1
|
Shi J, Zheng T, Wang Z, Wang P, Yang H, Guo J, Wang D, Guo B, Xu J. Filler effects inspired high performance polyurethane elastomer design: segment arrangement control. MATERIALS HORIZONS 2024; 11:4747-4758. [PMID: 39011906 DOI: 10.1039/d4mh00648h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Elastomers with high strength and toughness are in great demand. Previous research on elastomers focused mainly on the design of new chemical structures, but their complicated synthesis process and expensive monomers have restricted the practical application of these materials. Inspired by general filler effects, a strategy is proposed to remarkably enhance the mechanical properties of thermoplastic polyurethane (TPU) elastomers by designing the arrangement of hard/soft segments using traditional chemical compositions. By utilizing the synergetic effect of weak hard segments, normal TPU elastomers are upgraded into advanced elastomers. Combining experiments and simulations, it is demonstrated that a suitable sequence length can achieve considerably enhanced strength and toughness by maximizing the relative surface area of hard domains. Mixing the obtained elastomer with an ionic liquid can result in a durable ionogel sensor with balanced mechanical strength and ionic conductivity. This easy-to-implement strategy offers a new dimension for the development of high-performance elastomers.
Collapse
Affiliation(s)
- Jiaxin Shi
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Tianze Zheng
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Zhiqi Wang
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Pujin Wang
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Hongkun Yang
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinjing Guo
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Dong Wang
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baohua Guo
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Song H, Liu C, Gui D, Sha Y, Song Q, Jia P, Gao J, Lin Y. Sustainable and mechanically robust epoxy resins derived from chitosan and tung oil with proton conductivity. J Appl Polym Sci 2023. [DOI: 10.1002/app.53857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Hong Song
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
| | - Chaofan Liu
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
| | - Daxiang Gui
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
| | - Ye Sha
- Department of Chemistry and Material Science, College of Science Nanjing Forestry University Nanjing People's Republic of China
| | - Qingping Song
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
| | - Puyou Jia
- Jiangsu Key Laboratory for Biomass Energy and Material, Institute of Chemical Industry of Forest Products Chinese Academy of Forestry (CAF) Nanjing People's Republic of China
| | - Jiangang Gao
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
| | - Ying Lin
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
- Jiangsu Key Laboratory for Biomass Energy and Material, Institute of Chemical Industry of Forest Products Chinese Academy of Forestry (CAF) Nanjing People's Republic of China
| |
Collapse
|
3
|
Long T. The importance of sharing ideas: recognizing the 140th anniversary of
SCI
leadership. POLYM INT 2022. [DOI: 10.1002/pi.6409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Peng R, Yang Z, Gao Y, Nie J, Sun F. Synthesis and Properties of Cationic Photocurable Polymethylsiloxane/Eugenol-Modified Oxetane Monomers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rongchang Peng
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Zongxin Yang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Yanjing Gao
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Fang Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- Anqing Research Institute, Beijing University of Chemical Technology, Anqing 246000, People’s Republic of China
| |
Collapse
|
5
|
Hormaiztegui MEV, Marin D, Gañán P, Stefani PM, Mucci V, Aranguren MI. Nanocelluloses Reinforced Bio-Waterborne Polyurethane. Polymers (Basel) 2021; 13:polym13172853. [PMID: 34502892 PMCID: PMC8434354 DOI: 10.3390/polym13172853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to evaluate the influence of two kinds of bio- nano-reinforcements, cellulose nanocrystals (CNCs) and bacterial cellulose (BC), on the properties of castor oil-based waterborne polyurethane (WBPU) films. CNCs were obtained by the acidolysis of microcrystalline cellulose, while BC was produced from Komagataeibacter medellinensis. A WBPU/BC composite was prepared by the impregnation of a wet BC membrane and further drying, while the WBPU/CNC composite was obtained by casting. The nanoreinforcement was adequately dispersed in the polymer using any of the preparation methods, obtaining optically transparent compounds. Thermal gravimetric analysis, Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, dynamical mechanical analysis, differential scanning calorimetry, contact angle, and water absorption tests were carried out to analyze the chemical, physical, and thermal properties, as well as the morphology of nanocelluloses and composites. The incorporation of nanoreinforcements into the formulation increased the storage modulus above the glass transition temperature of the polymer. The thermal stability of the BC-reinforced composites was slightly higher than that of the CNC composites. In addition, BC allowed maintaining the structural integrity of the composites films, when they were immersed in water. The results were related to the relatively high thermal stability and the particular three-dimensional interconnected reticular morphology of BC.
Collapse
Affiliation(s)
- M. E. Victoria Hormaiztegui
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMDP, CONICET, Av. Juan B Justo 4302, Mar del Plata 7600, Argentina; (M.E.V.H.); (D.M.); (P.M.S.); (V.M.)
- Centro de Investigación y Desarrollo en Ciencia y Tecnología de Materiales (CITEMA), Facultad Regional La Plata, Universidad Tecnológica Nacional (UTN)-Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Av. 60 y 124, Berisso 1923, Argentina
| | - Diana Marin
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMDP, CONICET, Av. Juan B Justo 4302, Mar del Plata 7600, Argentina; (M.E.V.H.); (D.M.); (P.M.S.); (V.M.)
| | - Piedad Gañán
- Facultad de Ingeniería Química, Universidad Pontificia Bolivariana (UPB), Circular 1, No 70-01, Medellín 050031, Colombia;
| | - Pablo Marcelo Stefani
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMDP, CONICET, Av. Juan B Justo 4302, Mar del Plata 7600, Argentina; (M.E.V.H.); (D.M.); (P.M.S.); (V.M.)
| | - Verónica Mucci
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMDP, CONICET, Av. Juan B Justo 4302, Mar del Plata 7600, Argentina; (M.E.V.H.); (D.M.); (P.M.S.); (V.M.)
| | - Mirta I. Aranguren
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMDP, CONICET, Av. Juan B Justo 4302, Mar del Plata 7600, Argentina; (M.E.V.H.); (D.M.); (P.M.S.); (V.M.)
- Correspondence:
| |
Collapse
|
6
|
Copolymers of xylan-derived furfuryl alcohol and natural oligomeric tung oil derivatives. Int J Biol Macromol 2020; 164:2497-2511. [DOI: 10.1016/j.ijbiomac.2020.08.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/26/2023]
|
7
|
Capiel G, Hernández E, Marcovich NE, Mosiewicki MA. Stress relaxation behavior of weldable crosslinked polymers based on methacrylated oleic and lauric acids. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
El-Sheikh AS, Haggag EA, El-Rahman NRA. Adsorption of Uranium from Sulfate Medium Using a Synthetic Polymer; Kinetic Characteristics. RADIOCHEMISTRY 2020; 62:499-510. [DOI: 10.1134/s1066362220040074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 09/02/2023]
|
9
|
Enhancement of the processing window and performance of polyamide 1010/bio‐based high‐density polyethylene blends by melt mixing with natural additives. POLYM INT 2019. [DOI: 10.1002/pi.5919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Maia DLH, Fernandes FAN. Effects of Operating Conditions on the Copolymerization of Castor Oil Maleate–Styrene by Suspension Polymerization. MACROMOL REACT ENG 2019. [DOI: 10.1002/mren.201900017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dayanne L. H. Maia
- Departamento de Engenharia QuímicaUniversidade Federal do Ceará Campus do Pici Bloco 709 60440‐900 Fortaleza Brazil
| | - Fabiano A. N. Fernandes
- Departamento de Engenharia QuímicaUniversidade Federal do Ceará Campus do Pici Bloco 709 60440‐900 Fortaleza Brazil
| |
Collapse
|
11
|
Capiel G, Marcovich NE, Mosiewicki MA. Shape memory polymer networks based on methacrylated fatty acids. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Herrán R, Amalvy JI, Chiacchiarelli LM. Highly functional lactic acid ring‐opened soybean polyols applied to rigid polyurethane foams. J Appl Polym Sci 2019. [DOI: 10.1002/app.47959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rodrigo Herrán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, CCT La Plata CONICET‐UNLP Diagonal 113 y 64, La Plata Argentina
| | - Javier Ignacio Amalvy
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, CCT La Plata CONICET‐UNLP Diagonal 113 y 64, La Plata Argentina
| | - Leonel Matías Chiacchiarelli
- Instituto de Tecnología de Polímeros y Nanotecnología, CONICET‐UBA Avenida General Las Heras 2214 Buenos Aires Argentina
- Departamento de Ingeniería MecánicaInstituto Tecnológico de Buenos Aires Avenida Eduardo Madero 399 Buenos Aires Argentina
| |
Collapse
|
13
|
ROMP-based biorenewable polymers of norbornene modified with triglycerides or esters from natural buriti oil. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Capiel G, Marcovich NE, Mosiewicki MA. From the synthesis and characterization of methacrylated fatty acid based precursors to shape memory polymers. POLYM INT 2018. [DOI: 10.1002/pi.5744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Guillermina Capiel
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería; Universidad Nacional de Mar del Plata - CONICET; Mar del Plata Argentina
| | - Norma E Marcovich
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería; Universidad Nacional de Mar del Plata - CONICET; Mar del Plata Argentina
| | - Mirna A Mosiewicki
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería; Universidad Nacional de Mar del Plata - CONICET; Mar del Plata Argentina
| |
Collapse
|
15
|
Li JJ, Sun J, Xie YX, Zhao C, Ma HX, Liu CM. A novel star-shaped, cardanol-based bio-prepolymer: Synthesis, UV curing characteristics and properties of cured films. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Wang C, Dai L, Yang Z, Ge C, Li S, He M, Ding L, Xie H. Reinforcement of Castor Oil-Based Polyurethane with Surface Modification of Attapulgite. Polymers (Basel) 2018; 10:E1236. [PMID: 30961161 PMCID: PMC6401881 DOI: 10.3390/polym10111236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/02/2022] Open
Abstract
Polyurethane/attapulgite (PU/ATT) nanocomposites derived from castor oil were prepared by incorporation of 8 wt % ATT, acid-treated ATT, and KH560-treated ATT. The effects of three ATTs (ATT, acid-ATT, and KH560-ATT) on the comprehensive properties of PU/ATT nanocomposites were systematically investigated. The results showed that the incorporation of 8 wt % of three ATTs could produce an obvious reinforcement on the castor oil-based PU and that the silane modification treatment, rather than the acid treatment, has the more effective reinforcement effect. SEM images revealed the uniform dispersion of ATT in the PU matrix. DMA confirmed that the storage modulus and glass transition temperature (Tg) of PU/ATT nanocomposites were significantly increased after blending with different ATTs. For PU/KH560-ATT8 nanocomposites, the thermal stability of the PU was obviously enhanced by the addition of KH560-ATT. In particular, 8 wt % KH560-ATT loaded castor oil-based PU nanocomposites exhibit an obvious improvement in tensile strength (255%), Young's modulus (200%), Tg (5.1 °C), the storage modulus at 25 °C (104%), and the initial decomposition temperature (7.7 °C). The prepared bio-based PU materials could be a potential candidate to replace petroleum-based PU products in practical applications.
Collapse
Affiliation(s)
- Chengshuang Wang
- School of Materials Science and Engineering, Yancheng 224051, China.
- You Pei College, Yancheng Institute of Technology, Yancheng 224051, China.
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA 92521, USA.
| | - Lili Dai
- School of Materials Science and Engineering, Yancheng 224051, China.
- You Pei College, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Zhengrui Yang
- School of Materials Science and Engineering, Yancheng 224051, China.
- You Pei College, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Chengcheng Ge
- School of Materials Science and Engineering, Yancheng 224051, China.
- You Pei College, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Shuiping Li
- School of Materials Science and Engineering, Yancheng 224051, China.
| | - Meng He
- School of Materials Science and Engineering, Yancheng 224051, China.
| | - Liang Ding
- School of Materials Science and Engineering, Yancheng 224051, China.
| | - Hongfeng Xie
- Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
17
|
|
18
|
Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. MATERIALS 2017; 10:ma10111339. [PMID: 29165359 PMCID: PMC5706286 DOI: 10.3390/ma10111339] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 11/30/2022]
Abstract
Ternary blends of poly(lactic acid) (PLA), poly(3-hydroxybutyrate) (PHB) and poly(ε-caprolactone) (PCL) with a constant weight percentage of 60%, 10% and 30% respectively were compatibilized with soybean oil derivatives epoxidized soybean oil (ESO), maleinized soybean oil (MSO) and acrylated epoxidized soybean oil (AESO). The potential compatibilization effects of the soybean oil-derivatives was characterized in terms of mechanical, thermal and thermomechanical properties. The effects on morphology were studied by field emission scanning electron microscopy (FESEM). All three soybean oil-based compatibilizers led to a noticeable increase in toughness with a remarkable improvement in elongation at break. On the other hand, both the tensile modulus and strength decreased, but in a lower extent to a typical plasticization effect. Although phase separation occurred, all three soybean oil derivatives led somewhat to compatibilization through reaction between terminal hydroxyl groups in all three biopolyesters (PLA, PHB and PCL) and the readily reactive groups in the soybean oil derivatives, that is, epoxy, maleic anhydride and acrylic/epoxy functionalities. In particular, the addition of 5 parts per hundred parts of the blend (phr) of ESO gave the maximum elongation at break while the same amount of MSO and AESO gave the maximum toughness, measured through Charpy’s impact tests. In general, the herein-developed materials widen the potential of ternary PLA formulations by a cost effective blending method with PHB and PCL and compatibilization with vegetable oil-based additives.
Collapse
|
19
|
Synthesis of PNIPAM–PEG Double Hydrophilic Polymers Using Oleic Acid Macro Peroxide Initiator. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-3020-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Sun J, Aly KI, Kuckling D. Synthesis of hyperbranched polymers from vegetable oil based monomers via ozonolysis pathway. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28600] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingjiang Sun
- Chemistry Department; University of Paderborn; Warburger Str. 100 Paderborn D-33098 Germany
| | - Kamal I. Aly
- Chemistry Department; Faculty of Science, Assiut University; Polymer Lab. 122 Assiut 71516 Egypt
| | - Dirk Kuckling
- Chemistry Department; University of Paderborn; Warburger Str. 100 Paderborn D-33098 Germany
| |
Collapse
|
21
|
Matos M, Sousa AF, Silvestre AJD. Improving the Thermal Properties of Poly(2,5-furandicarboxylate)s Using Cyclohexylene Moieties: A Comparative Study. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600492] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marina Matos
- CICECO and Department of Chemistry; University of Aveiro; 3810-193 Aveiro Portugal
| | - Andreia F. Sousa
- CICECO and Department of Chemistry; University of Aveiro; 3810-193 Aveiro Portugal
- CEMUC; Department of Chemical Engineering; University of Coimbra; 3030-790 Coimbra Portugal
| | | |
Collapse
|
22
|
Pillai PKS, Li S, Bouzidi L, Narine SS. Synthesis of Chlorinated and Non-chlorinated Polyols from Model Cross-Metathesis Modified Triacylglycerols. J AM OIL CHEM SOC 2016. [DOI: 10.1007/s11746-016-2925-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|