zhang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Shaanxi Xi’an, 710032 China
| | - Yumei Zhang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Wen Song
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
10
|
Brudnicki PAP, Gonsalves MA, Spinella SM, Kaufman LJ, Lu HH. Engineering collagenous analogs of connective tissue extracellular matrix. Front Bioeng Biotechnol 2022; 10:925838. [PMID: 36312546 PMCID: PMC9613959 DOI: 10.3389/fbioe.2022.925838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Connective tissue extracellular matrix (ECM) consists of an interwoven network of contiguous collagen fibers that regulate cell activity, direct biological function, and guide tissue homeostasis throughout life. Recently, ECM analogs have emerged as a unique ex vivo culture platform for studying healthy and diseased tissues and in the latter, enabling the screening for and development of therapeutic regimen. Since these tissue models can mitigate the concern that observations from animal models do not always translate clinically, the design and production of a collagenous ECM analogue with relevant chemistry and nano- to micro-scale architecture remains a frontier challenge in the field. Therefore, the objectives of this study are two-fold— first, to apply green electrospinning approaches to the fabrication of an ECM analog with nanoscale mimicry and second, to systematically optimize collagen crosslinking in order to produce a stable, collagen-like substrate with continuous fibrous architecture that supports human cell culture and phenotypic expression. Specifically, the “green” electrospinning solvent acetic acid was evaluated for biofabrication of gelatin-based meshes, followed by the optimization of glutaraldehyde (GTA) crosslinking under controlled ambient conditions. These efforts led to the production of a collagen-like mesh with nano- and micro-scale cues, fibrous continuity with little batch-to-batch variability, and proven stability in both dry and wet conditions. Moreover, the as-fabricated mesh architecture and native chemistry were preserved with augmented mechanical properties. These meshes supported the in vitro expansion of stem cells and the production of a mineralized matrix by human osteoblast-like cells. Collectively these findings demonstrate the potential of green fabrication in the production of a collagen-like ECM analog with physiological relevance. Future studies will explore the potential of this high-fidelity platform for elucidating cell-matrix interactions and their relevance in connective tissue healing.
Collapse
Affiliation(s)
- Philip A. P. Brudnicki
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Matthew A. Gonsalves
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | - Laura J. Kaufman
- Department of Chemistry, Columbia University, New York, NY, United States
| | - Helen H. Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, United States
- *Correspondence: Helen H. Lu,
| |
Collapse
|
11
|
Valizadeh N, Salehi R, Roshangar L, Agbolaghi S, Mahkam M. Towards osteogenic bioengineering of human dental pulp stem cells induced by incorporating
Prunus amygdalus dulcis
extract in
polycaprolactone‐gelatin
nanofibrous scaffold. J Appl Polym Sci 2022. [DOI: 10.1002/app.52848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nasrin Valizadeh
- Chemistry Department, Science Faculty Azarbaijan Shahid Madani University Tabriz Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Leila Roshangar
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering Azarbaijan Shahid Madani University Tabriz Iran
| | - Mehrdad Mahkam
- Chemistry Department, Science Faculty Azarbaijan Shahid Madani University Tabriz Iran
| |
Collapse
|
12
|
Xu Z, Ma Y, Dai H, Tan S, Han B. Advancements and Applications in the Composites of Silk Fibroin and Graphene-Based Materials. Polymers (Basel) 2022; 14:polym14153110. [PMID: 35956625 PMCID: PMC9370577 DOI: 10.3390/polym14153110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Silk fibroin and three kinds of graphene-based materials (graphene, graphene oxide, and reduced graphene oxide) have been widely investigated in biomedical fields. Recently, the hybrid composites of silk fibroin and graphene-based materials have attracted much attention owing to their combined advantages, i.e., presenting outstanding biocompatibility, mechanical properties, and excellent electrical conductivity. However, maintaining bio-toxicity and biodegradability at a proper level remains a challenge for other applications. This report describes the first attempt to summarize the hybrid composites’ preparation methods, properties, and applications to the best of our knowledge. We strongly believe that this review will open new doors for coming researchers.
Collapse
|
13
|
Nishiuchi H, Tonami H. Control of mat thickness in electrospinning with transparent conductive glass collector. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hitachi Nishiuchi
- Department of Biomedical Engineering Osaka Institute of Technology Osaka Japan
| | - Hiroyuki Tonami
- Department of Biomedical Engineering Osaka Institute of Technology Osaka Japan
| |
Collapse
|
14
|
Asghari F, Rabiei Faradonbeh D, Malekshahi ZV, Nekounam H, Ghaemi B, Yousefpoor Y, Ghanbari H, Faridi-Majidi R. Hybrid PCL/chitosan-PEO nanofibrous scaffolds incorporated with A. euchroma extract for skin tissue engineering application. Carbohydr Polym 2022; 278:118926. [PMID: 34973744 DOI: 10.1016/j.carbpol.2021.118926] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Skin tissue engineering is an advanced method to repair and regenerate skin injuries. Recent research is focused on the development of scaffolds that are safe, bioactive, and cytocompatible. In this work, a new hybrid nanofibrous scaffold composed of polycaprolactone/chitosan-polyethylene oxide (PCL/Cs-PEO) incorporated with Arnebia euchroma (A. euchroma) extract were synthesized by the two-nozzle electrospinning method. Then the synthesized scaffold was characterized for morphology, sustainability, chemical structure and properties. Moreover, to verify their potential in the burn wound healing process, biodegradation rate, contact angle, swelling properties, water vapor permeability, mechanical properties, antibacterial activity and drug release profile were measured. Furthermore, cytotoxicity and biocompatibility tests were performed on human dermal fibroblasts cell line via XTT and LDH assay. It is shown that the scaffold improved and increased proliferation during in-vitro studies. Thus, results confirm the efficacy and potential of the hybrid nanofibrous scaffold for skin tissue engineering.
Collapse
Affiliation(s)
- Fatemeh Asghari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Rabiei Faradonbeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Ghaemi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Yousefpoor
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Shahriari-Khalaji M, Alassod A, Nozhat Z. Cotton-based health care textile: a mini review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04015-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Li X, Xiong F, Wang S, Zhang Z, Dai J, Chen H, Wang J, Wang Q, Yuan H. N-Acetyl-Cysteine-Loaded Biomimetic Nanofibrous Scaffold for Osteogenesis of Induced-Pluripotent-Stem-Cell-Derived Mesenchymal Stem Cells and Bone Regeneration. Front Bioeng Biotechnol 2022; 9:767641. [PMID: 34976966 PMCID: PMC8714946 DOI: 10.3389/fbioe.2021.767641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
To regenerate bone tissues, we investigated the osteogenic differentiation of induced-pluripotent-stem-cell-derived mesenchymal stem cells (iPSC-MSCs) and bone regeneration capacities using N-acetyl cysteine (NAC)-loaded biomimetic nanofibers of hydroxyapatite/silk fibroin (HAp/SF). The addition of HAp and NAC decreased the diameters of the electrospun fibers and enhanced the mechanical properties of the silk scaffold. The release kinetic curve indicated that NAC was released from NAC/HAp/SF nanofibers in a biphasic pattern, with an initial burst release stage and a later sustained release stage. This pattern of release of NAC encapsulated on the NAC/HAp/SF scaffolds prolonged the release of high concentrations of NAC, thereby largely affecting the osteogenic differentiation of iPSC-MSCs and bone regeneration. Thus, a new silk electrospun scaffold was developed. HAp was used as a separate nanocarrier for recharging the NAC concentration, which demonstrated the promising potential for the use of NAC/HAp/SF for bone tissue engineering.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Orthopedics and Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Feng Xiong
- School of Life Sciences, Nantong University, Nantong, China
| | - Shuguang Wang
- Department of Orthopedics and Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Zhuojun Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Jihang Dai
- Department of Orthopedics and Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Hui Chen
- Department of Orthopedics and Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Jingcheng Wang
- Department of Orthopedics and Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Qiang Wang
- Department of Orthopedics and Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Huihua Yuan
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
17
|
Pamu D, Tallapaneni V, Karri VVSR, Singh SK. Biomedical applications of electrospun nanofibers in the management of diabetic wounds. Drug Deliv Transl Res 2022; 12:158-166. [PMID: 33748878 DOI: 10.1007/s13346-021-00941-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 01/07/2023]
Abstract
Diabetes mellitus (DM) is a complex disease that affects almost all the body's vital organs. Around 415 million people have been diagnosed with DM worldwide, and most of them are due to type 2 DM. The incidence of DM is estimated to increase by 642 million individuals by 2040. DM is considered to have many complications among which diabetic wound (DW) is one of the most distressing complication. DW affects 15% of people with diabetes and is triggered by the loss of glycaemic control, peripheral neuropathy, vascular diseases, and immunosuppression. For timely treatment, early detection, debridement, offloading, and controlling infection are crucial. Even though several treatments are available, the understanding of overlying diabetes-related wound healing mechanisms as therapeutic options has increased dramatically over the past decades. Conventional dressings are cost-effective; however, they are not productive enough to promote the overall process of DW healing. Thanks to tissue engineering developments, one of the promising current trends in innovative wound dressings such as hydrocolloids, hydrogels, scaffolds, films, and nanofibers which merges traditional healing agents and modern products/practices. Nanofibers prepared by electrospinning with enormous porosity, excellent absorption of moisture, the better exchange rate of oxygen, and antibacterial activities have increased interest. The application of these nanofibers can be extended by starting with a careful selection of polymers, loading with active therapeutic moieties such as peptides, proteins, active pharmaceutical ingredients (API), and stem cells, etc. to make them as potential dosage forms in the management of DWs. This review explains the potential applications of electrospun nanofibers in DW healing. A schematic view of role of nanofibers in diabetic wounds.
Collapse
Affiliation(s)
- Divya Pamu
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Vyshnavi Tallapaneni
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
18
|
Mary AS, Raghavan VS, Kagula S, Krishnakumar V, Kannan M, Gorthi SS, Rajaram K. Enhanced In Vitro Wound Healing Using PVA/B-PEI Nanofiber Mats: A Promising Wound Therapeutic Agent against ESKAPE and Opportunistic Pathogens. ACS APPLIED BIO MATERIALS 2021; 4:8466-8476. [PMID: 35005922 DOI: 10.1021/acsabm.1c00985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Opportunistic skin pathogens and their resistance to pre-existing therapeutics are a challenge to normal physiological wound healing processes. Consistent development of antimicrobial agents is required to overcome the complications raised by antimicrobial resistance. An effective alternative proposed in recent research includes the use of antimicrobial nanoparticles or nanobiopolymers. Unfortunately, metallic nanoparticles that have been proven as antimicrobial agents also possess a certain level of toxicity. In this work, we demonstrate the use of a cationic polymer, branched polyethyleneimine (B-PEI), that has been electrospun to obtain a scaffold/fiber (B-PEI NF) mat resulting in a large surface area-to-volume ratio. SEM analysis revealed that the average diameter of the obtained fibers is 240 nm. The formation of nanoscaffold modulates the controlled release of the polymer from the matrix resulting in long-term effects. The antimicrobial and antibiofilm activity of the B-PEI nanofiber (B-PEI NF) was evaluated against ESKAPE pathogens (Pseudomonas aeruginosa and Staphylococcus aureus) and also against Candida albicans. Dose-dependent inhibition was observed for microbial growth and biofilm for all three test organisms, the minimum inhibitory concentration required for inhibiting P. aeruginosa, S. aureus, and C. albicans is 33.125, 26.5, and 19.875 μM, respectively, in 2 mL of bacterial/fungal broth. Crystal violet and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed significant reduction in biomass and cell viability of sessile cells, respectively, within the biofilm after treatment using B-PEI NFs. A B-PEI NF matrix promotes cell migration and wound healing processes by mimicking the extracellular matrix. In vitro wound healing studies showed a fivefold increase in cell migration and wound healing by B-PEI NFs (97% wound coverage in 17 h) when compared to B-PEI (15% wound coverage in 17 h). The in vitro wound healing assays confirmed the biocompatibility and better wound healing activity of B-PEI NF mats.
Collapse
Affiliation(s)
- Aarcha Shanmugha Mary
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610005, India
| | - Vikram Srinivasa Raghavan
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sirisha Kagula
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610005, India
| | - Vinodhini Krishnakumar
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610005, India
| | - Meganathan Kannan
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610005, India
| | - Sai Siva Gorthi
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Kaushik Rajaram
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610005, India
| |
Collapse
|
19
|
Serbezeanu D, Bargan A, Homocianu M, Aflori M, Rîmbu CM, Enache AA, Vlad-Bubulac T. Electrospun Polyvinyl Alcohol Loaded with Phytotherapeutic Agents for Wound Healing Applications. NANOMATERIALS 2021; 11:nano11123336. [PMID: 34947686 PMCID: PMC8705401 DOI: 10.3390/nano11123336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 12/28/2022]
Abstract
In this paper, hydroalcoholic solutions of Thymus vulgaris, Salvia officinalis folium, and Hyperici herba were used in combination with poly (vinyl alcohol) with the aim of developing novel poly (vinyl alcohol)-based nanofiber mats loaded with phytotherapeutic agents via the electrospinning technique. The chemical structure and morphology of the polymeric nanofibers were investigated using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The addition of Thymus vulgaris, Salvia officinalis folium, and Hyperici herba extracts to the pure polyvinyl alcohol fibers led to changes in the morphology of the fibers and a reduction in the fibers’ diameter, from 0.1798 µm in the case of pure polyvinyl alcohol to 0.1672, 0.1425, and 0.1369 µm in the case of polyvinyl alcohol loaded with Thymus vulgaris, Salvia officinalis folium, and Hyperici herba, respectively. The adapted Folin–Ciocalteu (FC) method, which was used to determine the total phenolic contents, revealed that the samples of PVA–Hyperici herba and PVA–Thymus vulgaris had the highest phenol contents, at 13.25 μgGAE/mL and 12.66 μgGAE/mL, respectively. Dynamic water vapor measurements were used in order to investigate the moisture sorption and desorption behavior of the developed electrospun materials. The antimicrobial behavior of these products was also evaluated. Disk diffusion assay studies with Escherichia coli, Staphylococcus aureus, and Methicillin-resistant Staphylococcus aureus were conducted on the developed nanofibers in order to quantify their phytotherapeutic potential.
Collapse
Affiliation(s)
- Diana Serbezeanu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.B.); (M.H.); (M.A.); (T.V.-B.)
- Correspondence:
| | - Alexandra Bargan
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.B.); (M.H.); (M.A.); (T.V.-B.)
| | - Mihaela Homocianu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.B.); (M.H.); (M.A.); (T.V.-B.)
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.B.); (M.H.); (M.A.); (T.V.-B.)
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Faculty of Veterinary Medicine “Ion Ionescu de la Brad”, University of Agricultural Sciences and Veterinary Medicine, 8, Mihail Sadoveanu Alley, 707027 Iasi, Romania;
| | | | - Tăchiță Vlad-Bubulac
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.B.); (M.H.); (M.A.); (T.V.-B.)
| |
Collapse
|
20
|
Random and aligned electrospun poly(ε-caprolactone) (PCL)/poly(1,8-octanediol-co-citrate) (POC) fiber mats for cardiac tissue engineering using benign solvents. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Zare M, Dziemidowicz K, Williams GR, Ramakrishna S. Encapsulation of Pharmaceutical and Nutraceutical Active Ingredients Using Electrospinning Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1968. [PMID: 34443799 PMCID: PMC8399548 DOI: 10.3390/nano11081968] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Electrospinning is an inexpensive and powerful method that employs a polymer solution and strong electric field to produce nanofibers. These can be applied in diverse biological and medical applications. Due to their large surface area, controllable surface functionalization and properties, and typically high biocompatibility electrospun nanofibers are recognized as promising materials for the manufacturing of drug delivery systems. Electrospinning offers the potential to formulate poorly soluble drugs as amorphous solid dispersions to improve solubility, bioavailability and targeting of drug release. It is also a successful strategy for the encapsulation of nutraceuticals. This review aims to briefly discuss the concept of electrospinning and recent progress in manufacturing electrospun drug delivery systems. It will further consider in detail the encapsulation of nutraceuticals, particularly probiotics.
Collapse
Affiliation(s)
- Mina Zare
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Karolina Dziemidowicz
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
| |
Collapse
|
22
|
Chelidoniummajus L. Incorporated Emulsion Electrospun PCL/PVA_PEC Nanofibrous Meshes for Antibacterial Wound Dressing Applications. NANOMATERIALS 2021; 11:nano11071785. [PMID: 34361171 PMCID: PMC8308255 DOI: 10.3390/nano11071785] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
Presently, there are many different types of wound dressings available on the market. Nonetheless, there is still a great interest to improve the performance and efficiency of these materials. Concerning that, new dressing materials containing natural products, such as medicinal plants that protect the wound from infections but also enhance skin regeneration have been or are being developed. Herein, we used for the first time a needleless emulsion electrospinning technique for incorporating Chelidoniummajus L. (C. majus), a medicinal plant widely known for its traditional therapeutic properties, in Polycaprolactone (PCL)/Polyvinyl Alcohol (PVA)_Pectin (PEC) nanofibrous meshes. Moreover, the potential use of these electrospun nanofibers as a carrier for C. majus was also explored. The results obtained revealed that the produced PCL/PVA_PEC nanofibrous meshes containing C. majus extract displayed morphological characteristics similar to the natural extracellular matrix of the skin (ECM). Furthermore, the produced meshes showed beneficial properties to support the healing process. Additionally, the C. majus-loaded PCL/PVA_PEC nanofibrous meshes inhibited Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) growth, reaching a 3.82 Log reduction, and showed to be useful for controlled release, without causing any cytotoxic effect on the normal human dermal fibroblasts (NHDF) cells. Hence, these findings suggest the promising suitability of this novel wound dressing material for prevention and treatment of bacterial wound infections.
Collapse
|
23
|
Song JY, Ryu HI, Lee JM, Bae SH, Lee JW, Yi CC, Park SM. Conformal Fabrication of an Electrospun Nanofiber Mat on a 3D Ear Cartilage-Shaped Hydrogel Collector Based on Hydrogel-Assisted Electrospinning. NANOSCALE RESEARCH LETTERS 2021; 16:116. [PMID: 34241736 PMCID: PMC8271053 DOI: 10.1186/s11671-021-03571-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/01/2021] [Indexed: 05/31/2023]
Abstract
Electrospinning is a common and versatile process to produce nanofibers and deposit them on a collector as a two-dimensional nanofiber mat or a three-dimensional (3D) macroscopic arrangement. However, 3D electroconductive collectors with complex geometries, including protruded, curved, and recessed regions, generally caused hampering of a conformal deposition and incomplete covering of electrospun nanofibers. In this study, we suggested a conformal fabrication of an electrospun nanofiber mat on a 3D ear cartilage-shaped hydrogel collector based on hydrogel-assisted electrospinning. To relieve the influence of the complex geometries, we flattened the protruded parts of the 3D ear cartilage-shaped hydrogel collector by exploiting the flexibility of the hydrogel. We found that the suggested fabrication technique could significantly decrease an unevenly focused electric field, caused by the complex geometries of the 3D collector, by alleviating the standard deviation by more than 70% through numerical simulation. Furthermore, it was experimentally confirmed that an electrospun nanofiber mat conformally covered the flattened hydrogel collector with a uniform thickness, which was not achieved with the original hydrogel collector. Given that this study established the conformal electrospinning technique on 3D electroconductive collectors, it will contribute to various studies related to electrospinning, including tissue engineering, drug/cell delivery, environmental filter, and clothing.
Collapse
Affiliation(s)
- Jin Yeong Song
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, South Korea
| | - Hyun Il Ryu
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, South Korea
| | - Jeong Myeong Lee
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, South Korea
| | - Seong Hwan Bae
- Department of Plastic and Reconstructive Surgery, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, South Korea
- Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, South Korea
| | - Jae Woo Lee
- Department of Plastic and Reconstructive Surgery, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, South Korea
| | - Changryul Claud Yi
- Department of Plastic and Reconstructive Surgery, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, South Korea.
- Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, South Korea.
| | - Sang Min Park
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, South Korea.
| |
Collapse
|
24
|
Abstract
Choosing the material with the best regeneration potential and properties closest to that of the extracellular matrix is one of the main challenges in tissue engineering and regenerative medicine. Natural polymers, such as collagen, elastin, and cellulose, are widely used for this purpose in tissue engineering. Cellulose derived from bacteria has excellent mechanical properties, high hydrophilicity, crystallinity, and a high degree of polymerization and, therefore, can be used as scaffold/membrane for tissue engineering. In the current study, we reviewed the latest trends in the application of bacterial cellulose (BC) polymers as a scaffold in different types of tissue, including bone, vascular, skin, and cartilage. Also, we mentioned the biological and mechanical advantages and disadvantages of BC polymers. Given the data presented in this study, BC polymer could be suggested as a favorable natural polymer in the design of tissue scaffolds. Implementing novel composites that combine this polymer with other materials through modern or rapid prototyping methods can open up a great prospect in the future of tissue engineering and regenerative medicine.
Collapse
|
25
|
Adhikari KR, Stanishevskaya I, Caracciolo PC, Abraham GA, Thomas V. Novel Poly(ester urethane urea)/Polydioxanone Blends: Electrospun Fibrous Meshes and Films. Molecules 2021; 26:3847. [PMID: 34202602 PMCID: PMC8270292 DOI: 10.3390/molecules26133847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 11/22/2022] Open
Abstract
In this work, we report the electrospinning and mechano-morphological characterizations of scaffolds based on blends of a novel poly(ester urethane urea) (PHH) and poly(dioxanone) (PDO). At the optimized electrospinning conditions, PHH, PDO and blend PHH/PDO in Hexafluroisopropanol (HFIP) solution yielded bead-free non-woven random nanofibers with high porosity and diameter in the range of hundreds of nanometers. The structural, morphological, and biomechanical properties were investigated using Differential Scanning Calorimetry, Scanning Electron Microscopy, Atomic Force Microscopy, and tensile tests. The blended scaffold showed an elastic modulus (~5 MPa) with a combination of the ultimate tensile strength (2 ± 0.5 MPa), and maximum elongation (150% ± 44%) in hydrated conditions, which are comparable to the materials currently being used for soft tissue applications such as skin, native arteries, and cardiac muscles applications. This demonstrates the feasibility of an electrospun PHH/PDO blend for cardiac patches or vascular graft applications that mimic the nanoscale structure and mechanical properties of native tissue.
Collapse
Affiliation(s)
- Kiran R. Adhikari
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Pablo C. Caracciolo
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina; (P.C.C.); (G.A.A.)
| | - Gustavo A. Abraham
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina; (P.C.C.); (G.A.A.)
| | - Vinoy Thomas
- Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
26
|
Vogt L, Ruther F, Salehi S, Boccaccini AR. Poly(Glycerol Sebacate) in Biomedical Applications-A Review of the Recent Literature. Adv Healthc Mater 2021; 10:e2002026. [PMID: 33733604 PMCID: PMC11468981 DOI: 10.1002/adhm.202002026] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Poly(glycerol sebacate) (PGS) continues to attract attention for biomedical applications owing to its favorable combination of properties. Conventionally polymerized by a two-step polycondensation of glycerol and sebacic acid, variations of synthesis parameters, reactant concentrations or by specific chemical modifications, PGS materials can be obtained exhibiting a wide range of physicochemical, mechanical, and morphological properties for a variety of applications. PGS has been extensively used in tissue engineering (TE) of cardiovascular, nerve, cartilage, bone and corneal tissues. Applications of PGS based materials in drug delivery systems and wound healing are also well documented. Research and development in the field of PGS continue to progress, involving mainly the synthesis of modified structures using copolymers, hybrid, and composite materials. Moreover, the production of self-healing and electroactive materials has been introduced recently. After almost 20 years of research on PGS, previous publications have outlined its synthesis, modification, properties, and biomedical applications, however, a review paper covering the most recent developments in the field is lacking. The present review thus covers comprehensively literature of the last five years on PGS-based biomaterials and devices focusing on advanced modifications of PGS for applications in medicine and highlighting notable advances of PGS based systems in TE and drug delivery.
Collapse
Affiliation(s)
- Lena Vogt
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Florian Ruther
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Sahar Salehi
- Chair of Biomaterials, University of Bayreuth, Bayreuth, 95447, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| |
Collapse
|
27
|
Shams G, Rad AN, Safdarian M, Rezaie A, Bavarsad N, Abbaspour M. Self-microemulsification-assisted incorporation of tacrolimus into hydrophilic nanofibers for facilitated treatment of 2,4-dinitrochlorobenzene induced atopic dermatitis like lesions. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Zhang L, Zhang W, Hu Y, Fei Y, Liu H, Huang Z, Wang C, Ruan D, Heng BC, Chen W, Shen W. Systematic Review of Silk Scaffolds in Musculoskeletal Tissue Engineering Applications in the Recent Decade. ACS Biomater Sci Eng 2021; 7:817-840. [PMID: 33595274 DOI: 10.1021/acsbiomaterials.0c01716] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the past decade, various novel tissue engineering (TE) strategies have been developed to maintain, repair, and restore the biomechanical functions of the musculoskeletal system. Silk fibroins are natural polymers with numerous advantageous properties such as good biocompatibility, high mechanical strength, and low degradation rate and are increasingly being recognized as a scaffolding material of choice in musculoskeletal TE applications. This current systematic review examines and summarizes the latest research on silk scaffolds in musculoskeletal TE applications within the past decade. Scientific databases searched include PubMed, Web of Science, Medline, Cochrane library, and Embase. The following keywords and search terms were used: musculoskeletal, tendon, ligament, intervertebral disc, muscle, cartilage, bone, silk, and tissue engineering. Our Review was limited to articles on musculoskeletal TE, which were published in English from 2010 to September 2019. The eligibility of the articles was assessed by two reviewers according to prespecified inclusion and exclusion criteria, after which an independent reviewer performed data extraction and a second independent reviewer validated the data obtained. A total of 1120 articles were reviewed from the databases. According to inclusion and exclusion criteria, 480 articles were considered as relevant for the purpose of this systematic review. Tissue engineering is an effective modality for repairing or replacing injured or damaged tissues and organs with artificial materials. This Review is intended to reveal the research status of silk-based scaffolds in the musculoskeletal system within the recent decade. In addition, a comprehensive translational research route for silk biomaterial from bench to bedside is described in this Review.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Orthopaedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yejun Hu
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Yang Fei
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Haoyang Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zizhan Huang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Canlong Wang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | | | - Weishan Chen
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Weiliang Shen
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Sports System Disease Research and Accurate Diagnosis and Treatment of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China.,China Orthopaedic Regenerative Medicine (CORMed), Chinese Medical Association, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Keshvardoostchokami M, Majidi SS, Huo P, Ramachandran R, Chen M, Liu B. Electrospun Nanofibers of Natural and Synthetic Polymers as Artificial Extracellular Matrix for Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E21. [PMID: 33374248 PMCID: PMC7823539 DOI: 10.3390/nano11010021] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Many types of polymer nanofibers have been introduced as artificial extracellular matrices. Their controllable properties, such as wettability, surface charge, transparency, elasticity, porosity and surface to volume proportion, have attracted much attention. Moreover, functionalizing polymers with other bioactive components could enable the engineering of microenvironments to host cells for regenerative medical applications. In the current brief review, we focus on the most recently cited electrospun nanofibrous polymeric scaffolds and divide them into five main categories: natural polymer-natural polymer composite, natural polymer-synthetic polymer composite, synthetic polymer-synthetic polymer composite, crosslinked polymers and reinforced polymers with inorganic materials. Then, we focus on their physiochemical, biological and mechanical features and discussed the capability and efficiency of the nanofibrous scaffolds to function as the extracellular matrix to support cellular function.
Collapse
Affiliation(s)
- Mina Keshvardoostchokami
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Sara Seidelin Majidi
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; (S.S.M.); (M.C.)
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Rajan Ramachandran
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Menglin Chen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; (S.S.M.); (M.C.)
- Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| |
Collapse
|
30
|
Pavezi KJ, Rocha A, Bonafé EG, Martins AF. Electrospinning-electrospraying of poly(acid lactic) solutions in binary chloroform/formic acid and chloroform/acetic acid mixtures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Papaparaskeva G, Louca M, Voutouri C, Tanasă E, Stylianopoulos T, Krasia-Christoforou T. Amalgamated fiber/hydrogel composites based on semi-interpenetrating polymer networks and electrospun nanocomposite fibrous mats. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Tahmasebi A, Shapouri Moghadam A, Enderami SE, Islami M, Kaabi M, Saburi E, Daei Farshchi A, Soleimanifar F, Mansouri V. Aloe Vera-Derived Gel-Blended PHBV Nanofibrous Scaffold for Bone Tissue Engineering. ASAIO J 2020; 66:966-973. [PMID: 32740360 DOI: 10.1097/mat.0000000000001094] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Today, composite scaffolds fabricated by natural and synthetic polymers have attracted a lot of attention among researchers in the field of tissue engineering, and given their combined properties that can play a very useful role in repairing damaged tissues. In the current study, aloe vera-derived gel-blended poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibrous scaffold was fabricated by electrospinning, and then, PHBV and PHBV gel fabricated scaffolds characterized by scanning electron microscope, protein adsorption, cell attachment, tensile and cell's viability tests. After that, osteogenic supportive property of the scaffolds was studied by culturing of human-induced pluripotent stem cells on the scaffolds under osteogenic medium and evaluating of the common bone-related markers. The results showed that biocompatibility of the PHBV nanofibrous scaffold significantly improved when combined with the aloe vera gel. In addition, higher amounts of alkaline phosphatase activity, mineralization, and bone-related gene and protein expression were detected in stem cells when grown on PHBV-gel scaffold in comparison with those stem cells grown on the PHBV and culture plate. Taken together, it can be concluded that aloe vera gel-blended PHBV scaffold has a great promising osteoinductive potential that can be used as a suitable bioimplant for bone tissue engineering applications to accelerate bone regeneration and also degraded completely along with tissue regeneration.
Collapse
Affiliation(s)
- Aylin Tahmasebi
- From the Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Abbas Shapouri Moghadam
- Department of Immunogenetics, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Islami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohamad Kaabi
- From the Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Daei Farshchi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Nazeri N, Karimi R, Ghanbari H. The effect of surface modification of poly-lactide-co-glycolide/carbon nanotube nanofibrous scaffolds by laminin protein on nerve tissue engineering. J Biomed Mater Res A 2020; 109:159-169. [PMID: 32445230 DOI: 10.1002/jbm.a.37013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022]
Abstract
The presence of biological cues to promote the attachment, proliferation, and differentiation of neuronal cells is important in the process of nerve regeneration. In this study, laminin as a neurite promoting protein, has been used to modify poly-lactide-co-glycolide/carbon nanotube (PLGA/CNT) electrospun nanofibrous scaffolds by means of either mussel-inspired poly(dopamine) (PD) coating or via direct physical adsorption as a simple route for the functionalization of biomaterials. The laminin-modified scaffolds were characterized by a combination of field emission scanning electron microscopy (SEM), X-ray photoelectron spectroscopy, and contact angle measurements. Subsequently, various properties of scaffolds such as degradation time, amount of attached laminin and the rate of CNT release were investigated. The synergistic effect of topographical and biological cues for PC12 cell attachment, proliferation, and differentiation were then studied by SEM and confocal microscopy. The results of degradation study showed that laminin-modified scaffolds were biodegradable with good structural integrity that persisted about 4 weeks. The amount of laminin attached to the PLGA/CNT and PLGA/CNT-PD scaffolds was 3.12 ± 0.6 and 3.04 ± 071 μg per mg of the scaffold, respectively. Although laminin-modified scaffolds could improve cell proliferation identically, neurite extensions on the PLGA/CNT scaffold modified via PD coating (PLGA/CNT-PD-lam scaffold) were significantly longer than those observed on PLGA/CNT scaffold modified via physical adsorption (PLGA/CNT-lam scaffold) and unmodified scaffolds. Together, these results indicated that surface modification via PD coating could be a promising strategy to fabricate biomimetic scaffolds capable of sustaining longer neuronal growth for nerve tissue engineering.
Collapse
Affiliation(s)
- Niloofar Nazeri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Karimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Kupka V, Dvořáková E, Manakhov A, Michlíček M, Petruš J, Vojtová L, Zajíčková L. Well-Blended PCL/PEO Electrospun Nanofibers with Functional Properties Enhanced by Plasma Processing. Polymers (Basel) 2020; 12:polym12061403. [PMID: 32580496 PMCID: PMC7362260 DOI: 10.3390/polym12061403] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022] Open
Abstract
Biodegradable composite nanofibers were electrospun from poly(ε-caprolactone) (PCL) and poly(ethylene oxide) (PEO) mixtures dissolved in acetic and formic acids. The variation of PCL:PEO concentration in the polymer blend, from 5:95 to 75:25, revealed the tunability of the hydrolytic stability and mechanical properties of the nanofibrous mats. The degradation rate of PCL/PEO nanofibers can be increased compared to pure PCL, and the mechanical properties can be improved compared to pure PEO. Although PCL and PEO have been previously reported as immiscible, the electrospinning into nanofibers having restricted dimensions (250–450 nm) led to a microscopically mixed PCL/PEO blend. However, the hydrolytic stability and tensile tests revealed the segregation of PCL into few-nanometers-thin fibrils in the PEO matrix of each nanofiber. A synergy phenomenon of increased stiffness appeared for the high concentration of PCL in PCL/PEO nanofibrous mats. The pure PCL and PEO mats had a Young’s modulus of about 12 MPa, but the mats made of high concentration PCL in PCL/PEO solution exhibited 2.5-fold higher values. The increase in the PEO content led to faster degradation of mats in water and up to a 20-fold decrease in the nanofibers’ ductility. The surface of the PCL/PEO nanofibers was functionalized by an amine plasma polymer thin film that is known to increase the hydrophilicity and attach proteins efficiently to the surface. The combination of different PCL/PEO blends and amine plasma polymer coating enabled us to tune the surface functionality, the hydrolytic stability, and the mechanical properties of biodegradable nanofibrous mats.
Collapse
Affiliation(s)
- Vojtěch Kupka
- Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic; (V.K.); (J.P.); (L.V.)
- Regional Centre of Advanced Technologies and Materials and Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17 Listopadu 12, 77900 Olomouc, Czech Republic
| | - Eva Dvořáková
- Central European Institute of Technology—CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (E.D.); (A.M.); (M.M.)
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Anton Manakhov
- Central European Institute of Technology—CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (E.D.); (A.M.); (M.M.)
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
| | - Miroslav Michlíček
- Central European Institute of Technology—CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (E.D.); (A.M.); (M.M.)
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Josef Petruš
- Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic; (V.K.); (J.P.); (L.V.)
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic
| | - Lucy Vojtová
- Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic; (V.K.); (J.P.); (L.V.)
| | - Lenka Zajíčková
- Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic; (V.K.); (J.P.); (L.V.)
- Central European Institute of Technology—CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (E.D.); (A.M.); (M.M.)
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
35
|
Abazari MF, Zare Karizi S, Kohandani M, Nasiri N, Nejati F, Saburi E, Nikpoor AR, Enderami SE, Soleimanifar F, Mansouri V. MicroRNA
‐2861 and nanofibrous scaffold synergistically promote human induced pluripotent stem cells osteogenic differentiation. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mohammad Foad Abazari
- Research Center for Clinical VirologyTehran University of Medical Sciences Tehran Iran
| | - Shohreh Zare Karizi
- Department of BiologyVaramin Pishva Branch, Islamic Azad University Pishva, Varamin Iran
| | - Mina Kohandani
- Department of Biology, Faculty of Biological SciencesIslamic Azad University, East Tehran Branch Tehran Iran
| | - Navid Nasiri
- Department of Biology, Central Tehran BranchIslamic Azad University Tehran Iran
| | - Fatemeh Nejati
- Department of Biology, Central Tehran BranchIslamic Azad University Tehran Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Amin Reza Nikpoor
- Molecular Medicine Research CenterHormozgan Health Institute, Hormozgan University of Medical Sciences Bandar Abbas Iran
| | - Seyed Ehsan Enderami
- Diabetes Research Center, Department of Medical BiotechnologySchool of Advanced Technologies in Medicine, Mazandaran university of Medical Sciences Sari Iran
| | - Fatemeh Soleimanifar
- Department of Medical biotechnology, School of MedicineAlborz University of Medical Sciences Karaj Iran
| | - Vahid Mansouri
- Proteomics Research Center, Department of AnatomySchool of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
36
|
Chen S, John JV, McCarthy A, Xie J. New forms of electrospun nanofiber materials for biomedical applications. J Mater Chem B 2020; 8:3733-3746. [PMID: 32211735 PMCID: PMC7205582 DOI: 10.1039/d0tb00271b] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past two decades, electrospinning has emerged as an enabling nanotechnology to produce nanofiber materials for various biomedical applications. In particular, therapeutic/cellloaded nanofiber scaffolds have been widely examined in drug delivery, wound healing, and tissue repair and regeneration. However, due to the insufficient porosity, small pore size, noninjectability, and inaccurate spatial control in nanofibers of scaffolds, many efforts have been devoted to exploring new forms of nanofiber materials including expanded nanofiber scaffolds, nanofiber aerogels, short nanofibers, and nanofiber microspheres. This short review discusses the preparation and potential biomedical applications of new forms of nanofiber materials.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Johnson V John
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
37
|
Yarysheva A, Strel'tsov D, Malakhov S, Arzhakova O, Yarysheva L, Volynskii A. Surface modification of poly(tetrafluoroethylene) and poly(ethylene terephthalate) films via environmental crazing. POLYM INT 2020. [DOI: 10.1002/pi.5998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alena Yarysheva
- Faculty of ChemistryLomonosov Moscow State University Moscow Russia
| | | | | | - Olga Arzhakova
- Faculty of ChemistryLomonosov Moscow State University Moscow Russia
| | - Larisa Yarysheva
- Faculty of ChemistryLomonosov Moscow State University Moscow Russia
| | | |
Collapse
|
38
|
Flaig F, Ragot H, Simon A, Revet G, Kitsara M, Kitasato L, Hébraud A, Agbulut O, Schlatter G. Design of Functional Electrospun Scaffolds Based on Poly(glycerol sebacate) Elastomer and Poly(lactic acid) for Cardiac Tissue Engineering. ACS Biomater Sci Eng 2020; 6:2388-2400. [DOI: 10.1021/acsbiomaterials.0c00243] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Florence Flaig
- ICPEES, Institut de Chimie et Procédés pour l’Energie l’Environnement et la Santé, CNRS UMR 7515, ECPM-Université de Strasbourg, 25 rue Becquerel, Strasbourg Cedex 2, 67087, France
| | - Hélène Ragot
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Sorbonne Université, Paris 75005, France
| | - Alexandre Simon
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Sorbonne Université, Paris 75005, France
| | - Gaëlle Revet
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Sorbonne Université, Paris 75005, France
| | - Maria Kitsara
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Sorbonne Université, Paris 75005, France
| | - Lisa Kitasato
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Sorbonne Université, Paris 75005, France
| | - Anne Hébraud
- ICPEES, Institut de Chimie et Procédés pour l’Energie l’Environnement et la Santé, CNRS UMR 7515, ECPM-Université de Strasbourg, 25 rue Becquerel, Strasbourg Cedex 2, 67087, France
| | - Onnik Agbulut
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Sorbonne Université, Paris 75005, France
| | - Guy Schlatter
- ICPEES, Institut de Chimie et Procédés pour l’Energie l’Environnement et la Santé, CNRS UMR 7515, ECPM-Université de Strasbourg, 25 rue Becquerel, Strasbourg Cedex 2, 67087, France
| |
Collapse
|
39
|
Wu T, Ding M, Shi C, Qiao Y, Wang P, Qiao R, Wang X, Zhong J. Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Abstract
Recently, respiratory systems are increasingly threatened by high levels of environmental pollution. Organ-on-a-chip technology has the advantage of enabling more accurate preclinical experiments by reproducing in vivo organ physiology. To investigate disease mechanisms and treatment options, respiratory-physiology-on-a-chip systems have been studied for the last decade. Here, we delineate the strategic approaches to develop respiratory-physiology-on-a-chip that can recapitulate respiratory system in vitro. The state-of-the-art biofabrication methods and biomaterials are considered as key contributions to constructing the chips. We also explore the vascularization strategies to investigate complicated pathophysiological phenomena including inflammation and immune responses, which are the critical aggravating factors causing the complications in the respiratory diseases. In addition, challenges and future research directions are delineated to improve the mimicry of respiratory systems in terms of both structural and biological behaviors.
Collapse
|
41
|
Kostopoulos V, Kotrotsos A, Fouriki K, Kalarakis A, Portan D. Fabrication and Characterization of Polyetherimide Electrospun Scaffolds Modified with Graphene Nano-Platelets and Hydroxyapatite Nano-Particles. Int J Mol Sci 2020; 21:E583. [PMID: 31963248 PMCID: PMC7014066 DOI: 10.3390/ijms21020583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Solution electrospinning process (SEP) is a versatile technique for generating non-woven fibrous materials intended to a wide range of applications. One of them is the production of fibrous and porous scaffolds aiming to mimic bone tissue, as artificial extracellular matrices (ECM). In the present work, pure and nano-modified electrospun polyetherimide (PEI) scaffolds have been successfully fabricated. The nano-modified ones include (a) graphene nano-platelets (GNPs), (b) hydroxyapatite (HAP), and (c) mixture of both. After fabrication, the morphological characteristics of these scaffolds were revealed by using scanning electron (SEM) and transmission electron (TEM) microscopies, while porosity and mean fiber diameter were also calculated. In parallel, contact angle experiments were conducted so that the hydrophilicity level of these materials to be determined. Finally, the mechanical performance of the fabricated scaffolds was investigated by conducting uniaxial tensile tests. Ιn future work, the fabricated scaffolds will be further utilized for investigation as potential candidate materials for cell culture with perspective in orthopedic applications.
Collapse
Affiliation(s)
- Vassilis Kostopoulos
- Department of Mechanical Engineering and Aeronautics, University of Patras, Patras University Campus, GR-26504 Patras, Greece; (A.K.); (K.F.); (D.P.)
- Foundation of Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou Str., GR-26504 Patras, Greece;
| | - Athanasios Kotrotsos
- Department of Mechanical Engineering and Aeronautics, University of Patras, Patras University Campus, GR-26504 Patras, Greece; (A.K.); (K.F.); (D.P.)
| | - Kalliopi Fouriki
- Department of Mechanical Engineering and Aeronautics, University of Patras, Patras University Campus, GR-26504 Patras, Greece; (A.K.); (K.F.); (D.P.)
| | - Alexandros Kalarakis
- Foundation of Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou Str., GR-26504 Patras, Greece;
- Department of Mechanical Engineering, School of Engineering, University of Peloponnese, M. Alexandrou 1, Koukouli, GR-26334 Patras, Greece
| | - Diana Portan
- Department of Mechanical Engineering and Aeronautics, University of Patras, Patras University Campus, GR-26504 Patras, Greece; (A.K.); (K.F.); (D.P.)
| |
Collapse
|
42
|
Kamali A, Shamloo A. Fabrication and evaluation of a bilayer hydrogel-electrospinning scaffold prepared by the freeze-gelation method. J Biomech 2020; 98:109466. [DOI: 10.1016/j.jbiomech.2019.109466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 01/12/2023]
|
43
|
Tang KC, Yang KC, Lin CW, Chen YK, Lu TY, Chen HY, Cheng NC, Yu J. Human Adipose-Derived Stem Cell Secreted Extracellular Matrix Incorporated into Electrospun Poly(Lactic- co-Glycolic Acid) Nanofibrous Dressing for Enhancing Wound Healing. Polymers (Basel) 2019; 11:E1609. [PMID: 31623334 PMCID: PMC6835469 DOI: 10.3390/polym11101609] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 12/23/2022] Open
Abstract
Wound dressing, which prevents dehydration and provides a physical barrier against infection to wound beds, can improve wound healing. The interactions between extracellular matrix (ECM) and growth factors is critical to the healing process. Electrospun nanofibers are promising templates for wound dressings due to the structure similarity to ECM of skin. Otherwise, the ECM secreted by human adipose-derived stem cells (hASCs) is rich in growth factors known to enhance wound healing. Accordingly, we propose that the PLGA nanofibrous template incorporated with hASCs-secreted ECM may enhance wound healing. In this study, PLGA nanofibrous matrixes with an aligned or a random structure were prepared by electrospinning. Human ASCs cultured on the aligned matrix had a better viability and produced a larger amount of ECM relative to that of random one. After 7 days' cultivation, the hASCs on aligned PLGA substrates underwent decellularization to fabricate cECM/PLGA dressings. By using immunohistochemical staining against F-actin and cell nucleus, the removal of cellular components was verified. However, the type I collagen and laminin were well preserved on the cECM/PLGA nanofibrous matrixes. In addition, this substrate was hydrophilic, with appropriate mechanical strength to act as a wound dressing. The L929 fibroblasts had good activity, survival and proliferation on the cECM/PLGA meshes. In addition, the cECM/PLGA nanofibrous dressings improved the wound healing of surgically created full-thickness skin excision in a mouse model. This hASCs-secreted ECM incorporated into electrospun PLGA nanofibrous could be a promising dressing for enhancing wound healing.
Collapse
Affiliation(s)
- Kao-Chun Tang
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Kai-Chiang Yang
- School of Dental Technology, Taipei Medical University, Taipei 106, Taiwan.
| | - Che-Wei Lin
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yi-Kai Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Ting-Yu Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan.
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
44
|
Ahn S, Ardoña HAM, Campbell PH, Gonzalez GM, Parker KK. Alfalfa Nanofibers for Dermal Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33535-33547. [PMID: 31369233 DOI: 10.1021/acsami.9b07626] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Engineering bioscaffolds for improved cutaneous tissue regeneration remains a healthcare challenge because of the increasing number of patients suffering from acute and chronic wounds. To help address this problem, we propose to utilize alfalfa, an ancient medicinal plant that contains antibacterial/oxygenating chlorophylls and bioactive phytoestrogens, as a building block for regenerative wound dressings. Alfalfa carries genistein, which is a major phytoestrogen known to accelerate skin repair. The scaffolds presented herein were built from composite alfalfa and polycaprolactone (PCL) nanofibers with hydrophilic surface and mechanical stiffness that recapitulate the physiological microenvironments of skin. This composite scaffold was engineered to have aligned nanofibrous architecture to accelerate directional cell migration. As a result, alfalfa-based composite nanofibers were found to enhance the cellular proliferation of dermal fibroblasts and epidermal keratinocytes in vitro. Finally, these nanofibers exhibited reproducible regenerative functionality by promoting re-epithelialization and granulation tissue formation in both mouse and human skin, without requiring additional proteins, growth factors, or cells. Overall, these findings demonstrate the potential of alfalfa-based nanofibers as a regenerative platform toward accelerating cutaneous tissue repair.
Collapse
Affiliation(s)
- Seungkuk Ahn
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Herdeline Ann M Ardoña
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Patrick H Campbell
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Grant M Gonzalez
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
45
|
Sofi HS, Akram T, Tamboli AH, Majeed A, Shabir N, Sheikh FA. Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications. Int J Pharm 2019; 569:118590. [PMID: 31381988 DOI: 10.1016/j.ijpharm.2019.118590] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022]
Abstract
Synthetic polymers, especially those with biocompatible and biodegradable characteristics, may offer effective alternatives for the treatment of severe wounds and burn injuries. Ideally, the scaffold material should induce as little pain as possible, enable quick healing, and direct the growth of defect-free epidermal cells. The best material with this multifunctionality, such as self-healing dressings, should be hydrophilic and have uninterrupted and direct contact with the damaged tissue. In addition, the ideal biomaterial should have some antibacterial properties. In this study, a novel technique was used to fabricate composite electrospun wound-dressing nanofibers composed of polyurethane encasing lavender oil and silver (Ag) nanoparticles (NPs). After electrospinning, the fabricated nanofibers were identified using various techniques, including scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An abundance of Ag NPs in the fibers decreased the diameter of the fibers while increased concentration of the lavender oil increased the diameter. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) studies showed the presence of the lavender oil and Ag NPs in the fiber dressings. The Ag NPs and lavender oil improved the hydrophilicity of the nanofibers and ensured the proliferation of chicken embryo fibroblasts cultured in-vitro on these fiber dressings. The antibacterial efficiency of the nanofiber dressings was investigated using E. coli and S. aureus, which yielded zones of inhibition of 16.2 ± 0.8 and 5.9 ± 0.5 mm, respectively, indicating excellent bactericidal properties of the dressings. The composite nanofiber dressings have great potential to be used as multifunctional wound dressings; offering protection against external agents as well as promoting the regeneration of new tissue.
Collapse
Affiliation(s)
- Hasham S Sofi
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Towseef Akram
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India
| | - Ashif H Tamboli
- Department of Physics, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India
| | - Aasiya Majeed
- Department of Biochemistry, Division of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Chatha 180009, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
46
|
Sousa MP, Arab-Tehrany E, Cleymand F, Mano JF. Surface Micro- and Nanoengineering: Applications of Layer-by-Layer Technology as a Versatile Tool to Control Cellular Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901228. [PMID: 31172666 DOI: 10.1002/smll.201901228] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Extracellular matrix (ECM) cues have been widely investigated for their impact on cellular behavior. Among mechanics, physics, chemistry, and topography, different ECM properties have been discovered as important parameters to modulate cell functions, activating mechanotransduction pathways that can influence gene expression, proliferation or even differentiation. Particularly, ECM topography has been gaining more and more interest based on the evidence that these physical cues can tailor cell behavior. Here, an overview of bottom-up and top-down approaches reported to produce materials capable of mimicking the ECM topography and being applied for biomedical purposes is provided. Moreover, the increasing motivation of using the layer-by-layer (LbL) technique to reproduce these topographical cues is highlighted. LbL assembly is a versatile methodology used to coat materials with a nanoscale fidelity to the geometry of the template or to produce multilayer thin films composed of polymers, proteins, colloids, or even cells. Different geometries, sizes, or shapes on surface topography can imply different behaviors: effects on the cell adhesion, proliferation, morphology, alignment, migration, gene expression, and even differentiation are considered. Finally, the importance of LbL assembly to produce defined topographical cues on materials is discussed, highlighting the potential of micro- and nanoengineered materials to modulate cell function and fate.
Collapse
Affiliation(s)
- Maria P Sousa
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Elmira Arab-Tehrany
- Laboratoire d'Ingénierie des Biomolécules, Nancy-Université, 2, Avenue de la Forêt de Haye, F 54504, Vandœuvre-Lès-Nancy Cedex, France
| | - Franck Cleymand
- Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Parc de Saurupt CS50840, 54011, Nancy Cedex, France
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
47
|
Akia M, Rodriguez C, Materon L, Gilkerson R, Lozano K. Antibacterial activity of polymeric nanofiber membranes impregnated with Texas sour orange juice. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
48
|
Suarato G, Bertorelli R, Athanassiou A. Borrowing From Nature: Biopolymers and Biocomposites as Smart Wound Care Materials. Front Bioeng Biotechnol 2018; 6:137. [PMID: 30333972 PMCID: PMC6176001 DOI: 10.3389/fbioe.2018.00137] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022] Open
Abstract
Wound repair is a complex and tightly regulated physiological process, involving the activation of various cell types throughout each subsequent step (homeostasis, inflammation, proliferation, and tissue remodeling). Any impairment within the correct sequence of the healing events could lead to chronic wounds, with potential effects on the patience quality of life, and consequent fallouts on the wound care management. Nature itself can be of inspiration for the development of fully biodegradable materials, presenting enhanced bioactive potentialities, and sustainability. Naturally-derived biopolymers are nowadays considered smart materials. They provide a versatile and tunable platform to design the appropriate extracellular matrix able to support tissue regeneration, while contrasting the onset of adverse events. In the past decades, fabrication of bioactive materials based on natural polymers, either of protein derivation or polysaccharide-based, has been extensively exploited to tackle wound-healing related problematics. However, in today's World the exclusive use of such materials is becoming an urgent challenge, to meet the demand of environmentally sustainable technologies to support our future needs, including applications in the fields of healthcare and wound management. In the following, we will briefly introduce the main physico-chemical and biological properties of some protein-based biopolymers and some naturally-derived polysaccharides. Moreover, we will present some of the recent technological processing and green fabrication approaches of novel composite materials based on these biopolymers, with particular attention on their applications in the skin tissue repair field. Lastly, we will highlight promising future perspectives for the development of a new generation of environmentally-friendly, naturally-derived, smart wound dressings.
Collapse
Affiliation(s)
- Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Genoa, Italy
- In vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Rosalia Bertorelli
- In vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Genoa, Italy
| | | |
Collapse
|
49
|
Reddy R, Reddy N. Biomimetic approaches for tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1667-1685. [DOI: 10.1080/09205063.2018.1500084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Roopa Reddy
- Centre for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Bengaluru, India
| | - Narendra Reddy
- Centre for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Bengaluru, India
| |
Collapse
|
50
|
Munshi AS, Chen C, Townsend AD, Martin RS. Use of 3D Printing and Modular Microfluidics to Integrate Cell Culture, Injections and Electrochemical Analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:3364-3374. [PMID: 30923580 PMCID: PMC6433419 DOI: 10.1039/c8ay00829a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fabrication of microchip-based devices using 3-D printing technology offers a unique platform to create separate modules that can be put together when desired for analysis. A 3-D printed module approach offers various advantages such as file sharing and the ability to easily replace, customize, and modify the individual modules. Here, we describe the use of a modular approach to electrochemically detect the ATP-mediated release of nitric oxide (NO) from endothelial cells. Nitric oxide plays a significant role in the vasodilation process; however, detection of NO is challenging due to its short half-life. To enable this analysis, we use three distinct 3-D printed modules: cell culture, sample injection and detection modules. The detection module follows a pillar-based Wall-Jet Electrode design, where the analyte impinges normal to the electrode surface, offering enhanced sensitivity for the analyte. To further enhance the sensitivity and selectivity for NO detection the working electrode (100 μm gold) is modified by the addition of a 27 μm gold pillar and platinum-black coated with Nafion. The use of the pillar electrode leads to three-dimensional structure protruding into the channel enhancing the sensitivity by 12.4 times in comparison to the flat electrode (resulting LOD for NO = 210 nM). The next module, the 3-D printed sample injection module, follows a simple 4-Port injection rotor design made of two separate components that when assembled can introduce a specific volume of analyte. This module not only serves as a cheaper alternative to the commercially available 4-Port injection valves, but also demonstrates the ability of volume customization and reduced dead-volume issues with the use of capillary-free connections. Comparison between the 3-D printed and a commercial 4-Port injection valve showed similar sensitivities and reproducibility for NO analysis. Lastly, the cell culture module contains electrospun polystyrene fibers with immobilized endothelial cells, resulting in 3-D scaffold for cell culture. With the incorporation of all 3 modules, we can make reproducible ATP injections (via the 3-D printed sample injection module) that can stimulate NO release from endothelial cells cultured on a fibrous insert in the cell culture module which can then be quantitated by the pillar WJE module (0.19 ± 0.03 nM/cell, n = 27, 3 inserts analyzed each day, on 9 different days). The modular approach demonstrates the facile creation of custom and modifiable fluidic components that can be assembled as needed.
Collapse
Affiliation(s)
| | | | | | - R. Scott Martin
- corresponding author: Dr. R. Scott Martin, 3501 Laclede Ave, St. Louis, MO, USA 63103, +1 314-977-2836,
| |
Collapse
|