1
|
Cirillo V, Esposito M, Lentini M, Russo C, Pollaro N, Maggio A. Morpho-physiological adaptations to weed competition impair green bean ( Phaseolus vulgaris) ability to overcome moderate salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23202. [PMID: 38769679 DOI: 10.1071/fp23202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
The two stresses of weed competition and salt salinity lead to crop yield losses and decline in the productivity of agricultural land. These constraints threaten the future of food production because weeds are more salt stress tolerant than most crops. Climate change will lead to an increase of soil salinity worldwide, and possibly exacerbate the competition between weeds and crops. This aspect has been scarcely investigated in the context of weed-crop competition. Therefore, we conducted a field experiment on green beans (Phaseolus vulgaris ) to investigate the combined impact of weed competition and salt stress on key morpho-physiological traits, and crop yield. We demonstrated that soil salinity shifted weed composition toward salt tolerant weed species (Portulaca oleracea and Cynodon dactylon ), while it reduced the presence of lower tolerance species. Weed competition activated adaptation responses in green bean such as reduced leaf mass per area and biomass allocation to the stem, unchanged stomatal density and instantaneous water use efficiency, which diverge from those that are typically observed as a consequence of salt stress. The morpho-physiological modifications caused by weeds is attributed to the alterations of light intensity and/or quality, further confirming the pivotal role of the light in crop response to weeds. We concluded that higher yield loss caused by combined salt stress and weed competition is due to impaired morpho-physiological responses, which highlights the negative interaction between salt stress and weed competition. This phenomenon will likely be more frequent in the future, and potentially reduce the efficacy of current weed control methods.
Collapse
Affiliation(s)
- Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy
| | - Marco Esposito
- Group of Agroecology, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Matteo Lentini
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy
| | - Claudio Russo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy
| | - Nausicaa Pollaro
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy
| |
Collapse
|
2
|
Horvath DP, Clay SA, Swanton CJ, Anderson JV, Chao WS. Response to Colbach et al. TRENDS IN PLANT SCIENCE 2023; 28:1331-1332. [PMID: 37778887 DOI: 10.1016/j.tplants.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Affiliation(s)
- David P Horvath
- USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA.
| | - Sharon A Clay
- South Dakota State University, Brookings, SD 57007, USA
| | | | - James V Anderson
- USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA
| | - Wun S Chao
- USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA
| |
Collapse
|
3
|
Horvath DP, Doherty CJ, Desai J, Clark N, Anderson JV, Chao WS. Weed-induced changes in the maize root transcriptome reveal transcription factors and physiological processes impacted early in crop-weed interactions. AOB PLANTS 2023; 15:plad013. [PMID: 37228420 PMCID: PMC10202722 DOI: 10.1093/aobpla/plad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
A new paradigm suggests weeds primarily reduce crop yield by altering crop developmental and physiological processes long before the weeds reduce resources through competition. Multiple studies have implicated stress response pathways are activated when crops such as maize are grown in close proximity with weeds during the first 4-8 weeks of growth-the point at which weeds have their greatest impact on subsequent crop yields. To date, these studies have mostly focused on the response of above-ground plant parts and have not examined the early signal transduction processes associated with maize root response to weeds. To investigate the impact of signals from a below-ground competitor on the maize root transcriptome when most vulnerable to weed pressure, a system was designed to expose maize to only below-ground signals. Gene set enrichment analyses identified over-represented ontologies associated with oxidative stress signalling throughout the time of weed exposure, with additional ontologies associated with nitrogen use and transport and abscisic acid (ABA) signalling, and defence responses being enriched at later time points. Enrichment of promoter motifs indicated over-representation of sequences known to bind FAR-RED IMPAIRED RESPONSE 1 (FAR1), several AP2/ERF transcription factors and others. Likewise, co-expression networks were identified using Weighted-Gene Correlation Network Analysis (WGCNA) and Spatiotemporal Clustering and Inference of Omics Networks (SC-ION) algorithms. WGCNA highlighted the potential roles of several transcription factors including a MYB 3r-4, TB1, WRKY65, CONSTANS-like5, ABF3, HOMEOBOX 12, among others. These studies also highlighted the role of several specific proteins involved in ABA signalling as being important for the initiation of the early response of maize to weeds. SC-ION highlighted potential roles for NAC28, LOB37, NAC58 and GATA2 transcription factors, among many others.
Collapse
Affiliation(s)
| | - Colleen J Doherty
- Metabolism and Disease Molecular and Systems Biology, North Carolina State University, 120 Broughton Dr., Raleigh, NC 27607, USA
| | - Jigar Desai
- Wave Life Sciences, 733 Concord Ave, Cambridge, MA 02138, USA
| | - Natalie Clark
- Massachusetts Institute of Technology, Merkin Building, 415 Main St., Cambridge, MA 02142, USA
| | - James V Anderson
- Sunflower and Plant Biology Research Unit, USDA-ARS-ETSARC, 1616 Albrecht Blvd., Fargo, ND 58102, USA
| | - Wun S Chao
- Sunflower and Plant Biology Research Unit, USDA-ARS-ETSARC, 1616 Albrecht Blvd., Fargo, ND 58102, USA
| |
Collapse
|
4
|
Horvath DP, Clay SA, Swanton CJ, Anderson JV, Chao WS. Weed-induced crop yield loss: a new paradigm and new challenges. TRENDS IN PLANT SCIENCE 2023; 28:567-582. [PMID: 36610818 DOI: 10.1016/j.tplants.2022.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 05/22/2023]
Abstract
Direct competition for resources is generally considered the primary mechanism for weed-induced yield loss. A re-evaluation of physiological evidence suggests weeds initially impact crop growth and development through resource-independent interference. We suggest weed perception by crops induce a shift in crop development, before resources become limited, which ultimately reduce crop yield, even if weeds are subsequently removed. We present the mechanisms by which crops perceive and respond to weeds and discuss the technologies used to identify these mechanisms. These data lead to a fundamental paradigm shift in our understanding of how weeds reduce crop yield and suggest new research directions and opportunities to manipulate or engineer crops and cropping systems to reduce weed-induced yield losses.
Collapse
Affiliation(s)
- David P Horvath
- USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND, USA.
| | | | | | - James V Anderson
- USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND, USA
| | - Wun S Chao
- USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND, USA
| |
Collapse
|
5
|
Idziak R, Sobczak A, Waligora H, Szulc P. Impact of Multifunctional Adjuvants on Efficacy of Sulfonylurea Herbicide Applied in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1118. [PMID: 36903978 PMCID: PMC10004852 DOI: 10.3390/plants12051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
To reduce the cost of intensive herbicide application and environment pollution and enhance biological effectiveness, effective multifunction adjuvants should be used. A field study was conducted in 2017-2019 in midwestern Poland in order to assess the effects of new adjuvant formulations on the activity of herbicides. Treatments included the herbicide nicosulfuron at recommended (40 g ha-1) and reduced rates (28 g ha-1) alone and with the addition of tested MSO 1, MSO 2, and MSO 3 (differing in the type and amount of surfactants), as well as standard (MSO 4 and NIS) adjuvants. Nicosulfuron was applied once during the 3-5 leaf stage of maize. Results indicate that nicosulfuron with the tested adjuvants provided satisfactory weed control equivalent to that provided by standard MSO 4 and better than that provided by NIS. Nicosulfuron applied with the tested adjuvants led to a similar grain yield of maize as that achieved with standard adjuvant treatments and much higher than that measured in untreated crops.
Collapse
Affiliation(s)
- Robert Idziak
- Department of Agronomy, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Angelika Sobczak
- Research and Education Center Gorzyń, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Hubert Waligora
- Department of Agronomy, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| |
Collapse
|
6
|
Marro N, Grilli G, Soteras F, Caccia M, Longo S, Cofré N, Borda V, Burni M, Janoušková M, Urcelay C. The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis. THE NEW PHYTOLOGIST 2022; 235:320-332. [PMID: 35302658 DOI: 10.1111/nph.18102] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/08/2022] [Indexed: 05/25/2023]
Abstract
The great majority of plants gain access to soil nutrients and enhance their performance under stressful conditions through symbiosis with arbuscular mycorrhizal fungi (AMF). The benefits that AMF confer vary among species and taxonomic groups. However, a comparative analysis of the different benefits among AMF has not yet been performed. We conducted a global meta-analysis of recent studies testing the benefits of individual AMF species and main taxonomic groups in terms of plant performance (growth and nutrition). Separately, we examined AMF benefits to plants facing biotic (pathogens, parasites, and herbivores) and abiotic (drought, salinity, and heavy metals) stress. AMF had stronger positive effects on phosphorus nutrition than on plant growth and nitrogen nutrition and the effects on the growth of plants facing biotic and abiotic stresses were similarly positive. While the AMF taxonomic groups showed positive effects on plant performance either with or without stress, Diversisporales were the most beneficial to plants without stress and Gigasporales to plants facing biotic stress. Our results provide a comprehensive analysis of the benefits of different AMF species and taxonomic groups on plant performance and useful insights for their management and use as bio-inoculants for agriculture and restoration.
Collapse
Affiliation(s)
- Nicolás Marro
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
- Department of Mycorrhizal Symbioses, Institute of Botany of the Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic
| | - Gabriel Grilli
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Florencia Soteras
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Milena Caccia
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Silvana Longo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Noelia Cofré
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Valentina Borda
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Magali Burni
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Martina Janoušková
- Department of Mycorrhizal Symbioses, Institute of Botany of the Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic
| | - Carlos Urcelay
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| |
Collapse
|
7
|
Kaur P, Sachan S, Sharma A. Weed competitive ability in wheat: a peek through in its functional significance, present status and future prospects. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2165-2179. [PMID: 34744359 PMCID: PMC8526637 DOI: 10.1007/s12298-021-01079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Weed competitive ability of a crop is one of the most widely explored aspects in the current scenario of aftermaths of synthetic herbicides such as herbicide resistant weeds emergence, residue accumulation in trophic levels; increased demands of organic produce, global climatic shifts, and other environmental issues. Further weed infestations are known to cause much more economic losses relative to crop attacks by pests. To understand the basic characteristics and underlying processes governing the competitive ability of a crop is therefore prudent, particularly in staples such as wheat. We discuss here an overview of the existing attributes of wheat-weed environment, the significance of crop competitiveness and various associated above-ground and below-ground traits (pertaining to early seed vigor and early seedling germination) discerned through biological, classical genetics and high throughput omics toolbox to provide numerous resources in terms of genome and transcriptome sequences, potential QTLs, genetic variation, molecular markers, association mapping studies, and others. Competitiveness is a cumulative response manifested as morphological, physiological, biochemical or allelochemical response ultimately driven through genetic architecture of a crop and its interaction with environment. Development of wheat competitive cultivar thus requires interdisciplinary approaches and germplasm screening to identify potential donors for competitiveness is an attractive and feasible alternative. For which utilization of landraces and other wild species, already proven to house sufficient genetic heterogeneity, thus poses a competitive advantage. Further, the availability of novel breeding techniques such as rapid generation advance could speed up the development of competitive wheat ideotype.
Collapse
Affiliation(s)
- Parampreet Kaur
- School of Organic Farming, Punjab Agricultural University, Ludhiana, Punjab India
| | - Shephali Sachan
- School of Organic Farming, Punjab Agricultural University, Ludhiana, Punjab India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| |
Collapse
|
8
|
Lakoba VT, Brooks RK, Haak DC, Barney JN. An Analysis of US State Regulated Weed Lists: A Discordance between Biology and Policy. Bioscience 2020. [DOI: 10.1093/biosci/biaa081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Weedy and invasive plants threaten our food supply, native biodiversity, and the structure and function of ecosystems. The number and impact of these damaging plants are expected to continue to grow with ongoing global change. Some of the most common policy tools to help mitigate this threat are regulatory weed lists, which limit the importation and movement of listed plant species, but there has never been a comprehensive analysis of plants regulated in the United States. We analyzed US state regulatory lists (e.g., noxious, invasive, prohibited) to evaluate their composition, patterns of listing, congruities with weed distributions, and limitations. In total, 46 states maintain regulatory weed lists that include 3210 total listings of 1249 unique species; 48% of them are introduced, 40% are native, and 12% are not yet found in the United States. Overall, the listed species are not a good reflection of the weeds in each state, and listing appears largely reactive, regulating species after they become widespread. We highlight patterns and incongruities among lists and discuss their implications, especially the large number of regulated species native to the United States.
Collapse
Affiliation(s)
- Vasiliy T Lakoba
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia
- VTL and RKB contributed equally to this work
| | - Rachel K Brooks
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia
- VTL and RKB contributed equally to this work
| | - David C Haak
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia
| | - Jacob N Barney
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
9
|
Bruggeman SA, Horvath DP, Fennell AY, Gonzalez-Hernandez JL, Clay SA. Teosinte (Zea mays ssp parviglumis) growth and transcriptomic response to weed stress identifies similarities and differences between varieties and with modern maize varieties. PLoS One 2020; 15:e0237715. [PMID: 32822374 PMCID: PMC7444550 DOI: 10.1371/journal.pone.0237715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/31/2020] [Indexed: 12/22/2022] Open
Abstract
Transcriptomic responses of plants to weed presence gives insight on the physiological and molecular mechanisms involved in the stress response. This study evaluated transcriptomic and morphological responses of two teosinte (Zea mays ssp parviglumis) (an ancestor of domesticated maize) lines (Ames 21812 and Ames 21789) to weed presence and absence during two growing seasons. Responses were compared after 6 weeks of growth in Aurora, South Dakota, USA. Plant heights between treatments were similar in Ames 21812, whereas branch number decreased when weeds were present. Ames 21789 was 45% shorter in weedy vs weed-free plots, but branch numbers were similar between treatments. Season-long biomass was reduced in response to weed stress in both lines. Common down-regulated subnetworks in weed-stressed plants were related to light, photosynthesis, and carbon cycles. Several unique response networks (e.g. aging, response to chitin) and gene sets were present in each line. Comparing transcriptomic responses of maize (determined in an adjacent study) and teosinte lines indicated three common gene ontologies up-regulated when weed-stressed: jasmonic acid response/signaling, UDP-glucosyl and glucuronyltransferases, and quercetin glucosyltransferase (3-O and 7-O). Overall, morphologic and transcriptomic differences suggest a greater varietal (rather than a conserved) response to weed stress, and implies multiple responses are possible. These findings offer insights into opportunities to define and manipulate gene expression of several different pathways of modern maize varieties to improve performance under weedy conditions.
Collapse
Affiliation(s)
- S. A. Bruggeman
- Biology Department, St. Augustana University, Sioux Falls, SD, United States of America
| | - D. P. Horvath
- USDA-ARS-ETSARC, Sunflower and Plant Biology Research Unit, Fargo, ND, United States of America
| | - A. Y. Fennell
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States of America
| | - J. L. Gonzalez-Hernandez
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States of America
| | - S. A. Clay
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States of America
| |
Collapse
|
10
|
Horvath DP, Clay SA, Bruggeman SA, Anderson JV, Chao WS, Yeater K. Varying Weed Densities Alter the Corn Transcriptome, Highlighting a Core Set of Weed-Induced Genes and Processes with Potential for Manipulating Weed Tolerance. THE PLANT GENOME 2019; 12:1-9. [PMID: 33016588 DOI: 10.3835/plantgenome2019.05.0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/06/2019] [Indexed: 06/11/2023]
Abstract
Corn increases the number of differentially expressed genes and the intensity of differential gene expression in response to increasing weed density. Genes associated with kinase signaling and transport functions are upregulated by weeds. Genes associated with protein production are downregulated by weeds. A sugar transporter (PMT5) and NUCLEOREDOXIN 1 are upregulated by weeds under diverse conditions. The phenological responses of corn (Zea mays L.) to competition with increasing densities of winter canola (Brassica napus L.) as the weedy competitor were investigated. Changes in the corn transcriptome resulting from varying weed densities were used to identify genes and processes responsive to competition under controlled conditions where light, nutrients, and water were not limited. Increasing densities of weeds resulted in decreased corn growth and development and increased the number and expression intensity of competition-responsive genes. The physiological processes identified in corn that were consistently induced by competition with weeds included protein synthesis and various transport functions. Likewise, numerous genes involved in these processes, as well as several genes implicated in phytochrome signaling and defense responses, were noted as differentially expressed. The results obtained in this study, conducted under controlled (greenhouse) conditions, were compared with a previously published study where the response of corn to competition with other species was evaluated under field conditions. Approximately one-third of the genes were differentially expressed in response to competition under both field and controlled conditions. These competition-responsive genes represent a resource for investigating the signaling processes by which corn recognizes and responds to competition. These results also highlight specific physiological processes that might be targets for mitigating the response of crops to weeds or other competitive plants under field conditions.
Collapse
Affiliation(s)
- David P Horvath
- USDA-ARS Edward T. Schaffer Agricultural Research Center, Sunflower and Plant Biology Research Unit, 1616 Albrecht Blvd., Fargo, ND, 58102
| | - Sharon A Clay
- Dep. of Agronomy, Horticulture and Plant Science, South Dakota State Univ., P.O. Box 2140C, 245C McFadden Biostress, Brookings, SD, 57007
| | - Stephanie A Bruggeman
- Biology Department, Augustana Univ. SD, 2001 South Summit Avenue, Sioux Falls, SD, 57197
| | - James V Anderson
- USDA-ARS Edward T. Schaffer Agricultural Research Center, Sunflower and Plant Biology Research Unit, 1616 Albrecht Blvd., Fargo, ND, 58102
| | - Wun S Chao
- USDA-ARS Edward T. Schaffer Agricultural Research Center, Sunflower and Plant Biology Research Unit, 1616 Albrecht Blvd., Fargo, ND, 58102
| | - Kathleen Yeater
- Office of the Area Director, 104 Ambrose Hill, Williamsburg, VA, 23185
| |
Collapse
|