1
|
Geisler M, Dreyer I. An auxin homeostat allows plant cells to establish and control defined transmembrane auxin gradients. THE NEW PHYTOLOGIST 2024; 244:1422-1436. [PMID: 39279032 DOI: 10.1111/nph.20120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/25/2024] [Indexed: 09/18/2024]
Abstract
Extracellular auxin maxima and minima are important to control plant developmental programs. Auxin gradients are provided by the concerted action of proteins from the three major plasma membrane (PM) auxin transporter classes AUX1/LAX, PIN and ATP-BINDING CASSETTE subfamily B (ABCB) transporters. But neither genetic nor biochemical nor modeling approaches have been able to reliably assign the individual roles and interplay of these transporter types. Based on the thermodynamic properties of the transporters, we show here by mathematical modeling and computational simulations that the concerted action of different auxin transporter types allows the adjustment of specific transmembrane auxin gradients. The dynamic flexibility of the 'auxin homeostat' comes at the cost of an energy-consuming 'auxin cycling' across the membrane. An unexpected finding was that potential functional ABCB-PIN synchronization appears to allow an optimization of the trade-off between the speed of PM auxin gradient adjustment on the one hand and ATP consumption and disturbance of general anion homeostasis on the other. In conclusion, our analyses provide fundamental insights into the thermodynamic constraints and flexibility of transmembrane auxin transport in plants.
Collapse
Affiliation(s)
- Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Ingo Dreyer
- Faculty of Engineering, Electrical Signaling in Plants (ESP) Laboratory - Center of Bioinformatics, Simulation and Modeling (CBSM), University of Talca, Talca, CL-3460000, Chile
| |
Collapse
|
2
|
Hammes UZ, Pedersen BP. Structure and Function of Auxin Transporters. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:185-209. [PMID: 38211951 DOI: 10.1146/annurev-arplant-070523-034109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Auxins, a group of central hormones in plant growth and development, are transported by a diverse range of transporters with distinct biochemical and structural properties. This review summarizes the current knowledge on all known auxin transporters with respect to their biochemical and biophysical properties and the methods used to characterize them. In particular, we focus on the recent advances that were made concerning the PIN-FORMED family of auxin exporters. Insights derived from solving their structures have improved our understanding of the auxin export process, and we discuss the current state of the art on PIN-mediated auxin transport, including the use of biophysical methods to examine their properties. Understanding the mechanisms of auxin transport is crucial for understanding plant growth and development, as well as for the development of more effective strategies for crop production and plant biotechnology.
Collapse
Affiliation(s)
- Ulrich Z Hammes
- School of Life Sciences, Plant Systems Biology, Technical University of Munich, Freising, Germany;
| | | |
Collapse
|
3
|
Li Z, Qian W, Qiu S, Wang W, Jiang M, Hu X, Huang H, Lin E. Identification and characterization of the WOX Gene Family revealed two WUS Clade Members associated with embryo development in Cunninghamia lanceolata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108570. [PMID: 38560957 DOI: 10.1016/j.plaphy.2024.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
The WUSCHEL-related homeobox (WOX) gene family is vital for plant development and stress response. In this study, we conducted a comprehensive analysis of WOX genes in Cunninghamia lanceolata (C. lanceolata) and subsequently explored the potential roles of two ClWOX genes within the WUS clade. In total, six ClWOX genes were identified through a full-length transcriptome analysis. These genes, exhibiting conserved structural and functional motifs, were assigned to the ancient clade and Modern/WUS clade, respectively, through a phylogenetic analysis. Our expression analysis indicated that these ClWOX genes were highly expressed in the middle and late developmental stages of zygotic embryos in C. lanceolata. Moreover, only ClWOX5 and ClWOX6 within the Modern/WUS clade exhibited transcriptional activity, and their expressions were also induced in response to auxin and wounding. Overexpression of ClWOX5 and ClWOX6 in Arabidopsis caused a partially sterile phenotype, resulting in a very low seed setting rate. Transcriptomic analysis revealed that expressions of many embryo-defective (EMB) genes, phytohormone-related genes, and transcription factors (TFs) were dramatically altered in ClWOX5 and ClWOX6 transgenic plants, which suggested that ClWOX5 and ClWOX6 may play specific important roles in embryo development via complex gene networks. In addition, overexpression of ClWOX5 and ClWOX6 in leaf segments promoted shoot regeneration in tobacco, indicating that ClWOX5 and ClWOX6 can promote plant regeneration and could be used to improve genetic transformation. In conclusion, these results help to elucidate the function of the WOX gene and provide a valuable basis for future studies of the developmental regulation and applications of WOX genes in C. lanceolata.
Collapse
Affiliation(s)
- Zhouyang Li
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Wang Qian
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shan Qiu
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Wenxin Wang
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Mei Jiang
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiange Hu
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Huahong Huang
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
| | - Erpei Lin
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
4
|
Živanović BD, Ullrich K, Spasić SZ, Galland P. Auxin- and pH-induced guttation in Phycomyces sporangiophores: relation between guttation and diminished elongation growth. PROTOPLASMA 2023; 260:1109-1133. [PMID: 36622433 DOI: 10.1007/s00709-022-01833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/22/2022] [Indexed: 06/07/2023]
Abstract
Guttation, the formation of exudation water, is widespread among plants and fungi, yet the underlying mechanisms remain largely unknown. We describe the conditions for inducing guttation in sporangiophores of the mucoracean fungus, Phycomyces blakesleeanus. Cultivation on peptone-enriched potato dextrose agar elicits vigorous guttation mainly below the apical growing zone, while sporangiophores raised on a glucose-mineral medium manifest only moderate guttation. Mycelia do not guttate irrespective of the employed media. The topology of guttation droplets allows identifying the non-growing part of the sporangiophore as a guttation zone, which responds to humidity and medium composition in ways that become relevant for turgor homeostasis and thus the sensor physiology of the growing zone. Apparently, the entire sporangiophore, rather than exclusively the growing zone, participates in signal reception and integration to generate a common growth output. Exogenous auxin applied to the growing zones elicits two correlated responses: (i) formation of guttation droplets in the growing and transition zones below the sporangium and (ii) a diminution of the growth rate. In sporangiophore populations, guttation-induction by exogenous control buffer occurs at low frequencies; the bias for guttation increases with increasing auxin concentration. Synthetic auxins and the transport inhibitor NPA suppress guttation completely, but leave growth rates largely unaffected. Mutants C2 carA and C148 carA madC display higher sensitivities for auxin-induced guttation compared to wild type. A working model for guttation includes aquaporins and mechanosensitive ion channels that we identified in Phycomyces by sequence domain searches.
Collapse
Affiliation(s)
- Branka D Živanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia.
| | - Kristian Ullrich
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Biology, August Thienemann Str. 2, 24306, Plön, Germany
| | - Sladjana Z Spasić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
- Singidunum University, Danijelova 32, 11010, Belgrade, Serbia
| | - Paul Galland
- Faculty of Biology, Philipps-University Marburg, Karl-Von-Frisch Str. 8, 35032, Marburg, Germany
| |
Collapse
|
5
|
Chen J, Hu Y, Hao P, Tsering T, Xia J, Zhang Y, Roth O, Njo MF, Sterck L, Hu Y, Zhao Y, Geelen D, Geisler M, Shani E, Beeckman T, Vanneste S. ABCB-mediated shootward auxin transport feeds into the root clock. EMBO Rep 2023; 24:e56271. [PMID: 36718777 PMCID: PMC10074126 DOI: 10.15252/embr.202256271] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
Although strongly influenced by environmental conditions, lateral root (LR) positioning along the primary root appears to follow obediently an internal spacing mechanism dictated by auxin oscillations that prepattern the primary root, referred to as the root clock. Surprisingly, none of the hitherto characterized PIN- and ABCB-type auxin transporters seem to be involved in this LR prepatterning mechanism. Here, we characterize ABCB15, 16, 17, 18, and 22 (ABCB15-22) as novel auxin-transporting ABCBs. Knock-down and genome editing of this genetically linked group of ABCBs caused strongly reduced LR densities. These phenotypes were correlated with reduced amplitude, but not reduced frequency of the root clock oscillation. High-resolution auxin transport assays and tissue-specific silencing revealed contributions of ABCB15-22 to shootward auxin transport in the lateral root cap (LRC) and epidermis, thereby explaining the reduced auxin oscillation. Jointly, these data support a model in which LRC-derived auxin contributes to the root clock amplitude.
Collapse
Affiliation(s)
- Jian Chen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Yangjie Hu
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Pengchao Hao
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Tashi Tsering
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Jian Xia
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Yuqin Zhang
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Ohad Roth
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Maria F Njo
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Lieven Sterck
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Yun Hu
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
| | - Yunde Zhao
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
| | - Danny Geelen
- Department of Plants and CropsGhent UniversityGhentBelgium
| | - Markus Geisler
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Eilon Shani
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Tom Beeckman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
- Department of Plants and CropsGhent UniversityGhentBelgium
- Lab of Plant Growth AnalysisGhent University Global CampusIncheonRepublic of Korea
| |
Collapse
|
6
|
Zhang H, Zeng N, Feng Q, Xu S, Cheng J, Wang J, Zhan X. New mechanistic insights into PAHs transport across wheat root cell membrane: Evidence for ABC transporter mediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160251. [PMID: 36402320 DOI: 10.1016/j.scitotenv.2022.160251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of highly carcinogenic organic pollutants. Our previous results revealed that the active uptake of PAHs by plant roots is performed through H+/PAHs co-transport. However, the proteins and mechanisms of co-transport of PAHs remain unknown. We hypothesized that ABC transporters are involved in PAHs co-transport via the roots. We found a total of 47 ABC transporters with alkalinity and hydrophobicity which were up-regulated or newly expressed in the wheat roots after phenanthrene exposure. And the concentration of ABC transporters rose. There was a positive relationship between the concentration of phenanthrene and ABC transporter expression in the wheat roots. Additionally, the trend observed in the ABC transporters expression was also found in the gene expression. With energies below -6 kcal mol-1, a stable docking conformation formed between ABC transporters and PAHs. π-π stacking and van der Waals force bound PAHs to ABCB or ABCG. The binding strength of ABCB subfamily proteins with homodimers is stronger than that of ABCG subfamily proteins with single molecules. ABC transporters may transport PAHs by forming a dimer-shaped pocket, translocating it into cells, then opening it within the cells, to release the bound PAHs. These results contributed to our understanding of how ABC transporters aid plant root uptake of PAHs.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Nengde Zeng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Qiurun Feng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Shuangyuan Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jian Cheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China.
| |
Collapse
|
7
|
Ung KL, Winkler M, Schulz L, Kolb M, Janacek DP, Dedic E, Stokes DL, Hammes UZ, Pedersen BP. Structures and mechanism of the plant PIN-FORMED auxin transporter. Nature 2022; 609:605-610. [PMID: 35768502 PMCID: PMC9477730 DOI: 10.1038/s41586-022-04883-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
Abstract
Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants1–3. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space4–9. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood. Here we present biophysical analysis together with three structures of Arabidopsis thaliana PIN8: two outward-facing conformations with and without auxin, and one inward-facing conformation bound to the herbicide naphthylphthalamic acid. The structure forms a homodimer, with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline–proline crossover is a pivot point for structural changes associated with transport, which we show to be independent of proton and ion gradients and probably driven by the negative charge of the auxin. The structures and biochemical data reveal an elevator-type transport mechanism reminiscent of bile acid/sodium symporters, bicarbonate/sodium symporters and sodium/proton antiporters. Our results provide a comprehensive molecular model for auxin recognition and transport by PINs, link and expand on a well-known conceptual framework for transport, and explain a central mechanism of polar auxin transport, a core feature of plant physiology, growth and development. Structural and biophysical analysis of the Arabidopsis thaliana auxin transporter PIN8 reveal that PIN transporters export auxin using an elevator mechanism.
Collapse
Affiliation(s)
- Kien Lam Ung
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mikael Winkler
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lukas Schulz
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Martina Kolb
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dorina P Janacek
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Emil Dedic
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - David L Stokes
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| | | |
Collapse
|
8
|
Hilleary R. The sum is greater than the parts: Co-dependent auxin efflux is mediated by ABCBs and PINs. THE PLANT CELL 2022; 34:2114-2115. [PMID: 35394537 PMCID: PMC9134059 DOI: 10.1093/plcell/koac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
|
9
|
Mellor NL, Voß U, Ware A, Janes G, Barrack D, Bishopp A, Bennett MJ, Geisler M, Wells DM, Band LR. Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux. THE PLANT CELL 2022; 34:2309-2327. [PMID: 35302640 PMCID: PMC9134068 DOI: 10.1093/plcell/koac086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/10/2022] [Indexed: 05/11/2023]
Abstract
Members of the B family of membrane-bound ATP-binding cassette (ABC) transporters represent key components of the auxin efflux machinery in plants. Over the last two decades, experimental studies have shown that modifying ATP-binding cassette sub-family B (ABCB) expression affects auxin distribution and plant phenotypes. However, precisely how ABCB proteins transport auxin in conjunction with the more widely studied family of PIN-formed (PIN) auxin efflux transporters is unclear, and studies using heterologous systems have produced conflicting results. Here, we integrate ABCB localization data into a multicellular model of auxin transport in the Arabidopsis thaliana root tip to predict how ABCB-mediated auxin transport impacts organ-scale auxin distribution. We use our model to test five potential ABCB-PIN regulatory interactions, simulating the auxin dynamics for each interaction and quantitatively comparing the predictions with experimental images of the DII-VENUS auxin reporter in wild-type and abcb single and double loss-of-function mutants. Only specific ABCB-PIN regulatory interactions result in predictions that recreate the experimentally observed DII-VENUS distributions and long-distance auxin transport. Our results suggest that ABCBs enable auxin efflux independently of PINs; however, PIN-mediated auxin efflux is predominantly through a co-dependent efflux where co-localized with ABCBs.
Collapse
Affiliation(s)
| | | | - Alexander Ware
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - George Janes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Duncan Barrack
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Anthony Bishopp
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Malcolm J Bennett
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Darren M Wells
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | |
Collapse
|
10
|
Jenness MK, Tayengwa R, Bate GA, Tapken W, Zhang Y, Pang C, Murphy AS. Loss of Multiple ABCB Auxin Transporters Recapitulates the Major twisted dwarf 1 Phenotypes in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:840260. [PMID: 35528937 PMCID: PMC9069160 DOI: 10.3389/fpls.2022.840260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
FK506-BINDING PROTEIN 42/TWISTED DWARF 1 (FKBP42/TWD1) directly regulates cellular trafficking and activation of multiple ATP-BINDING CASSETTE (ABC) transporters from the ABCB and ABCC subfamilies. abcb1 abcb19 double mutants exhibit remarkable phenotypic overlap with twd1 including severe dwarfism, stamen elongation defects, and compact circinate leaves; however, twd1 mutants exhibit greater loss of polar auxin transport and additional helical twisting of roots, inflorescences, and siliques. As abcc1 abcc2 mutants do not exhibit any visible phenotypes and TWD1 does not interact with PIN or AUX1/LAX auxin transporters, loss of function of other ABCB auxin transporters is hypothesized to underly the remaining morphological phenotypes. Here, gene expression, mutant analyses, pharmacological inhibitor studies, auxin transport assays, and direct auxin quantitations were used to determine the relative contributions of loss of other reported ABCB auxin transporters (4, 6, 11, 14, 20, and 21) to twd1 phenotypes. From these analyses, the additional reduction in plant height and the twisted inflorescence, root, and silique phenotypes observed in twd1 compared to abcb1 abcb19 result from loss of ABCB6 and ABCB20 function. Additionally, abcb6 abcb20 root twisting exhibited the same sensitivity to the auxin transport inhibitor 1-napthalthalamic acid as twd1 suggesting they are the primary contributors to these auxin-dependent organ twisting phenotypes. The lack of obvious phenotypes in higher order abcb4 and abcb21 mutants suggests that the functional loss of these transporters does not contribute to twd1 root or shoot twisting. Analyses of ABCB11 and ABCB14 function revealed capacity for auxin transport; however, their activities are readily outcompeted by other substrates, suggesting alternate functions in planta, consistent with a spectrum of relative substrate affinities among ABCB transporters. Overall, the results presented here suggest that the ABCB1/19 and ABCB6/20 pairs represent the primary long-distance ABCB auxin transporters in Arabidopsis and account for all reported twd1 morphological phenotypes. Other ABCB transporters appear to participate in highly localized auxin streams or mobilize alternate transport substrates.
Collapse
Affiliation(s)
- Mark K. Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Reuben Tayengwa
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Gabrielle A. Bate
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Changxu Pang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Angus S. Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| |
Collapse
|