1
|
Arnold ND, Paper M, Fuchs T, Ahmad N, Jung P, Lakatos M, Rodewald K, Rieger B, Qoura F, Kandawa‐Schulz M, Mehlmer N, Brück TB. High-quality genome of a novel Thermosynechococcaceae species from Namibia and characterization of its protein expression patterns at elevated temperatures. Microbiologyopen 2024; 13:e70000. [PMID: 39365014 PMCID: PMC11450739 DOI: 10.1002/mbo3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Thermophilic cyanobacteria thrive in extreme environments, making their thermoresistant enzymes valuable for industrial applications. Common habitats include hot springs, which act as evolutionary accelerators for speciation due to geographical isolation. The family Thermosynechococcaceae comprises thermophilic cyanobacteria known for their ability to thrive in high-temperature environments. These bacteria are notable for their photosynthetic capabilities, significantly contributing to primary production in extreme habitats. Members of Thermosynechococcaceae exhibit unique adaptations that allow them to perform photosynthesis efficiently at elevated temperatures, making them subjects of interest for studies on microbial ecology, evolution, and potential biotechnological applications. In this study, the genome of a thermophilic cyanobacterium, isolated from a hot spring near Okahandja in Namibia, was sequenced using a PacBio Sequel IIe long-read platform. Cultivations were performed at elevated temperatures of 40, 50, and 55°C, followed by proteome analyses based on the annotated genome. Phylogenetic investigations, informed by the 16S rRNA gene and aligned nucleotide identity (ANI), suggest that the novel cyanobacterium is a member of the family Thermosynechococcaceae. Furthermore, the new species was assigned to a separate branch, potentially representing a novel genus. Whole-genome alignments supported this finding, revealing few conserved regions and multiple genetic rearrangement events. Additionally, 129 proteins were identified as differentially expressed in a temperature-dependent manner. The results of this study broaden our understanding of cyanobacterial adaptation to extreme environments, providing a novel high-quality genome of Thermosynechococcaceae cyanobacterium sp. Okahandja and several promising candidate proteins for expression and characterization studies.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Michael Paper
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Tobias Fuchs
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Nadim Ahmad
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Patrick Jung
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Michael Lakatos
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Katia Rodewald
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Bernhard Rieger
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Farah Qoura
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | | | - Norbert Mehlmer
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Thomas B. Brück
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| |
Collapse
|
2
|
Sahonero-Canavesi DX, Siliakus MF, Abdala Asbun A, Koenen M, von Meijenfeldt FAB, Boeren S, Bale NJ, Engelman JC, Fiege K, Strack van Schijndel L, Sinninghe Damsté JS, Villanueva L. Disentangling the lipid divide: Identification of key enzymes for the biosynthesis of membrane-spanning and ether lipids in Bacteria. SCIENCE ADVANCES 2022; 8:eabq8652. [PMID: 36525503 DOI: 10.1126/sciadv.abq8652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacterial membranes are composed of fatty acids (FAs) ester-linked to glycerol-3-phosphate, while archaea have membranes made of isoprenoid chains ether-linked to glycerol-1-phosphate. Many archaeal species organize their membrane as a monolayer of membrane-spanning lipids (MSLs). Exceptions to this "lipid divide" are the production by some bacterial species of (ether-bound) MSLs, formed by tail-to-tail condensation of FAs resulting in the formation of (iso) diabolic acids (DAs), which are the likely precursors of paleoclimatological relevant branched glycerol dialkyl glycerol tetraether molecules. However, the enzymes responsible for their production are unknown. Here, we report the discovery of bacterial enzymes responsible for the condensation reaction of FAs and for ether bond formation and confirm that the building blocks of iso-DA are branched iso-FAs. Phylogenomic analyses of the key biosynthetic genes reveal a much wider diversity of potential MSL (ether)-producing bacteria than previously thought, with importantt implications for our understanding of the evolution of lipid membranes.
Collapse
Affiliation(s)
- Diana X Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Melvin F Siliakus
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Alejandro Abdala Asbun
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - F A Bastiaan von Meijenfeldt
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, Netherlands
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Julia C Engelman
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Kerstin Fiege
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Lora Strack van Schijndel
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
- Utrecht University, Faculty of Geosciences, Department of Earth Sciences, PO Box 80.021, Utrecht 3508 TA, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
- Utrecht University, Faculty of Geosciences, Department of Earth Sciences, PO Box 80.021, Utrecht 3508 TA, Netherlands
| |
Collapse
|
3
|
Yao S, Li S, Zhan Y, Wan C. Proteome-wide analysis of stress response to temperature in Sulfolobus islandicus. J Proteomics 2022; 266:104681. [PMID: 35842219 DOI: 10.1016/j.jprot.2022.104681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Sulfolobus islandicus is thermophilic archaea that live in an extreme environment of 75 °C-80 °C and pH 2-3. Currently, the molecular mechanism of archaeal adaptation to high temperatures and the stability of proteins at high temperatures are still unclear. This study utilizes proteomics to analyze the differential expression of S. islandicus proteins at different temperatures. We found that ribosomes, glycolysis, nucleotide metabolism, RNA metabolism, transport system, and sulfur metabolism are all affected by temperature. Methylation modification of some proteins changed with temperature. Thermal proteome profiling (TPP) was used to analyze the thermal stability of proteins under 65 °C-85 °C growth conditions. It is suggested that the Tm values of proteins are mainly distributed around the optimum growth temperature (OGT). The proteins in the glycolysis pathway had high thermal stability. Meanwhile, proteins related to DNA replication and translation showed low thermal stability. The protein thermal stability of S. islandicus cultured under 65 °C and 85 °C was higher than that of 75 °C. Our study reveals that S. islandicus may adapt to temperature changes by regulating protein synthesis and carbon metabolism pathways, changing post-translational modifications, and improving protein stability at the same time. SIGNIFICANCE: The molecular mechanism of archaeal adaptation to high temperatures and the stability of proteins at high temperatures are still unclear. Our proteomics study identified 477 differentially expressed proteins of S. islandicus at different temperatures, suggesting that ribosomes, glycolysis, nucleotide metabolism, RNA metabolism, transport system, and sulfur metabolism are affected by temperature. Meanwhile, we found that methylation modification of some proteins changed with temperature. To evaluate the thermal stability of the proteome, we performed thermal proteome profiling to analyze the Tm of proteins under 65 °C-85 °C growth conditions. Tm values of proteins are mainly distributed around the optimum growth temperature. The proteins in the glycolysis pathway had high thermal stability. Meanwhile, proteins related to DNA replication and translation showed low thermal stability. Our study reveals that S. islandicus may adapt to temperature changes by regulating protein synthesis and carbon metabolism pathways, changing post-translational modifications, and improving protein stability at the same time.
Collapse
Affiliation(s)
- Sheng Yao
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Sige Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yuyue Zhan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China.
| |
Collapse
|
4
|
Proteomic perspectives on thermotolerant microbes: an updated review. Mol Biol Rep 2021; 49:629-646. [PMID: 34671903 DOI: 10.1007/s11033-021-06805-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Thermotolerant microbes are a group of microorganisms that survive in elevated temperatures. The thermotolerant microbes, which are found in geothermal heat zones, grow at temperatures of or above 45°C. The proteins present in such microbes are optimally active at these elevated temperatures. Hence, therefore, serves as an advantage in various biotechnological applications. In the last few years, scientists have tried to understand the molecular mechanisms behind the maintenance of the structural integrity of the cell and to study the stability of various thermotolerant proteins at extreme temperatures. Proteomic analysis is the solution for this search. Applying novel proteomic tools determines the proteins involved in the thermostability of microbes at elevated temperatures. METHODS Advanced proteomic techniques like Mass spectrometry, nano-LC-MS, protein microarray, ICAT, iTRAQ, and SILAC could enable the screening and identification of novel thermostable proteins. RESULTS This review provides up-to-date details on the protein signature of various thermotolerant microbes analyzed through advanced proteomic tools concerning relevant research articles. The protein complex composition from various thermotolerant microbes cultured at different temperatures, their structural arrangement, and functional efficiency of the protein was reviewed and reported. CONCLUSION This review provides an overview of thermotolerant microbes, their enzymes, and the proteomic tools implemented to characterize them. This article also reviewed a comprehensive view of the current proteomic approaches for protein profiling in thermotolerant microbes.
Collapse
|
5
|
Liu C, Mao L, Zheng X, Yuan J, Hu B, Cai Y, Xie H, Peng X, Ding X. Comparative proteomic analysis of Methanothermobacter thermautotrophicus reveals methane formation from H 2 and CO 2 under different temperature conditions. Microbiologyopen 2018; 8:e00715. [PMID: 30260585 PMCID: PMC6528648 DOI: 10.1002/mbo3.715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 11/22/2022] Open
Abstract
The growth of all methanogens is limited to a specific temperature range. However, Methanothermobacter thermautotrophicus can be found in a variety of natural and artificial environments, the temperatures of which sometimes even exceed the temperature growth ranges of thermophiles. As a result, the extent to which methane production and survival are affected by temperature remains unclear. To investigate the mechanisms of methanogenesis that Archaea have evolved to cope with drastic temperature shifts, the responses of Methanothermobacter thermautotrophicus to temperature were investigated under a high temperature growth (71°C) and cold shock (4°C) using Isobaric tags for relative and absolute quantitation (iTRAQ). The results showed that methane formation is decreased and that protein folding and degradation are increased in both high‐ and low‐temperature treatments. In addition, proteins predicted to be involved in processing environmental information processing and in cell membrane/wall/envelope biogenesis may play key roles in affecting methane formation and enhancing the response of M. thermautotrophicus to temperature stress. Analysis of the genomic locations of the genes corresponding to these temperature‐dependent proteins predicted that 77 of the genes likely to form 32 gene clusters. Here, we assess the response of M. thermautotrophicus to different temperatures and provide a new level of understanding of methane formation and cellular putative adaptive responses.
Collapse
Affiliation(s)
- Cong Liu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Lihui Mao
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xiongmin Zheng
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jiangan Yuan
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Beijuan Hu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Yaohui Cai
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Hongwei Xie
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Xiaojue Peng
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xia Ding
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Biology Experimental Teaching Demonstration, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Loder AJ, Zeldes BM, Conway JM, Counts JA, Straub CT, Khatibi PA, Lee LL, Vitko NP, Keller MW, Rhaesa AM, Rubinstein GM, Scott IM, Lipscomb GL, Adams MW, Kelly RM. Extreme Thermophiles as Metabolic Engineering Platforms: Strategies and Current Perspective. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Andrew J. Loder
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Benjamin M. Zeldes
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Jonathan M. Conway
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - James A. Counts
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Christopher T. Straub
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Piyum A. Khatibi
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Laura L. Lee
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Nicholas P. Vitko
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Matthew W. Keller
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Amanda M. Rhaesa
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gabe M. Rubinstein
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Israel M. Scott
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gina L. Lipscomb
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Michael W.W. Adams
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Robert M. Kelly
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| |
Collapse
|
7
|
Wang Q, Cen Z, Zhao J. The survival mechanisms of thermophiles at high temperatures: an angle of omics. Physiology (Bethesda) 2015; 30:97-106. [PMID: 25729055 DOI: 10.1152/physiol.00066.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thermophiles are referred to as microorganisms with optimal growth temperatures of >60 °C. Over the past few years, a number of studies have been conducted regarding thermophiles, especially using the omics strategies. This review provides a systematic view of the survival physiology of thermophiles from an "omics" perspective, which suggests that the adaptive ability of thermophiles is based on a cooperative mode with multi-dimensional regulations integrating genomics, transcriptomics, and proteomics.
Collapse
Affiliation(s)
- Quanhui Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and BGI-Shenzhen, Shenzhen, China
| | - Zhen Cen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| | - Jingjing Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| |
Collapse
|
8
|
Baumann P, Hahn T, Hubbuch J. High-throughput micro-scale cultivations and chromatography modeling: Powerful tools for integrated process development. Biotechnol Bioeng 2015; 112:2123-33. [PMID: 25988478 DOI: 10.1002/bit.25630] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/28/2015] [Indexed: 11/08/2022]
Abstract
Upstream processes are rather complex to design and the productivity of cells under suitable cultivation conditions is hard to predict. The method of choice for examining the design space is to execute high-throughput cultivation screenings in micro-scale format. Various predictive in silico models have been developed for many downstream processes, leading to a reduction of time and material costs. This paper presents a combined optimization approach based on high-throughput micro-scale cultivation experiments and chromatography modeling. The overall optimized system must not necessarily be the one with highest product titers, but the one resulting in an overall superior process performance in up- and downstream. The methodology is presented in a case study for the Cherry-tagged enzyme Glutathione-S-Transferase from Escherichia coli SE1. The Cherry-Tag™ (Delphi Genetics, Belgium) which can be fused to any target protein allows for direct product analytics by simple VIS absorption measurements. High-throughput cultivations were carried out in a 48-well format in a BioLector micro-scale cultivation system (m2p-Labs, Germany). The downstream process optimization for a set of randomly picked upstream conditions producing high yields was performed in silico using a chromatography modeling software developed in-house (ChromX). The suggested in silico-optimized operational modes for product capturing were validated subsequently. The overall best system was chosen based on a combination of excellent up- and downstream performance.
Collapse
Affiliation(s)
- Pascal Baumann
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Tobias Hahn
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
9
|
Wang C, Jin C, Zhang J, Bao Q, Liu B, Tan H. Transcriptomic analysis of Thermoanaerobacter tengcongensis grown at different temperatures by RNA sequencing. J Genet Genomics 2015; 42:335-8. [PMID: 26165500 DOI: 10.1016/j.jgg.2015.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/26/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Chuan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunlei Jin
- School of Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiyu Bao
- School of Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
10
|
Zi J, Zhang S, Zhou R, Zhou B, Xu S, Hou G, Tan F, Wen B, Wang Q, Lin L, Liu S. Expansion of the Ion Library for Mining SWATH-MS Data through Fractionation Proteomics. Anal Chem 2014; 86:7242-6. [PMID: 24969961 DOI: 10.1021/ac501828a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jin Zi
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Shenyan Zhang
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Ruo Zhou
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Baojin Zhou
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Shaohang Xu
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Guixue Hou
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Fengji Tan
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Bo Wen
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Quanhui Wang
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
- CAS
Key Laboratory of Genome Sciences and Information, Beijing Institutes
of Genomics, Chinese Academy of Sciences, No. 1, Beichen West Rd., Chaoyang District, Beijing,100101, China
| | - Liang Lin
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Siqi Liu
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
- CAS
Key Laboratory of Genome Sciences and Information, Beijing Institutes
of Genomics, Chinese Academy of Sciences, No. 1, Beichen West Rd., Chaoyang District, Beijing,100101, China
| |
Collapse
|
11
|
Liu B, Zhang Y, Zhang W. RNA-Seq-based analysis of cold shock response in Thermoanaerobacter tengcongensis, a bacterium harboring a single cold shock protein encoding gene. PLoS One 2014; 9:e93289. [PMID: 24667527 PMCID: PMC3965559 DOI: 10.1371/journal.pone.0093289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although cold shock responses and the roles of cold shock proteins in microorganisms containing multiple cold shock protein genes have been well characterized, related studies on bacteria possessing a single cold shock protein gene have not been reported. Thermoanaerobacter tengcongensis MB4, a thermophile harboring only one known cold shock protein gene (TtescpC), can survive from 50° to 80 °C, but has poor natural competence under cold shock at 50 °C. We therefore examined cold shock responses and their effect on natural competence in this bacterium. RESULTS The transcriptomes of T. tengcongensis before and after cold shock were analyzed by RNA-seq and over 1200 differentially expressed genes were successfully identified. These genes were involved in a wide range of biological processes, including modulation of DNA replication, recombination, and repair; energy metabolism; production of cold shock protein; synthesis of branched amino acids and branched-chain fatty acids; and sporulation. RNA-seq analysis also suggested that T. tengcongensis initiates cell wall and membrane remodeling processes, flagellar assembly, and sporulation in response to low temperature. Expression profiles of TtecspC and failed attempts to produce a TtecspC knockout strain confirmed the essential role of TteCspC in the cold shock response, and also suggested a role of this protein in survival at optimum growth temperature. Repression of genes encoding ComEA and ComEC and low energy metabolism levels in cold-shocked cells are the likely basis of poor natural competence at low temperature. CONCLUSION Our study demonstrated changes in global gene expression under cold shock and identified several candidate genes related to cold shock in T. tengcongensis. At the same time, the relationship between cold shock response and poor natural competence at low temperature was preliminarily elucidated. These findings provide a foundation for future studies on genetic and molecular mechanisms associated with cold shock and acclimation at low temperature.
Collapse
Affiliation(s)
- Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
12
|
Proteomic and molecular investigations revealed that Acidithiobacillus caldus adopts multiple strategies for adaptation to NaCl stress. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-0039-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Thermal stability of glucokinases in Thermoanaerobacter tengcongensis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:646539. [PMID: 24058911 PMCID: PMC3766608 DOI: 10.1155/2013/646539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022]
Abstract
In the genome of Thermoanaerobacter tengcongensis, three genes belonging to ROK (Repressor, ORF, and Kinase) family are annotated as glucokinases (GLKs). Using enzyme assays, the three GLKs were identified as ATP-dependent GLK (ATP-GLK), ADP-dependent GLK (ADP-GLK), and N-acetyl-glucosamine/mannosamine kinase (glu/man-NacK). The kinetic properties of the three GLKs such as Km, Vmax, optimal pH, and temperature were characterized, demonstrating that these enzymes performed the specific functions against varied substrates and under different temperatures. The abundance of ATP-GLK was attenuated when culture temperature was elevated and was almost undetectable at 80°C, whereas the ADP-GLK abundance was insensitive to temperature changes. Using degradation assays, ATP-GLK was found to have significantly faster degradation than ADP-GLK at 80°C. Co-immunoprecipitation results revealed that heat shock protein 60 (HSP60) could interact with ATP-GLK and ADP-GLK at 60 and 75°C, whereas at 80°C, the interaction was only effectively with ADP-GLK but not ATP-GLK. The functions of GLKs in T. tengcongensis are temperature dependent, likely regulated through interactions with HSP60.
Collapse
|
14
|
Tong W, Chen Z, Cao Z, Wang Q, Zhang J, Bai X, Wang R, Liu S. Robustness analysis of a constraint-based metabolic model links cell growth and proteomics of Thermoanaerobacter tengcongensis under temperature perturbation. MOLECULAR BIOSYSTEMS 2013; 9:713-22. [PMID: 23396507 DOI: 10.1039/c3mb25278g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of omic data with metabolic networks has been demonstrated to be an effective approach to elucidate the underlying metabolic mechanisms in life. Because the metabolic pathways of Thermoanaerobacter tengcongensis (T. tengcongensis) are incomplete, we used a 1-(13)C-glucose culture to monitor intracellular isotope-labeled metabolites by GC/MS and identified the gap gene in glucose catabolism, Re-citrate synthase. Based on genome annotation and biochemical information, we reconstructed the metabolic network of glucose metabolism and amino acid synthesis in T. tengcongensis, including 253 reactions, 227 metabolites, and 236 genes. Furthermore, we performed constraint based modeling (CBM)-derived robustness analysis on the model to study the dynamic changes of the metabolic network. By perturbing the culture temperature from 75 to 55 °C, we collected the bacterial growth rates and differential proteomes. Assuming that protein abundance changes represent metabolic flux variations, we proposed that the robustness analysis of the CBM model could decipher the effect of proteome change on the bacterial growth under perturbation. For approximately 73% of the reactions, the predicted cell growth changes due to such reaction flux variations matched the observed cell growth data. Our study, therefore, indicates that differential proteome data can be integrated with metabolic network modeling and that robustness analysis is a strong method for representing the dynamic change in cell phenotypes under perturbation.
Collapse
Affiliation(s)
- Wei Tong
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 101300, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Rangeshwaran R, Ashwitha K, Sivakumar G, Jalali SK. Analysis of Proteins Expressed by an Abiotic Stress Tolerant Pseudomonas putida (NBAII-RPF9) Isolate Under Saline and High Temperature Conditions. Curr Microbiol 2013; 67:659-67. [DOI: 10.1007/s00284-013-0416-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 06/05/2013] [Indexed: 11/24/2022]
|
16
|
Identification of differential expressed proteins and characterization their mRNA expression in thermally stressed Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:194-200. [PMID: 23727926 DOI: 10.1016/j.cbd.2013.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/15/2022]
Abstract
In this study, we present a comparative proteomic analysis of the global protein expression changes in sea cucumber after 7 days exposure at 25°C. Using two-dimensional electrophoresis followed by MALDI-TOF MS/MS, 27 protein spots with significant differences in abundance were identified and characterized. The identified proteins belonged primarily to the following four functional categories: cytoskeletal, material and energy metabolism, calcium homeostasis and extracellular matrix. The mRNA expression levels of 7 differentially expressed proteins were further assessed by qRT-PCR. The expression levels of 6 genes, including collagen, ATP synthase, major yolk protein, ferritin, nectin and protein disulfide isomerase showed significant differences under thermal stress, and among them, only two genes-ATP synthase and major yolk protein-showed consistent levels of protein and mRNA expression. Our results offer insight into the complex changes in protein turnover during higher temperature exposure in sea cucumber.
Collapse
|
17
|
Chen Z, Wen B, Wang Q, Tong W, Guo J, Bai X, Zhao J, Sun Y, Tang Q, Lin Z, Lin L, Liu S. Quantitative proteomics reveals the temperature-dependent proteins encoded by a series of cluster genes in thermoanaerobacter tengcongensis. Mol Cell Proteomics 2013; 12:2266-77. [PMID: 23665590 DOI: 10.1074/mcp.m112.025817] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Comprehensive and quantitative information of the thermophile proteome is an important source for understanding of the survival mechanism under high growth temperature. Thermoanaerobacter tengcongensis (T. tengcongensis), a typical anaerobic thermophilic eubacterium, was selected to quantitatively evaluate its protein abundance changes in response to four different temperatures. With optimized procedures of isobaric tags for relative and absolute quantitation quantitative proteomics (iTRAQ), such as peptide fractionation with high-pH reverse phase (RP) high performance liquid chromatography (HPLC), tandem MS acquisition mode in LTQ Orbitrap Velos MS, and evaluation of the quantification algorithms, high quality of the quantitative information of the peptides identified were acquired. In total, 1589 unique proteins were identified and defined 251 as the temperature-dependent proteins. Analysis of genomic locations toward the correspondent genes of these temperature-dependent proteins revealed that more than 30% were contiguous units with relevant biological functions, which are likely to form the operon structures in T. tengcongensis. The RNA sequencing (RNA-seq) data further demonstrated that these cluster genes were cotranscribed, and their mRNA abundance changes responding to temperature exhibited the similar trends as the proteomic results, suggesting that the temperature-dependent proteins are highly associated with the correspondent transcription status. Hence, the operon regulation is likely an energy-efficient mode for T. tengcongensis survival. In addition, evaluation to the functions of differential proteomes indicated that the abundance of the proteins participating in sulfur-respiration on the plasma membrane was decreased as the temperature increased, whereas the glycolysis-related protein abundance was increased. The energy supply in T. tengcongensis at high temperature is, therefore, speculated not mainly through the respiration chain reactions.
Collapse
Affiliation(s)
- Zhen Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China 101318
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rocco M, Lomaglio T, Loperte A, Satriani A. Metapontum Forest Reserve: Salt Stress Responses in <i>Pinus halepensis</i>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.43a086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
The temperature dependent proteomic analysis of Thermotoga maritima. PLoS One 2012; 7:e46463. [PMID: 23071576 PMCID: PMC3465335 DOI: 10.1371/journal.pone.0046463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/30/2012] [Indexed: 11/21/2022] Open
Abstract
Thermotoga maritima (T. maritima) is a typical thermophile, and its proteome response to environmental temperature changes has yet to be explored. This study aims to uncover the temperature-dependent proteins of T. maritima using comparative proteomic approach. T. maritima was cultured under four temperatures, 60°C, 70°C, 80°C and 90°C, and the bacterial proteins were extracted and electrophoresed in two-dimensional mode. After analysis of gel images, a total of 224 spots, either cytoplasm or membrane, were defined as temperature-dependent. Of these spots, 75 unique bacterial proteins were identified using MALDI TOF/TOF MS. As is well known, the chaperone proteins such as heat shock protein 60 and elongation factor Tu, were up-regulated in abundance due to increased temperature. However, several temperature-dependent proteins of T. maritima responded very differently when compared to responses of the thermophile T. tengcongensis. Intriguingly, a number of proteins involved in central carbohydrate metabolism were significantly up-regulated at higher temperature. Their corresponding mRNA levels were elevated accordingly. The increase in abundance of several key enzymes indicates that a number of central carbohydrate metabolism pathways of T. maritima are activated at higher temperatures.
Collapse
|
20
|
Liu B, Wang C, Yang H, Tan H. Establishment of a genetic transformation system and its application in Thermoanaerobacter tengcongensis. J Genet Genomics 2012; 39:561-70. [PMID: 23089366 DOI: 10.1016/j.jgg.2012.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 11/30/2022]
Abstract
The whole-genome sequence of Thermoanaerobacter tengcongensis, an anaerobic thermophilic bacterium isolated from the Tengchong hot spring in China, was completed in 2002. However, in vivo studies on the genes of this strain have been hindered in the absence of genetic manipulation system. In order to establish such a system, the plasmid pBOL01 containing the replication origin of the T. tengcongensis chromosome and a kanamycin resistance cassette, in which kanamycin resistance gene expression was controlled by the tte1482 promoter from T. tengcongensis, was constructed and introduced into T. tengcongensis via electroporation. Subsequently, the high transformation efficiency occurred when using freshly cultured T. tengcongensis cells without electroporation treatment, suggesting that T. tengcongensis is naturally competent under appropriate growth stage. A genetic transformation system for this strain was then established based on these important components, and this system was proved to be available for studying physiological characters of T. tengcongensis in vivo by means of hisG gene disruption and complementation.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
21
|
Wang Q, Wang Q, Tong W, Bai X, Chen Z, Zhao J, Zhang J, Liu S. Regulation of enzyme activity of alcohol dehydrogenase through its interactions with pyruvate-ferredoxin oxidoreductase in Thermoanaerobacter tengcongensis. Biochem Biophys Res Commun 2011; 417:1018-23. [PMID: 22222371 DOI: 10.1016/j.bbrc.2011.12.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
Abstract
Alcohol dehydrogenases (ADHs) from thermophilic microorganisms are interesting enzymes that have their potential applications in biotechnology and potentially provide insight into the mechanisms of action of thermo-tolerant proteins. The molecular mechanisms of ADHs under thermal stress in vivo have yet to be explored. Herein, we employed a proteomic strategy to survey the possible interactions of secondary-ADH (2-ADH) with other proteins in Thermoanaerobacter tengcongensis (T. tengcongensis) cultured at 75°C and found that 2-ADH, pyruvate-ferredoxin oxidoreductase (PFOR) and several glycolytic enzymes coexisted in a protein complex. Using anion exchange chromatography, the elution profile indicated that the native 2-ADH was present in two forms, PFOR-bound and PFOR-free. Immuno-precipitation and pull down analysis further validated the interactions between 2-ADH and PFOR. The kinetic behaviours of 2-ADH either in the recombinant or native form were evaluated with different substrates. The enzyme activity of 2-ADH was inhibited in a non-competitive mode by PFOR, implying the interaction of 2-ADH and PFOR negatively regulated alcohol formation. In T. tengcongensis, PFOR is an enzyme complex located at the upstream of 2-ADH in the alcohol generation pathway. These findings, therefore, offered a plausible mechanism for how alcohol metabolism is regulated by hetero-interactions between 2-ADH and PFOR, especially in anaerobic thermophiles.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Proteomics of early and late cold shock stress on thermophilic bacterium, Thermus sp. GH5. J Proteomics 2011; 74:2100-11. [DOI: 10.1016/j.jprot.2011.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 11/19/2022]
|
23
|
Enrichment and proteome analysis of a hyperthermostable protein set of archaeon Thermococcus onnurineus NA1. Extremophiles 2011; 15:451-61. [DOI: 10.1007/s00792-011-0376-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
|
24
|
Han MJ, Lee JW, Lee SY. Understanding and engineering of microbial cells based on proteomics and its conjunction with other omics studies. Proteomics 2011; 11:721-43. [DOI: 10.1002/pmic.201000411] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 09/05/2010] [Accepted: 09/07/2010] [Indexed: 12/18/2022]
|
25
|
Yang F, Wang Y, Miao LF. Comparative physiological and proteomic responses to drought stress in two poplar species originating from different altitudes. PHYSIOLOGIA PLANTARUM 2010; 139:388-400. [PMID: 20444190 DOI: 10.1111/j.1399-3054.2010.01375.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehder were examined during a single growing season in a greenhouse for comparative analysis of their physiological and proteomic responses to drought stress. The said species originate from high and low altitudes, respectively, of the eastern Himalaya. Results revealed that the adaptive responses to drought stress vary between the two poplar species. As a consequence of drought stress, the stem height increment and leaf number increment are more significantly inhibited in P. cathayana compared with P. kangdingensis. On the other hand, in response to drought stress, more significant cellular damages such as reduction in leaf relative water content and CO(2) assimilation rate, increments in the contents of malondialdehyde and hydrogen peroxide and downregulation or degradation of proteins related to photosynthesis occur in P. cathayana compared with P. kangdingensis. On the other hand, P. kangdingensis can cope better with the negative impact on the entire regulatory network. This includes more efficient increases in content of solute sugar, soluble protein and free proline and activities of antioxidant enzymes, as well as specific expressions of certain proteins related to protein processing, redox homeostasis and sugar metabolism. Morphological consequences as well as physiological and proteomic responses to drought stress between species revealed that P. kangdingensis originating from a high altitude manifest stronger drought adaptation than did P. cathayana originating from a low altitude. Functions of various proteins identified by proteomic experiment are related with physiological phenomena. Physiological and proteomic responses to drought stress in poplar may work cooperatively to establish a new cellular homeostasis, allowing poplar to develop a certain level of drought tolerance.
Collapse
Affiliation(s)
- Fan Yang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, P. R. China.
| | | | | |
Collapse
|
26
|
Zhang S, Liu B, Yang H, Tian Y, Liu G, Li L, Tan H. Characterization of EndoTT, a novel single-stranded DNA-specific endonuclease from Thermoanaerobacter tengcongensis. Nucleic Acids Res 2010; 38:3709-20. [PMID: 20172959 PMCID: PMC2887958 DOI: 10.1093/nar/gkq085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
EndoTT encoded by tte0829 of Thermoanaerobacter tengcongensis binds and cleaves single-stranded (ss) and damaged double-stranded (ds) DNA in vitro as well as binding dsDNA. In the presence of a low concentration of NaCl, EndoTT cleaved ss regions of damaged dsDNA efficiently but did not cleave DNA that was entirely ss or ds. At high concentrations of NaCl or MgCl(2) or ATP, there was also specific cleavage of ssDNA. This suggested a preference for ss/ds junctions to stimulate cleavage of the DNA substrates. EndoTT has six specific sites (a-f) in the oriC region (1-70 nt) of T. tengcongensis. Substitutions of nucleotides around site c prevented cleavage by EndoTT of both sites c and d, implying that the cleavage specificity may depend on both the nucleotide sequence and the secondary structure of the ssDNA. A C-terminal sub-fragment of EndoTT (residues 107-216) had both endonucleolytic and DNA-binding activity, whereas an N-terminal sub-fragment (residues 1-110) displayed only ssDNA-binding activity. Site-directed mutations showed that G(170), R(172) and G(177) are required for the endonuclease activity of EndoTT, but not for DNA-binding, whereas D(171), R(178) and G(189) are partially required for the DNA-binding activity.
Collapse
Affiliation(s)
- Shuli Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Dangi A, Vedi S, Nag JK, Paithankar S, Singh MP, Kar SK, Dube A, Misra-Bhattacharya S. Tetracycline treatment targeting Wolbachia affects expression of an array of proteins in Brugia malayi parasite. Proteomics 2009; 9:4192-208. [PMID: 19722191 DOI: 10.1002/pmic.200800324] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wolbachia is an intracellular endosymbiont of Brugia malayi parasite whose presence is essential for the survival of the parasite. Treatment of B. malayi-infected jirds with tetracycline eliminates Wolbachia, which affects parasite survival and fitness. In the present study we have tried to identify parasite proteins that are affected when Wolbachia is targeted by tetracycline. For this Wolbachia depleted parasites (B. malayi) were obtained by tetracycline treatment of infected Mongolian jirds (Meriones unguiculatus) and their protein profile after 2-DE separation was compared with that of untreated parasites harboring Wolbachia. Approximately 100 protein spots could be visualized followed by CBB staining of 2-D gel and included for comparative analysis. Of these, 54 showed differential expressions, while two new protein spots emerged (of 90.3 and 64.4 kDa). These proteins were subjected to further analysis by MALDI-TOF for their identification using Brugia coding sequence database composed of both genomic and EST sequences. Our study unravels two crucial findings: (i) the parasite or Wolbachia proteins, which disappeared/down-regulated appear be essential for parasite survival and may be used as drug targets and (ii) tetracycline treatment interferes with the regulatory machinery vital for parasites cellular integrity and defense and thus could possibly be a molecular mechanism for the killing of filarial parasite. This is the first proteomic study substantiating the wolbachial genome integrity with its nematode host and providing functional genomic data of human lymphatic filarial parasite B. malayi.
Collapse
Affiliation(s)
- Anil Dangi
- Division of Parasitology, Central Drug Research Institute, Chattar Manzil Palace, Lucknow (U.P.), India
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Meng B, Qian Z, Wei F, Wang W, Zhou C, Wang Z, Wang Q, Tong W, Wang Q, Ma Y, Xu N, Liu S. Proteomic analysis on the temperature-dependent complexes in Thermoanaerobacter tengcongensis. Proteomics 2009; 9:3189-200. [PMID: 19526551 DOI: 10.1002/pmic.200800650] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is generally accepted that protein complexes play an active role in avoiding the protein degradation of the thermophiles. Thermoanaerobacter tengcongensis was cultured at three different temperatures (55, 75 and 80 degrees C) and the extracts of protein complexes were prepared. Through blue native PAGE, the changes of the relative band volumes in response to different temperatures were semi-quantitatively compared and six temperature-dependent bands were obtained. These bands were excised, digested with trypsin and then analyzed with MS for the identification of protein components. With the combination of the proteins identified by LC MS/MS and MALDI TOF/TOF MS, a total of 92 unique proteins were ascertained in these complexes. Besides, some protein components were examined with Western blot, which gave us insights into the survival mechanism of thermophiles. These included (i) the composition of complex at 80 degrees C was significantly different from that at the other two temperatures; (ii) HSPs presented in all temperature-dependent complexes; (iii) several proteins associated with the functional pathways existed in the same complexes, indicating that the complex structure provided facility for the functional efficiency.
Collapse
Affiliation(s)
- Bo Meng
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Grosse S, Bergeron H, Imura A, Boyd J, Wang S, Kubota K, Miyadera A, Sulea T, Lau PCK. Nature versus nurture in two highly enantioselective esterases from Bacillus cereus and Thermoanaerobacter tengcongensis. Microb Biotechnol 2009; 3:65-73. [PMID: 21255307 PMCID: PMC3815948 DOI: 10.1111/j.1751-7915.2009.00142.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There is an increasing need for the use of biocatalysis to obtain enantiopure compounds as chiral building blocks for drug synthesis such as antibiotics. The principal findings of this study are: (i) the complete sequenced genomes of Bacillus cereus ATCC 14579 and Thermoanaerobacter tengcongensis MB4 contain a hitherto undescribed enantioselective and alkaliphilic esterase (BcEST and TtEST respectively) that is specific for the production of (R)‐2‐benzyloxy‐propionic acid ethyl ester, a key intermediate in the synthesis of levofloxacin, a potent antibiotic; and (ii) directed evolution targeted for increased thermostability of BcEST produced two improved variants, but in either case the 3–5°C increase in the apparent melting temperature (Tm) of the mutants over the native BcEST that has a Tm of 50°C was outperformed by TtEST, a naturally occurring homologue with a Tm of 65°C. Protein modelling of BcEST mapped the S148C and K272R mutations at protein surface and the I88T and Q110L mutations at more buried locations. This work expands the repertoire of characterized members of the α/β‐fold hydrolase superfamily. Further, it shows that genome mining is an economical option for new biocatalyst discovery and we provide a rare example of a naturally occurring thermostable biocatalyst that outperforms experimentally evolved homologues that carry out the same hydrolysis.
Collapse
Affiliation(s)
- Stephan Grosse
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Qian Z, Meng B, Wang Q, Wang Z, Zhou C, Wang Q, Tu S, Lin L, Ma Y, Liu S. Systematic characterization of a novel gal operon in Thermoanaerobacter tengcongensis. MICROBIOLOGY-SGM 2009; 155:1717-1725. [PMID: 19372161 DOI: 10.1099/mic.0.025536-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
On the basis of the Thermoanaerobacter tengcongensis genome, a novel type of gal operon was deduced. The gene expression and biochemical properties of this operon were further characterized. RT-PCR analysis of the intergenic regions suggested that the transcription of the gal operon was continuous. With gene cloning and enzyme activity assays, TTE1929, TTE1928 and TTE1927 were identified to be GalT, GalK and GalE, respectively. Results elicited from polarimetry assays revealed that TTE1925, a hypothetical protein, was a novel mutarotase, termed MR-Tt. TTE1926 was identified as a regulator that could bind to two operators in the operon promoter. The transcriptional start sites were mapped, and this suggested that there are two promoters in this operon. Expression of the gal genes was significantly induced by galactose, whereas only MR-Tt expression was detected in glucose-cultured T. tengcongensis at both the mRNA and the protein level. In addition, the abundance of gal proteins was examined at different temperatures. At temperatures ranging from 60 to 80 degrees C, the level of MR-Tt protein was relatively stable, but that of the other gal proteins was dramatically decreased. The operator-binding complexes were isolated and identified by electrophoretic mobility shift assay-liquid chromatography (EMSA-LC) MS-MS, which suggested that several regulatory proteins, such as GalR and a sensory histidine kinase, participate in the regulation of the gal operon.
Collapse
Affiliation(s)
- Zhong Qian
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| | - Bo Meng
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| | - Quanhui Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhuowei Wang
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| | - Chuanqi Zhou
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| | - Qian Wang
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| | - Shuyang Tu
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| | - Liang Lin
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| | - Yanhe Ma
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Siqi Liu
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| |
Collapse
|
31
|
Lacerda CMR, Reardon KF. Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:75-87. [PMID: 19279070 DOI: 10.1093/bfgp/elp005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this review, we present the use of proteomics to advance knowledge in the field of environmental biotechnology, including studies of bacterial physiology, metabolism and ecology. Bacteria are widely applied in environmental biotechnology for their ability to catalyze dehalogenation, methanogenesis, denitrification and sulfate reduction, among others. Their tolerance to radiation and toxic compounds is also of importance. Proteomics has an important role in helping uncover the pathways behind these cellular processes. Environmental samples are often highly complex, which makes proteome studies in this field especially challenging. Some of these challenges are the lack of genome sequences for the vast majority of environmental bacteria, difficulties in isolating bacteria and proteins from certain environments, and the presence of complex microbial communities. Despite these challenges, proteomics offers a unique dynamic view into cellular function. We present examples of environmental proteomics of model organisms, and then discuss metaproteomics (microbial community proteomics), which has the potential to provide insights into the function of a community without isolating organisms. Finally, the environmental proteomics literature is summarized as it pertains to the specific application areas of wastewater treatment, metabolic engineering, microbial ecology and environmental stress responses.
Collapse
Affiliation(s)
- Carla M R Lacerda
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523-1370, USA
| | | |
Collapse
|
32
|
Kwon SO, Kang SG, Park SH, Kim YH, Choi JS, Lee JH, Kim SI. Proteomic characterization of the sulfur-reducing hyperthermophilic archaeon Thermococcus onnurineus NA1 by 2-DE/MS-MS. Extremophiles 2009; 13:379-87. [PMID: 19132287 DOI: 10.1007/s00792-008-0220-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 12/09/2008] [Indexed: 11/28/2022]
Abstract
Thermococcus onnurineus NA1, a sulfur-reducing hyperthermophilic archaeon, was isolated from a deep-sea hydrothermal vent area in Papua New Guinea. The strain requires elemental sulfur as a terminal electron acceptor for heterotrophic growth on peptides, amino acids and sugars. Recently, genome sequencing of Thermococcus onnurineus NA1 was completed. In this study, 2-DE/MS-MS analysis of the cytosolic proteome was performed to elucidate the metabolic characterization of Thermococcus onnurineus NA1 at the protein level. Among the 1,136 visualized protein spots, 110 proteins were identified. Enzymes related to metabolic pathways of amino acids utilization, glycolysis, pyruvate conversion, ATP synthesis, and protein synthesis were identified as abundant proteins, highlighting the fact that these are major metabolic pathways in Thermococcus onnurineus NA1. Interestingly, multiple spots of phosphoenolpyruvate synthetase and elongation factor Tu were found on 2D gels generated by truncation at the N-terminus, implicating the cellular regulatory mechanism of this key enzyme by protease degradation. In addition to the proteins involved in metabolic systems, we also identified various proteases and stress-related proteins. The proteomic characterization of abundantly induced proteins using 2-DE/MS-MS enables a better understanding of Thermococcus onnurineus NA1 metabolism.
Collapse
Affiliation(s)
- Sang Oh Kwon
- Korea Basic Science Institute, Daejeon 305-333, South Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Functional definition and global regulation of Zur, a zinc uptake regulator in a Streptococcus suis serotype 2 strain causing streptococcal toxic shock syndrome. J Bacteriol 2008; 190:7567-78. [PMID: 18723622 DOI: 10.1128/jb.01532-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc is an essential trace element for all living organisms and plays pivotal roles in various cellular processes. However, an excess of zinc is extremely deleterious to cells. Bacteria have evolved complex machineries (such as efflux/influx systems) to control the concentration at levels appropriate for the maintenance of zinc homeostasis in cells and adaptation to the environment. The Zur (zinc uptake regulator) protein is one of these functional members involved in the precise control of zinc homeostasis. Here we identified a zur homologue designated 310 from Streptococcus suis serotype 2, strain 05ZYH33, a highly invasive isolate causing streptococcal toxic shock syndrome. Biochemical analysis revealed that the protein product of gene 310 exists as a dimer form and carries zinc ions. An isogenic gene replacement mutant of gene 310, the Delta310 mutant, was obtained by homologous recombination. Physiological tests demonstrated that the Delta310 mutant is specifically sensitive to Zn(2+), while functional complementation of the Delta310 mutant can restore its duration capability, suggesting that 310 is a functional member of the Zur family. Two-dimensional electrophoresis indicated that nine proteins in the Delta310 mutant are overexpressed in comparison with those in the wild type. DNA microarray analyses suggested that 121 genes in the Delta310 mutant are affected, of which 72 genes are upregulated and 49 are downregulated. The transcriptome of S. suis serotype 2 with high Zn(2+) concentrations also showed 117 differentially expressed genes, with 71 upregulated and 46 downregulated. Surprisingly, more than 70% of the genes differentially expressed in the Delta310 mutant were the same as those in S. suis serotype 2 that were differentially expressed in response to high Zn(2+) concentration, consistent with the notion that 310 is involved in zinc homeostasis. We thus report for the first time a novel zinc-responsive regulator, Zur, from Streptococcus suis serotype 2.
Collapse
|