1
|
Basharat Z, Foster LJ, Abbas S, Yasmin A. Comparative Proteomics of Bacteria Under Stress Conditions. Methods Mol Biol 2025; 2859:129-162. [PMID: 39436600 DOI: 10.1007/978-1-0716-4152-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Bacteria are unicellular organisms with the ability to exist in the harshest of climate and cope with sub-optimal fluctuating environmental conditions. They accomplish this by modification of their internal cellular environment. When external conditions are varied, change in the cell is triggered at the transcriptional level, which usually leads to proteolysis and rewiring of the proteome. Changes in cellular homeostasis, modifications in proteome, and dynamics of such survival mechanisms can be studied using various scientific techniques. Our focus in this chapter would be on comparative proteomics of bacteria under stress conditions using approaches like 2D electrophoresis accompanied by N-terminal sequencing and recently, mass spectrometry. More than 170 such studies on bacteria have been accomplished till to date and involve analysis of whole cells as well as that of cellular fractions, i.e., outer membrane, inner membrane, cell envelope, cytoplasm, thylakoid, lipid bodies, etc. Similar studies conducted on gram-negative and gram-positive model organism, i.e., Escherichia coli and Bacillus subtilis, respectively, have been summarized. Vital information, hypothesis about conservation of stress-specific proteome, and conclusions are also presented in the light of research conducted over the last decades.
Collapse
Affiliation(s)
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| | - Sidra Abbas
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Azra Yasmin
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan.
| |
Collapse
|
2
|
Zhang J, Zhang F, Dong Z, Zhang W, Sun T, Chen L. Response and acclimation of cyanobacteria to acidification: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173978. [PMID: 38897479 DOI: 10.1016/j.scitotenv.2024.173978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Cyanobacteria, as vital components of aquatic ecosystems, face increasing challenges due to acidification driven by various anthropogenic and natural factors. Understanding how cyanobacteria adapt and respond to acidification is crucial for predicting their ecological dynamics and potential impacts on ecosystem health. This comprehensive review synthesizes current knowledge on the acclimation mechanisms and responses of cyanobacteria to acidification stress. Detailly, ecological roles of cyanobacteria were firstly briefly concluded, followed by the effects of acidification on aquatic ecosystems and cyanobacteria. Then the review focuses on the physiological, biochemical, and molecular strategies employed by cyanobacteria to cope with acidification stress, highlighting key adaptive mechanisms and their ecological implications. Finally, a summary of strategies to enhance acid resistance in cyanobacteria and future directions was discussed. Utilizing omics data and machine learning technology to build a cyanobacterial acid regulatory network allows for predicting the impact of acidification on cyanobacteria and inferring its broader effects on ecosystems. Additionally, acquiring acid-tolerant chassis cells of cyanobacteria through innovative techniques facilitates the advancement of environmentally friendly production of acidic chemicals. By synthesizing empirical evidence and theoretical frameworks, this review aims to elucidate the complex interplay between cyanobacteria and acidification stressors, providing insights for future research directions and ecosystem management strategies.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Fenfang Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Zhengxin Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China..
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China.
| |
Collapse
|
3
|
Kupriyanova EV, Sinetova MA, Gabrielyan DA, Los DA. The Freshwater Cyanobacterium Synechococcus elongatus PCC 7942 Does Not Require an Active External Carbonic Anhydrase. PLANTS (BASEL, SWITZERLAND) 2024; 13:2323. [PMID: 39204759 PMCID: PMC11360081 DOI: 10.3390/plants13162323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Under standard laboratory conditions, Synechococcus elongatus PCC 7942 lacks EcaASyn, a periplasmic carbonic anhydrase (CA). In this study, a S. elongatus transformant was created that expressed the homologous EcaACya from Cyanothece sp. ATCC 51142. This additional external CA had no discernible effect on the adaptive responses and physiology of cells exposed to changes similar to those found in S. elongatus natural habitats, such as fluctuating CO2 and HCO3- concentrations and ratios, oxidative or light stress, and high CO2. The transformant had a disadvantage over wild-type cells under certain conditions (Na+ depletion, a reduction in CO2). S. elongatus cells lacked their own EcaASyn in all experimental conditions. The results suggest the presence in S. elongatus of mechanisms that limit the appearance of EcaASyn in the periplasm. For the first time, we offer data on the expression pattern of CCM-associated genes during S. elongatus adaptation to CO2 replacement with HCO3-, as well as cell transfer to high CO2 levels (up to 100%). An increase in CO2 concentration coincides with the suppression of the NDH-14 system, which was previously thought to function constitutively.
Collapse
Affiliation(s)
- Elena V. Kupriyanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.A.S.); (D.A.G.); (D.A.L.)
| | | | | | | |
Collapse
|
4
|
Srivastava R, Singh N, Kanda T, Yadav S, Yadav S, Atri N. Cyanobacterial Proteomics: Diversity and Dynamics. J Proteome Res 2024; 23:2680-2699. [PMID: 38470568 DOI: 10.1021/acs.jproteome.3c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Cyanobacteria (oxygenic photoautrophs) comprise a diverse group holding significance both environmentally and for biotechnological applications. The utilization of proteomic techniques has significantly influenced investigations concerning cyanobacteria. Application of proteomics allows for large-scale analysis of protein expression and function within cyanobacterial systems. The cyanobacterial proteome exhibits tremendous functional, spatial, and temporal diversity regulated by multiple factors that continuously modify protein abundance, post-translational modifications, interactions, localization, and activity to meet the dynamic needs of these tiny blue greens. Modern mass spectrometry-based proteomics techniques enable system-wide examination of proteome complexity through global identification and high-throughput quantification of proteins. These powerful approaches have revolutionized our understanding of proteome dynamics and promise to provide novel insights into integrated cellular behavior at an unprecedented scale. In this Review, we present modern methods and cutting-edge technologies employed for unraveling the spatiotemporal diversity and dynamics of cyanobacterial proteomics with a specific focus on the methods used to analyze post-translational modifications (PTMs) and examples of dynamic changes in the cyanobacterial proteome investigated by proteomic approaches.
Collapse
Affiliation(s)
| | - Nidhi Singh
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Tripti Kanda
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Sadhana Yadav
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Shivam Yadav
- Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Neelam Atri
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
Zhang J, Zhong H, Xuan N, Mushtaq R, Shao Y, Cao X, Wang P, Chen G. The Na + /Ca 2+ antiporter slr0681 affects carotenoid production in Synechocystis sp. PCC 6803 under high-light stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3147-3155. [PMID: 38072645 DOI: 10.1002/jsfa.13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND Carotenoids play key roles in photosynthesis and are widely used in foods as natural pigments, antioxidants, and health-promoting compounds. Enhancing carotenoid production in microalgae via biotechnology has become an important area of research. RESULTS We knocked out the Na+ /Ca2+ antiporter gene slr0681 in Synechocystis sp. PCC 6803 via homologous recombination and evaluated the effects on carotenoid production under normal (NL) and high-light (HL) conditions. On day 7 of NL treatment in calcium ion (Ca2+ )-free medium, the cell density of Δslr0681 decreased by 29% compared to the wild type (WT). After 8 days of HL treatment, the total carotenoid contents decreased by 35% in Δslr0681, and the contents of individual carotenoids were altered: myxoxanthophyll, echinenone, and β-carotene contents increased by 10%, 50%, and 40%, respectively, while zeaxanthin contents decreased by ~40% in Δslr0681 versus the WT. The expression patterns of carotenoid metabolic pathway genes also differed: ipi expression increased by 1.2- to 8.5-fold, whereas crtO and crtR expression decreased by ~90% and 60%, respectively, in ∆slr0681 versus the WT. In addition, in ∆slr0681, the expression level of psaB (encoding a photosystem I structural protein) doubled, whereas the expression levels of the photosystem II genes psbA2 and psbD decreased by ~53% and 84%, respectively, compared to the WT. CONCLUSION These findings suggest that slr0681 plays important roles in regulating carotenoid biosynthesis and structuring of the photosystems in Synechocystis sp. This study provides a theoretical basis for the genetic engineering of microalgae photosystems to increase their economic benefits and lays the foundation for developing microalgae germplasm resources with high carotenoid contents. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaye Zhang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- School of Life Sciences, Shandong Normal University, Jinan, China
| | - Huairong Zhong
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Ning Xuan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Rubina Mushtaq
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Yahui Shao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Xue Cao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- School of Life Sciences, Shandong Normal University, Jinan, China
| | - Pengchong Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Gao Chen
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| |
Collapse
|
6
|
Secretome Analysis of the Plant Biostimulant Bacteria Strains Bacillus subtilis (EB2004S) and Lactobacillus helveticus (EL2006H) in Response to pH Changes. Int J Mol Sci 2022; 23:ijms232315144. [PMID: 36499471 PMCID: PMC9739546 DOI: 10.3390/ijms232315144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
It is well-known that there is a high frequency of plant-growth-promoting strains in Bacillus subtilis and that these can be effective under both stressful and stress-free conditions. There are very few studies of this activity in the case of Lactobacillus helveticus. In this study, the effects of pH on the secretome (proteins) in the cell-free supernatants of two bacterial strains were evaluated. The bacteria were cultured at pH 5, 7 and 8, and their secretome profiles were analyzed, with pH 7 (optimal growth pH) considered as the "control". The results showed that acidity (lower pH 5) diminishes the detectable production of most of the secretome proteins, whereas alkalinity (higher pH 8) increases the detectable protein production. At pH 5, five (5) new proteins were produced by L. helveticus, including class A sortase, fucose-binding lectin II, MucBP-domain-containing protein, SLAP-domain-containing protein and hypothetical protein LHEJCM1006_11110, whereas for B. subtilis, four (4) types of proteins were uniquely produced (p ≤ 0.05), including helicase-exonuclease AddAB subunit AddB, 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase, a cluster of ABC-F family ATP-binding-cassette-domain-containing proteins and a cluster of excinuclease ABC (subunit B). At pH 8, Bacillus subtilis produced 56 unique proteins. Many of the detected proteins were involved in metabolic processes, whereas the others had unknown functions. The unique and new proteins with known and unknown functions suggest potential the acclimatization of the microbes to pH stress.
Collapse
|
7
|
Tarfeen N, Nisa KU, Nisa Q. MALDI-TOF MS: application in diagnosis, dereplication, biomolecule profiling and microbial ecology. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9340741 DOI: 10.1007/s43538-022-00085-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized scientific research over the past few decades and has provided a unique platform in ongoing technological developments. Undoubtedly, there has been a bloom chiefly in the field of biological sciences with this emerging technology, and has enabled researchers to generate critical data in the field of disease diagnoses, drug development, dereplication. It has received well acceptance in the field of microbial identification even at strain level, as well as diversified field like biomolecule profiling (proteomics and lipidomics) has evolved tremendously. Additionally, this approach has received a lot more attention over conventional technologies due to its high throughput, speed, and cost effectiveness. This review aims to provide a detailed insight regarding the application of MALDI-TOF MS in the context of medicine, biomolecule profiling, dereplication, and microbial ecology. In general, the expansion in the application of this technology and new advancements it has made in the field of science and technology has been highlighted.
Collapse
|
8
|
Effect of Culture pH on Properties of Exopolymeric Substances from Synechococcus PCC7942: Implications for Carbonate Precipitation. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The role of culture conditions on the production of exopolymeric substances (EPS) by Synechococcus strain PCC7942 was investigated. Carbonate mineral precipitation in these EPS was assessed in forced precipitation experiments. Cultures were grown in HEPES-buffered medium and non-buffered medium. The pH of buffered medium remained constant at 7.5, but in non-buffered medium it increased to 9.5 within a day and leveled off at 10.5. The cell yield at harvest was twice as high in non-buffered medium than in buffered medium. High molecular weight (>10 kDa) and low molecular weight (3–10 kDa) fractions of EPS were obtained from both cultures. The cell-specific EPS production in buffered medium was twice as high as in non-buffered medium. EPS from non-buffered cultures contained more negatively charged macromolecules and more proteins than EPS from buffered cultures. The higher protein content at elevated pH may be due to the induction of carbon-concentrating mechanisms, necessary to perform photosynthetic carbon fixation in these conditions. Forced precipitation showed smaller calcite carbonate crystals in EPS from non-buffered medium and larger minerals in polymers from buffered medium. Vaterite formed only at low EPS concentrations. Experimental results are used to conceptually model the impact of pH on the potential of cyanobacterial blooms to produce minerals. We hypothesize that in freshwater systems, small crystal production may benefit the picoplankton by minimizing the mineral ballast, and thus prolonging the residence time in the photic zone, which might result in slow sinking rates.
Collapse
|
9
|
Toyoshima M, Sakata M, Ueno Y, Toya Y, Matsuda F, Akimoto S, Shimizu H. Proteome analysis of response to different spectral light irradiation in Synechocystis sp. PCC 6803. J Proteomics 2021; 246:104306. [PMID: 34157441 DOI: 10.1016/j.jprot.2021.104306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/27/2022]
Abstract
In cyanobacteria, it is known that the excitation ratios of photosystem (PS) I and PSII changes with the wavelength of irradiated light due to mobile phycobilisome (PBS) and spillover, affecting the photosynthetic ATP/NADPH synthesis ratio and metabolic flux state. However, the mechanisms by which these changes are controlled have not been well studied. In this study, we performed a targeted proteomic analysis of Synechocystis sp. PCC 6803 under different spectral light conditions to clarify the regulation mechanisms of mobile PBS, spillover and metabolisms under different light qualities at the protein level. The results showed an increase in the amount of proteins mainly involved in CO2 fixation under Red1 light conditions with a high specific growth rate, suggesting that the rate of intracellular metabolism is controlled by the rate of carbon uptake, not by changes in the amount of each enzyme. Correlation analysis between protein levels and PSI/PSII excitation ratios revealed that PsbQUY showed high correlations and significantly increased under Blue and Red2 light conditions, where the PSI/PSII excitation ratio was higher due to spillover. In the strains lacking the genes encoding these proteins, a decrease in the PSI/PSII excitation ratio was observed, suggesting that PsbQUY contribute to spillover occurrence. SIGNIFICANCE: In cyanobacteria, the photosynthetic apparatus's responses, such as state transition [mobile PBS and spillover], occur due to the intensity and wavelength of irradiated light, resulting in changes in photosynthetic electron transport and metabolic flux states. Previous studies have analyzed the response of Synechocystis sp. PCC 6803 to light intensity from various directions, but only spectroscopic analysis of the photosynthetic apparatus has been done on the response to changes in the wavelength of irradiated light. This study analyzed the response mechanisms of mobile PBS, spillover, photosynthetic, and metabolic systems in Synechocystis sp. PCC 6803 under six different spectral light conditions by a targeted proteomic analysis. As a result, many proteins were successfully quantified, and the metabolic enzymes and photosynthetic apparatus were analyzed using an integrated approach. Principal component and correlation analyses and volcano plots revealed that the PSII subunits PsbQ, PsbU, and PsbY have a strong correlation with the PSI/PSII excitation ratio and contribute to spillover occurrence. Thus, statistical analysis based on proteome data revealed that PsbQ, PsbU, and PsbY are involved in spillover, as revealed by spectroscopic analysis.
Collapse
Affiliation(s)
- Masakazu Toyoshima
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masumi Sakata
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
10
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
11
|
Šebela M, Raus M, Ondřej V, Hašler P. The Influence of Metabolic Inhibitors, Antibiotics, and Microgravity on Intact Cell MALDI-TOF Mass Spectra of the Cyanobacterium Synechococcus Sp. UPOC S4. Molecules 2021; 26:molecules26061683. [PMID: 33802864 PMCID: PMC8002600 DOI: 10.3390/molecules26061683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 11/28/2022] Open
Abstract
The aim and novelty of this paper are found in assessing the influence of inhibitors and antibiotics on intact cell MALDI-TOF mass spectra of the cyanobacterium Synechococcus sp. UPOC S4 and to check the impact on reliability of identification. Defining the limits of this method is important for its use in biology and applied science. The compounds included inhibitors of respiration, glycolysis, citrate cycle, and proteosynthesis. They were used at 1–10 μM concentrations and different periods of up to 3 weeks. Cells were also grown without inhibitors in a microgravity because of expected strong effects. Mass spectra were evaluated using controls and interpreted in terms of differential peaks and their assignment to protein sequences by mass. Antibiotics, azide, and bromopyruvate had the greatest impact. The spectral patterns were markedly altered after a prolonged incubation at higher concentrations, which precluded identification in the database of reference spectra. The incubation in microgravity showed a similar effect. These differences were evident in dendrograms constructed from the spectral data. Enzyme inhibitors affected the spectra to a smaller extent. This study shows that only a long-term presence of antibiotics and strong metabolic inhibitors in the medium at 10−5 M concentrations hinders the correct identification of cyanobacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF).
Collapse
Affiliation(s)
- Marek Šebela
- Department of Biochemistry and Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
- Correspondence: (M.Š.); (P.H.)
| | - Martin Raus
- Department of Biochemistry and Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
| | - Vladan Ondřej
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
| | - Petr Hašler
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
- Correspondence: (M.Š.); (P.H.)
| |
Collapse
|
12
|
Dahlgren KK, Gates C, Lee T, Cameron JC. Proximity-based proteomics reveals the thylakoid lumen proteome in the cyanobacterium Synechococcus sp. PCC 7002. PHOTOSYNTHESIS RESEARCH 2021; 147:177-195. [PMID: 33280076 PMCID: PMC7880944 DOI: 10.1007/s11120-020-00806-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacteria possess unique intracellular organization. Many proteomic studies have examined different features of cyanobacteria to learn about the intracellular structures and their respective functions. While these studies have made great progress in understanding cyanobacterial physiology, the conventional fractionation methods used to purify cellular structures have limitations; specifically, certain regions of cells cannot be purified with existing fractionation methods. Proximity-based proteomics techniques were developed to overcome the limitations of biochemical fractionation for proteomics. Proximity-based proteomics relies on spatiotemporal protein labeling followed by mass spectrometry of the labeled proteins to determine the proteome of the region of interest. We performed proximity-based proteomics in the cyanobacterium Synechococcus sp. PCC 7002 with the APEX2 enzyme, an engineered ascorbate peroxidase. We determined the proteome of the thylakoid lumen, a region of the cell that has remained challenging to study with existing methods, using a translational fusion between APEX2 and PsbU, a lumenal subunit of photosystem II. Our results demonstrate the power of APEX2 as a tool to study the cell biology of intracellular features and processes, including photosystem II assembly in cyanobacteria, with enhanced spatiotemporal resolution.
Collapse
Affiliation(s)
- Kelsey K Dahlgren
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
- Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Colin Gates
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Thomas Lee
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA.
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA.
- National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
13
|
Brandenburg F, Theodosiou E, Bertelmann C, Grund M, Klähn S, Schmid A, Krömer JO. Trans-4-hydroxy-L-proline production by the cyanobacterium Synechocystis sp. PCC 6803. Metab Eng Commun 2020; 12:e00155. [PMID: 33511031 PMCID: PMC7815826 DOI: 10.1016/j.mec.2020.e00155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 01/21/2023] Open
Abstract
Cyanobacteria play an important role in photobiotechnology. Yet, one of their key central metabolic pathways, the tricarboxylic acid (TCA) cycle, has a unique architecture compared to most heterotrophs and still remains largely unexploited. The conversion of 2-oxoglutarate to succinate via succinyl-CoA is absent but is by-passed by several other reactions. Overall, fluxes under photoautotrophic growth conditions through the TCA cycle are low, which has implications for the production of chemicals. In this study, we investigate the capacity of the TCA cycle of Synechocystis sp PCC 6803 for the production of trans-4-hydroxy-L-proline (Hyp), a valuable chiral building block for the pharmaceutical and cosmetic industries. For the first time, photoautotrophic Hyp production was achieved in a cyanobacterium expressing the gene for the L-proline-4-hydroxylase (P4H) from Dactylosporangium sp. strain RH1. Interestingly, while elevated intracellular Hyp concentrations could be detected in the recombinant Synechocystis strains under all tested conditions, detectable Hyp secretion into the medium was only observed when the pH of the medium exceeded 9.5 and mostly in the late phases of the cultivation. We compared the rates obtained for autotrophic Hyp production with published sugar-based production rates in E. coli. The land-use efficiency (space-time yield) of the phototrophic process is already in the same order of magnitude as the heterotrophic process considering sugar farming as well. But, the remarkable plasticity of the cyanobacterial TCA cycle promises the potential for a 23–55 fold increase in space-time yield when using Synechocystis. Altogether, these findings contribute to a better understanding of bioproduction from the TCA cycle in photoautotrophs and broaden the spectrum of chemicals produced in metabolically engineered cyanobacteria. Phototrophic production of trans-4-hydroxy-L-prolin. pH dependency of product accumulation in Synechocystis PCC6803. Comparative analysis of land use efficiency in phototrophs & heterotrophs.
Collapse
|
14
|
Shvarev D, Maldener I. The HlyD-like membrane fusion protein All5304 is essential for acid stress survival of the filamentous cyanobacterium Anabaena sp. PCC 7120. FEMS Microbiol Lett 2020; 367:5863934. [PMID: 32592389 DOI: 10.1093/femsle/fnaa108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022] Open
Abstract
Acid stress is an environmental problem for plants and fresh water cyanobacteria like the filamentous, heterocyst forming species Anabaena sp. PCC 7120 (hereafter Anabaena sp.). Heterocyst differentiation, cell-cell communication and nitrogen fixation has been deeply studied in this model organism, but little is known about the cellular response of Anabaena sp. to decreased pH values, causing acid stress. ATP-binding cassette (ABC) transporters are involved in acid stress response in other bacteria, by exporting proteins responsible for survival under acidification. The genome of Anabaena sp. encodes numerous ABC transporter components, whose function is not known yet. Here, we describe the function of the gene all5304 encoding a protein with homology to membrane fusion proteins of tripartite efflux pumps driven by ABC transporters like HlyBD-TolC of Escherichia coli. The all5304 mutant shows less resistance against low pH, even though the expression of the gene is independent from the pH of the medium. We compared the exoproteome of the wild type and mutant cultures and identified three proteins-candidate substrates of the putative transporter. Including the in silico analysis of All5304, our results suggest that All5304 functions as part of an efflux pump, secreting of a protein necessary for acid tolerance in Anabaena sp.
Collapse
Affiliation(s)
- Dmitry Shvarev
- Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Iris Maldener
- Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
15
|
Qian ZY, Chen X, Zhu HT, Shi JZ, Gong TT, Xian QM. Study on the cyanobacterial toxin metabolism of Microcystis aeruginosa in nitrogen-starved conditions by a stable isotope labelling method. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:558-564. [PMID: 30952000 DOI: 10.1016/j.jhazmat.2019.03.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/16/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
In this study, the biosynthesis of microcystins (MCs) was investigated after long-term nitrogen-starved conditions in cyanobacterium Microcystis aeruginosa. The results demonstrated that the algal cells were able to survive in a non-growing state with nitrogen starvation for more than one month. The physiological properties of the algal cells were studied to elucidate the mechanisms of viability under nitrogen-deprivation conditions. After the state of nitrogen chlorosis, new toxins could be resynthesized and tracked using 15N-stable isotope-labelled nitrogen. Nitrogen starvation of nutritionally replete cells resulted in a significant increase of microcystin-LY (MC-LY), thereby suggesting that MC-LY may undergo catabolism to provide nitrogen or that MC-LY may be produced to play an important role in the cell in response to nitrogen deprivation. The rank order of different types of nitrogen in algal cells assimilation was N-ammonium > N-urea > N-nitrate > N-alanine. The relationship between the production of toxin variants and various environmental conditions is an interesting issue for future research and may help improve the understanding of the ecological role of cyanobacterial toxins.
Collapse
Affiliation(s)
- Zong-Yao Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - He-Te Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jun-Zhe Shi
- Wuxi Environmental Monitoring Central Station, Wuxi, 214121, China
| | - Ting-Ting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qi-Ming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
16
|
Babele PK, Kumar J, Chaturvedi V. Proteomic De-Regulation in Cyanobacteria in Response to Abiotic Stresses. Front Microbiol 2019; 10:1315. [PMID: 31263458 PMCID: PMC6584798 DOI: 10.3389/fmicb.2019.01315] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/27/2019] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are oxygenic photoautotrophs, exhibiting a cosmopolitan distribution in almost all possible environments and are significantly responsible for half of the global net primary productivity. They are well adapted to the diverse environments including harsh conditions by evolving a range of fascinating repertoires of unique biomolecules and secondary metabolites to support their growth and survival. These phototrophs are proved as excellent models for unraveling the mysteries of basic biochemical and physiological processes taking place in higher plants. Several known species of cyanobacteria have tremendous biotechnological applications in diverse fields such as biofuels, biopolymers, secondary metabolites and much more. Due to their potential biotechnological and commercial applications in various fields, there is an imperative need to engineer robust cyanobacteria in such a way that they can tolerate and acclimatize to ever-changing environmental conditions. Adaptations to stress are mainly governed by a precise gene regulation pathways resulting in the expression of novel protein/enzymes and metabolites. Despite the demand, till date few proteins/enzymes have been identified which play a potential role in improving tolerance against abiotic stresses. Therefore, it is utmost important to study environmental stress responses related to post-genomic investigations, including proteomic changes employing advanced proteomics, synthetic and structural biology workflows. In this respect, the study of stress proteomics offers exclusive advantages to scientists working on these aspects. Advancements on these fields could be helpful in dissecting, characterization and manipulation of physiological and metabolic systems of cyanobacteria to understand the stress induced proteomic responses. Till date, it remains ambiguous how cyanobacteria perceive changes in the ambient environment that lead to the stress-induced proteins thus metabolic deregulation. This review briefly describes the current major findings in the fields of proteome research on the cyanobacteria under various abiotic stresses. These findings may improve and advance the information on the role of different class of proteins associated with the mechanism(s) of stress mitigation in cyanobacteria under harsh environmental conditions.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jay Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Venkatesh Chaturvedi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
17
|
Ling HL, Rahmat Z, Bakar FDA, Murad AMA, Illias RM. Secretome analysis of alkaliphilic bacterium Bacillus lehensis G1 in response to pH changes. Microbiol Res 2018; 215:46-54. [PMID: 30172308 DOI: 10.1016/j.micres.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/18/2018] [Accepted: 06/16/2018] [Indexed: 12/27/2022]
Abstract
Bacillus lehensis G1 is an alkaliphilic bacterium that is capable of surviving in environments up to pH 11. Secretome related to bacterial acclimation in alkaline environment has been less studied compared to cytoplasmic and membrane proteome. The aim of this study was to gain better understanding of bacterial acclimation to alkaline media through analyzing extracellular proteins of B. lehensis. The pH range for B. lehensis growth was conducted, and two-dimensional electrophoresis and MALDI-TOF/TOF MS analysis were conducted to characterize changes in protein profiling in B. lehensis cultured at pH 8 and pH 11 when compared with those cultured at pH 10 (optimal growth pH). B. lehensis could grow well at pH ranging from 8 to 11 in which the bacteria showed to posses thinner flagella at pH 11. Proteomic analyses demonstrated that five proteins were up-regulated and 13 proteins were down-regulated at pH 8, whereas at pH 11, 14 proteins were up-regulated and 8 were down-regulated. Majority of the differentially expressed proteins were involved in the cell wall, main glycolytic pathways, the metabolism of amino acids and related molecules and some proteins of unknown function. A total of 40 differentially expressed protein spots corresponding to 33 proteins were identified; including GlcNAc-binding protein A, chitinase, endopeptidase lytE, flagellar hook-associated proteins and enolase. These proteins may play important roles in acclimation to alkaline media via reallocation of cell wall structure and changes to cell surface glycolytic enzymes, amino acid metabolism, flagellar hook-associated proteins and chaperones to sustain life under pH-stressed conditions.
Collapse
Affiliation(s)
- How Lie Ling
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Zaidah Rahmat
- Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
18
|
Comparative Targeted Proteomics of the Central Metabolism and Photosystems in SigE Mutant Strains of Synechocystis sp. PCC 6803. Molecules 2018; 23:molecules23051051. [PMID: 29723969 PMCID: PMC6102573 DOI: 10.3390/molecules23051051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022] Open
Abstract
A targeted proteome analysis was conducted to investigate the SigE dependent-regulation of central metabolism in Synechocystis sp. PCC 6803 by directly comparing the protein abundance profiles among the wild type, a sigE deletion mutant (ΔsigE), and a sigE over-expression (sigEox) strains. Expression levels of 112 target proteins, including the central metabolism related-enzymes and the subunits of the photosystems, were determined by quantifying the tryptic peptides in the multiple reaction monitoring (MRM) mode of liquid-chromatography–triple quadrupole mass spectrometry (LC–MS/MS). Comparison with gene-expression data showed that although the abundance of Gnd protein was closely correlated with that of gnd mRNA, there were poor correlations for GdhA/gdhA and glycogen degradation-related genes such as GlgX/glgX and GlgP/glgP pairs. These results suggested that the regulation of protein translation and degradation played a role in regulating protein abundance. The protein abundance profile suggested that SigE overexpression reduced the proteins involved in photosynthesis and increased GdhA abundance, which is involved in the nitrogen assimilation pathway using NADPH. The results obtained in this study successfully demonstrated that targeted proteome analysis enables direct comparison of the abundance of central metabolism- and photosystem-related proteins.
Collapse
|
19
|
Hu XJ, Li T, Wang Y, Xiong Y, Wu XH, Zhang DL, Ye ZQ, Wu YD. Prokaryotic and Highly-Repetitive WD40 Proteins: A Systematic Study. Sci Rep 2017; 7:10585. [PMID: 28878378 PMCID: PMC5587647 DOI: 10.1038/s41598-017-11115-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022] Open
Abstract
As an ancient protein family, the WD40 repeat proteins often play essential roles in fundamental cellular processes in eukaryotes. Although investigations of eukaryotic WD40 proteins have been frequently reported, prokaryotic ones remain largely uncharacterized. In this paper, we report a systematic analysis of prokaryotic WD40 proteins and detailed comparisons with eukaryotic ones. About 4,000 prokaryotic WD40 proteins have been identified, accounting for 6.5% of all WD40s. While their abundances are less than 0.1% in most prokaryotes, they are enriched in certain species from Cyanobacteria and Planctomycetes, and participate in various functions such as prokaryotic signal transduction and nutrient synthesis. Comparisons show that a higher proportion of prokaryotic WD40s tend to contain multiple WD40 domains and a large number of hydrogen bond networks. The observation that prokaryotic WD40 proteins tend to show high internal sequence identity suggests that a substantial proportion of them (~20%) should be formed by recent or young repeat duplication events. Further studies demonstrate that the very young WD40 proteins, i.e., Highly-Repetitive WD40s, should be of higher stability. Our results have presented a catalogue of prokaryotic WD40 proteins, and have shed light on their evolutionary origins.
Collapse
Affiliation(s)
- Xue-Jia Hu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Tuan Li
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Yang Wang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Yao Xiong
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Xian-Hui Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - De-Lin Zhang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China.
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China.
- College of Chemistry, Peking University, Beijing, 100871, P.R. China.
| |
Collapse
|
20
|
Peng X, Yang J, Gao Y. Proteomic Analyses of Changes in Synechococcus sp. PCC7942 Following UV-C Stress. Photochem Photobiol 2017; 93:1073-1080. [PMID: 28120393 DOI: 10.1111/php.12726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/05/2016] [Indexed: 12/29/2022]
Abstract
UV-C's effects on the physiological and biochemical processes of cyanobacteria have been well characterized. However, the molecular mechanisms of cyanobacteria's tolerance to UV-C still need further investigation. This research attempts to decode the variation in protein abundances in cyanobacteria after UV-C stress. Different expression levels of proteins in the cytoplasm of Synechococcus sp. PCC7942 under UV-C stress were investigated using a comparative proteomic approach. In total, 47 UV-C-regulated proteins were identified by MALDI-TOF analysis and classified by Gene Ontology (GO). After studying their pathways, the proteins were mainly enriched in the groups of protein folding, inorganic ion transport and energy production. By focusing on these areas, this study reveals the correlation between UV-C stress-responsive proteins and the physiological changes of Synechococcus sp. PCC7942 under UV-C radiation. These findings may open up new areas for further exploration in the homeostatic mechanisms associated with cyanobacteria responses to UV-C radiation.
Collapse
Affiliation(s)
- Xi Peng
- School of Medicine, Nankai University, Tianjin, China
| | - Jie Yang
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yang Gao
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
21
|
Quantitative Proteomics Reveals Ecophysiological Effects of Light and Silver Stress on the Mixotrophic Protist Poterioochromonas malhamensis. PLoS One 2017; 12:e0168183. [PMID: 28056027 PMCID: PMC5215829 DOI: 10.1371/journal.pone.0168183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022] Open
Abstract
Aquatic environments are heavily impacted by human activities including climate warming and the introduction of xenobiotics. Due to the application of silver nanoparticles as bactericidal agent the introduction of silver into the environment strongly has increased during the past years. Silver ions affect the primary metabolism of algae, in particular photosynthesis. Mixotrophic algae are an interesting test case as they do not exclusively rely on photosynthesis which may attenuate the harmful effect of silver. In order to study the effect of silver ions on mixotrophs, cultures of the chrysophyte Poterioochromonas malhamensis were treated in a replicate design in light and darkness with silver nitrate at a sub-lethal concentration. At five time points samples were taken for the identification and quantitation of proteins by mass spectrometry. In our analysis, relative quantitative protein mass spectrometry has shown to be a useful tool for functional analyses in conjunction with transcriptome reference sequences. A total of 3,952 proteins in 63 samples were identified and quantified, mapping to 4,829 transcripts of the sequenced and assembled transcriptome. Among them, 720 and 104 proteins performing various cellular functions were differentially expressed after eight days in light versus darkness and after three days of silver treatment, respectively. Specifically pathways of the energy and primary carbon metabolism were differentially affected by light and the utilization of expensive reactions hints to an energy surplus of P. malhamensis under light conditions. The excess energy is not invested in growth, but in the synthesis of storage metabolites. The effects of silver were less explicit, observable especially in the dark treatments where the light effect could not mask coinciding but weaker effects of silver. Photosynthesis, particularly the light harvesting complexes, and several sulphur containing enzymes were affected presumably due to a direct interference with the silver ions, mainly affecting energy supply.
Collapse
|
22
|
Kumar J, Babele PK, Singh D, Kumar A. UV-B Radiation Stress Causes Alterations in Whole Cell Protein Profile and Expression of Certain Genes in the Rice Phyllospheric Bacterium Enterobacter cloacae. Front Microbiol 2016; 7:1440. [PMID: 27672388 PMCID: PMC5018602 DOI: 10.3389/fmicb.2016.01440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/30/2016] [Indexed: 11/30/2022] Open
Abstract
Among the different types of UV radiation, UV-B radiation (280-315 nm) has gained much attention mainly due to its increasing incidence on the Earth’s surface leading to imbalances in natural ecosystems. This study deals with the effects of UV-B radiation on the proteome and gene expression in a rice phyllospheric bacterium, Enterobacter cloacae. Of the five bacteria isolated from rice leaves, E. cloacae showed the highest level of resistance to UV-B and total killing occurred after 8 h of continuous exposure to UV-B. Reactive oxygen species were induced by UV-B exposure and increased with increasing duration of exposure. Protein profiling by SDS-PAGE and 2-dimensional gel electrophoresis (2-DE) revealed major changes in the number as well as expression of proteins. Analysis of 2-DE gel spots indicated up/down-regulation of several proteins under the stress of UV-B radiation. Thirteen differentially expressed proteins including two hypothetical proteins were identified by MALDI-TOF MS and assigned to eight functional categories. Both the hypothetical proteins (gi 779821175 and gi 503938301) were over-expressed after UV-B irradiation; gi 503938301 was characterized as a member of FMN reductase superfamily whereas gi 779821175 seems to be a structural protein as it did not show any functional domain. That the expression of certain proteins under UV-B stress is indeed up-regulated was confirmed by qRT-PCR. Transcript analysis of selected gene including genes of hypothetical proteins (cp011650 and cp002886) showed over-expression under UV-B stress as compared to untreated control cultures. Although this study deals with a limited number of proteins, identification of differentially expressed proteins reported herein may prove useful in future studies especially for assessing their significance in the protection mechanism of bacteria against UV-B radiation stress.
Collapse
Affiliation(s)
- Jay Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University Varanasi, India
| | - Piyoosh K Babele
- School of Biotechnology, Institute of Science, Banaras Hindu University Varanasi, India
| | - Divya Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University Varanasi, India
| | - Ashok Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University Varanasi, India
| |
Collapse
|
23
|
Morris JN, Eaton-Rye JJ, Summerfield TC. Environmental pH and the Requirement for the Extrinsic Proteins of Photosystem II in the Function of Cyanobacterial Photosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:1135. [PMID: 27555848 PMCID: PMC4977308 DOI: 10.3389/fpls.2016.01135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
In one of the final stages of cyanobacterial Photosystem II (PS II) assembly, binding of up to four extrinsic proteins to PS II stabilizes the oxygen-evolving complex (OEC). Growth of cyanobacterial mutants deficient in certain combinations of these thylakoid-lumen-associated polypeptides is sensitive to changes in environmental pH, despite the physical separation of the membrane-embedded PS II complex from the external environment. In this perspective we discuss the effect of environmental pH on OEC function and photoautotrophic growth in cyanobacteria with reference to pH-sensitive PS II mutants lacking extrinsic proteins. We consider the possibilities that, compared to pH 10.0, pH 7.5 increases susceptibility to PS II-generated reactive oxygen species (ROS) causing photoinhibition and reducing PS II assembly in some mutants, and that perturbations to channels in the lumenal regions of PS II might alter the accessibility of water to the active site as well as egress of oxygen and protons to the thylakoid lumen. Reduced levels of PS II in these mutants, and reduced OEC activity arising from the disruption of substrate/product channels, could reduce the trans-thylakoid pH gradient (ΔpH), leading to the impairment of photosynthesis. Growth of some PS II mutants at pH 7.5 can be rescued by elevating CO2 levels, suggesting that the pH-sensitive phenotype might primarily be an indirect result of back-pressure in the electron transport chain that results in heightened production of ROS by the impaired photosystem.
Collapse
Affiliation(s)
- Jaz N. Morris
- Department of Botany, University of OtagoDunedin, New Zealand
| | | | | |
Collapse
|
24
|
Cheregi O, Wagner R, Funk C. Insights into the Cyanobacterial Deg/HtrA Proteases. FRONTIERS IN PLANT SCIENCE 2016; 7:694. [PMID: 27252714 PMCID: PMC4877387 DOI: 10.3389/fpls.2016.00694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Proteins are the main machinery for all living processes in a cell; they provide structural elements, regulate biochemical reactions as enzymes, and are the interface to the outside as receptors and transporters. Like any other machinery proteins have to be assembled correctly and need maintenance after damage, e.g., caused by changes in environmental conditions, genetic mutations, and limitations in the availability of cofactors. Proteases and chaperones help in repair, assembly, and folding of damaged and misfolded protein complexes cost-effective, with low energy investment compared with neo-synthesis. Despite their importance for viability, the specific biological role of most proteases in vivo is largely unknown. Deg/HtrA proteases, a family of serine-type ATP-independent proteases, have been shown in higher plants to be involved in the degradation of the Photosystem II reaction center protein D1. The objective of this review is to highlight the structure and function of their cyanobacterial orthologs. Homology modeling was used to find specific features of the SynDeg/HtrA proteases of Synechocystis sp. PCC 6803. Based on the available data concerning their location and their physiological substrates we conclude that these Deg proteases not only have important housekeeping and chaperone functions within the cell, but also are needed for remodeling the cell exterior.
Collapse
|
25
|
Checchetto V, Segalla A, Sato Y, Bergantino E, Szabo I, Uozumi N. Involvement of Potassium Transport Systems in the Response of Synechocystis PCC 6803 Cyanobacteria to External pH Change, High-Intensity Light Stress and Heavy Metal Stress. PLANT & CELL PHYSIOLOGY 2016; 57:862-877. [PMID: 26880819 DOI: 10.1093/pcp/pcw032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The unicellular photosynthetic cyanobacterium, able to survive in varying environments, is the only prokaryote that directly converts solar energy and CO2 into organic material and is thus relevant for primary production in many ecosystems. To maintain the intracellular and intrathylakoid ion homeostasis upon different environmental challenges, the concentration of potassium as a major intracellular cation has to be optimized by various K(+)uptake-mediated transport systems. We reveal here the specific and concerted physiological function of three K(+)transporters of the plasma and thylakoid membranes, namely of SynK (K(+)channel), KtrB (Ktr/Trk/HKT) and KdpA (Kdp) in Synechocystis sp. strain PCC 6803, under specific stress conditions. The behavior of the wild type, single, double and triple mutants was compared, revealing that only Synk contributes to heavy metal-induced stress, while only Ktr/Kdp is involved in osmotic and salt stress adaptation. With regards to pH shifts in the external medium, the Kdp/Ktr uptake systems play an important role in the adaptation to acidic pH. Ktr, by affecting the CO2 concentration mechanism via its action on the bicarbonate transporter SbtA, might also be responsible for the observed effects concerning high-light stress and calcification. In the case of illumination with high-intensity light, a synergistic action of Kdr/Ktp and SynK is required in order to avoid oxidative stress and ensure cell viability. In summary, this study dissects, using growth tests, measurement of photosynthetic activity and analysis of ultrastructure, the physiological role of three K(+)transporters in adaptation of the cyanobacteria to various environmental changes.
Collapse
Affiliation(s)
- Vanessa Checchetto
- Department of Biology, University of Padova, Padova 35121, Italy Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | - Anna Segalla
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Yuki Sato
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| |
Collapse
|
26
|
Kim HW, Cheng J, Rittmann BE. Direct membrane-carbonation photobioreactor producing photoautotrophic biomass via carbon dioxide transfer and nutrient removal. BIORESOURCE TECHNOLOGY 2016; 204:32-37. [PMID: 26771923 DOI: 10.1016/j.biortech.2015.12.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
An advanced-material photobioreactor, the direct membrane-carbonation photobioreactor (DMCPBR), was tested to investigate the impact of directly submerging a membrane carbonation (MC) module of hollow-fiber membranes inside the photobioreactor. Results demonstrate that the DMCPBR utilized over 90% of the supplied CO2 by matching the CO2 flux to the C demand of photoautotrophic biomass growth. The surface area of the submerged MC module was the key to control CO2 delivery and biomass productivity. Tracking the fate of supplied CO2 explained how the DMCPBR reduced loss of gaseous CO2 while matching the inorganic carbon (IC) demand to its supply. Accurate fate analysis required that the biomass-associated C include soluble microbial products as a sink for captured CO2. With the CO2 supply matched to the photosynthetic demand, light attenuation limited the rate microalgal photosynthesis. The DMCPBR presents an opportunity to improve CO2-deliver efficiency and make microalgae a more effective strategy for C-neutral resource recovery.
Collapse
Affiliation(s)
- Hyun-Woo Kim
- Department of Environmental Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| | - Jing Cheng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bruce E Rittmann
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| |
Collapse
|
27
|
Wang Y, Chen L, Zhang W. Proteomic and metabolomic analyses reveal metabolic responses to 3-hydroxypropionic acid synthesized internally in cyanobacterium Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:209. [PMID: 27757169 PMCID: PMC5053081 DOI: 10.1186/s13068-016-0627-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/27/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND 3-hydroxypropionic acid (3-HP) is an important platform chemical with a wide range of applications. In our previous study, the biosynthetic pathway of 3-HP was constructed and optimized in cyanobacterium Synechocystis sp. PCC 6803, which led to 3-HP production directly from CO2 at a level of 837.18 mg L-1 (348.8 mg/g dry cell weight). As the production and accumulation of 3-HP in cells affect cellular metabolism, a better understanding of cellular responses to 3-HP synthesized internally in Synechocystis will be important for further increasing 3-HP productivity in cyanobacterial chassis. RESULTS Using a engineered 3-HP-producing SM strain, in this study, the cellular responses to 3-HP internally produced were first determined using a quantitative iTRAQ-LC-MS/MS proteomics approach and a LC-MS-based targeted metabolomics. A total of 2264 unique proteins were identified, which represented about 63 % of all predicted protein in Synechocystis in the proteomic analysis; meanwhile intracellular abundance of 24 key metabolites was determined by a comparative metabolomic analysis of the 3-HP-producing strain SM and wild type. Among all identified proteins, 204 proteins were found up-regulated and 123 proteins were found down-regulated, respectively. The proteins related to oxidative phosphorylation, photosynthesis, ribosome, central carbon metabolism, two-component systems and ABC-type transporters were up-regulated, along with the abundance of 14 metabolites related to central metabolism. The results suggested that the supply of ATP and NADPH was increased significantly, and the precursor malonyl-CoA and acetyl-CoA may also be supplemented when 3-HP was produced at a high level in Synechocystis. Confirmation of proteomic and metabolomic results with RT-qPCR and gene-overexpression strains of selected genes was also conducted, and the overexpression of three transporter genes putatively involved in cobalt/nickel, manganese and phosphate transporting (i.e., sll0385, sll1598 and sll0679) could lead to an increased 3-HP production in Synechocystis. CONCLUSIONS The integrative analysis of up-regulated proteome and metabolome data showed that to ensure the high-efficient production of 3-HP and the normal growth of Synechocystis, multiple aspects of cells metabolism including energy, reducing power supply, central carbon metabolism, the stress responses and protein synthesis were enhanced in Synechocystis. The study provides an important basis for further engineering cyanobacteria for high 3-HP production.
Collapse
Affiliation(s)
- Yunpeng Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| |
Collapse
|
28
|
Gao L, Wang J, Ge H, Fang L, Zhang Y, Huang X, Wang Y. Toward the complete proteome of Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2015; 126:203-219. [PMID: 25862646 DOI: 10.1007/s11120-015-0140-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
The proteome of the photosynthetic model organism Synechocystis sp. PCC 6803 has been extensively analyzed in the last 15 years for the purpose of identifying proteins specifically expressed in subcellular compartments or differentially expressed in different environmental or internal conditions. This review summarizes the progress achieved so far with the emphasis on the impact of different techniques, both in sample preparation and protein identification, on the increasing coverage of proteome identification. In addition, this review evaluates the current completeness of proteome identification, and provides insights on the potential factors that could affect the complete identification of the Synechocystis proteome.
Collapse
Affiliation(s)
- Liyan Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Jinlong Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Haitao Ge
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Longfa Fang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China.
| |
Collapse
|
29
|
Touloupakis E, Cicchi B, Benavides AMS, Torzillo G. Effect of high pH on growth of Synechocystis sp. PCC 6803 cultures and their contamination by golden algae (Poterioochromonas sp.). Appl Microbiol Biotechnol 2015; 100:1333-1341. [PMID: 26541331 PMCID: PMC4717179 DOI: 10.1007/s00253-015-7024-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 11/29/2022]
Abstract
Culturing cyanobacteria in a highly alkaline environment is a possible strategy for controlling contamination by other organisms. Synechocystis PCC 6803 cells were grown in continuous cultures to assess their growth performance at different pH values. Light conversion efficiency linearly decreased with the increase in pH and ranged between 12.5 % (PAR) at pH 7.5 (optimal) and decreased to 8.9 % at pH 11.0. Photosynthetic activity, assessed by measuring both chlorophyll fluorescence and photosynthesis rate, was not much affected going from pH 7.5 to 11.0, while productivity, growth yield, and biomass yield on light energy declined by 32, 28, and 26 % respectively at pH 11.0. Biochemical composition of the biomass did not change much within pH 7 and 10, while when grown at pH 11.0, carbohydrate content increased by 33 % while lipid content decreased by about the same amount. Protein content remained almost constant (average 65.8 % of dry weight). Cultures maintained at pH above 11.0 could grow free of contaminants (protozoa and other competing microalgae belonging to the species of Poterioochromonas).
Collapse
Affiliation(s)
- Eleftherios Touloupakis
- Istituto per lo Studio degli Ecosistemi, CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Bernardo Cicchi
- Istituto per lo Studio degli Ecosistemi, CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Ana Margarita Silva Benavides
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per lo Studio degli Ecosistemi, CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy.
| |
Collapse
|
30
|
Battchikova N, Angeleri M, Aro EM. Proteomic approaches in research of cyanobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:47-70. [PMID: 25359503 DOI: 10.1007/s11120-014-0050-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/18/2014] [Indexed: 05/03/2023]
Abstract
Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.
Collapse
Affiliation(s)
- Natalia Battchikova
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland.
| | - Martina Angeleri
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Eva-Mari Aro
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| |
Collapse
|
31
|
Babele PK, Singh G, Kumar A, Tyagi MB. Induction and differential expression of certain novel proteins in Anabaena L31 under UV-B radiation stress. Front Microbiol 2015; 6:133. [PMID: 25759687 PMCID: PMC4338792 DOI: 10.3389/fmicb.2015.00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/04/2015] [Indexed: 12/12/2022] Open
Abstract
For examining how UV-B radiation alters the proteome of the N2-fixing cyanobacterium, Anabaena L31, we extracted proteins from cultures irradiated with UV-B + white light and controls (white light irradiated) and analyzed the proteins using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Twenty one proteins, including two hypothetical proteins (HPs) were identified and placed in eight functional categories. However several of the proteins were housekeeping proteins involved in key metabolic processes such as carbon, amino acid biosynthesis and energy metabolism, certain proteins seem to have a role in stress (antioxidative enzymes), translation, cellular processes and reductases. Two novel HPs (all3797 and all4050) were characterized in detail. These two were over-expressed after UV-B irradiation and characterized as FAS 1 (all3797) and PRC barrel-like (all4050) proteins. Bioinformatics analysis revealed that the genes of both the HPs have promoter regions as well as transcription binding sites in their upstream region (UTR). Promoters present in all3797 genes suggest their crucial role against UV-B and certain other abiotic stresses. To our knowledge these novel proteins have not been previously reported in any Anabaena strains subjected to UV-B stress. Although we have focused our study on a limited number of proteins, results obtained shed light on the highly complicated but poorly studied aspect of UV-B radiation-mediated changes in the proteome and expression of proteins in cyanobacteria.
Collapse
Affiliation(s)
- Piyoosh K Babele
- School of Biotechnology, Banaras Hindu University Varanasi, India
| | - Garvita Singh
- School of Biotechnology, Banaras Hindu University Varanasi, India
| | - Ashok Kumar
- School of Biotechnology, Banaras Hindu University Varanasi, India
| | - Madhu B Tyagi
- Botany Section, Mahila Maha Vidyalaya, Banaras Hindu University Varanasi, India
| |
Collapse
|
32
|
Borirak O, de Koning LJ, van der Woude AD, Hoefsloot HCJ, Dekker HL, Roseboom W, de Koster CG, Hellingwerf KJ. Quantitative proteomics analysis of an ethanol- and a lactate-producing mutant strain of Synechocystis sp. PCC6803. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:111. [PMID: 26246854 PMCID: PMC4526308 DOI: 10.1186/s13068-015-0294-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/24/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND This study aimed at exploring the molecular physiological consequences of a major redirection of carbon flow in so-called cyanobacterial cell factories: quantitative whole-cell proteomics analyses were carried out on two (14)N-labelled Synechocystis mutant strains, relative to their (15)N-labelled wild-type counterpart. Each mutant strain overproduced one specific commodity product, i.e. ethanol or lactic acid, to such an extent that the majority of the incoming CO2 in the organism was directly converted into the product. RESULTS In total, 267 proteins have been identified with a significantly up- or down-regulated expression level. In the ethanol-producing mutant, which had the highest relative direct flux of carbon-to-product (>65%), significant up-regulation of several components involved in the initial stages of CO2 fixation for cellular metabolism was detected. Also a general decrease in abundance of the protein synthesizing machinery of the cells and a specific induction of an oxidative stress response were observed in this mutant. In the lactic acid overproducing mutant, that expresses part of the heterologous l-lactate dehydrogenase from a self-replicating plasmid, specific activation of two CRISPR associated proteins, encoded on the endogenous pSYSA plasmid, was observed. RT-qPCR was used to measure, of nine of the genes identified in the proteomics studies, also the adjustment of the corresponding mRNA level. CONCLUSION The most striking adjustments detected in the proteome of the engineered cells were dependent on the specific product formed, with, e.g. more stress caused by lactic acid- than by ethanol production. Up-regulation of the total capacity for CO2 fixation in the ethanol-producing strain was due to hierarchical- rather than metabolic regulation. Furthermore, plasmid-based expression of heterologous gene(s) may induce genetic instability. For selected, limited, number of genes a striking correlation between the respective mRNA- and the corresponding protein expression level was observed, suggesting that for the expression of these genes regulation takes place primarily at the level of gene transcription.
Collapse
Affiliation(s)
- Orawan Borirak
- />Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, and Netherlands Institute for System Biology, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Leo J de Koning
- />Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Huub C J Hoefsloot
- />Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk L Dekker
- />Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Winfried Roseboom
- />Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Chris G de Koster
- />Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- />Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, and Netherlands Institute for System Biology, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
33
|
Zhu Y, Pei G, Niu X, Shi M, Zhang M, Chen L, Zhang W. Metabolomic analysis reveals functional overlapping of three signal transduction proteins in regulating ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. MOLECULAR BIOSYSTEMS 2014; 11:770-82. [PMID: 25502571 DOI: 10.1039/c4mb00651h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low ethanol tolerance is a crucial factor that restricts the feasibility of bioethanol production in renewable cyanobacterial systems. Our previous studies showed that several transcriptional regulators were differentially regulated by exogenous ethanol in Synechocystis. In this study, by constructing knockout mutants of 34 Synechocystis putative transcriptional regulator-encoding genes and analyzing their phenotypes under ethanol stress, we found that three mutants of regulatory gene sll1392, sll1712 and slr1860 grew poorly in the BG11 medium supplemented with ethanol when compared with the wild type in the same medium, suggesting that the genes may be involved in the regulation of ethanol tolerance. To decipher the regulatory mechanism, targeted LC-MS and untargeted GC-MS approaches were employed to determine metabolic profiles of the three mutants and the wild type under both normal and ethanol stress conditions. The results were then subjected to PCA and WGCNA analyses to determine the responsive metabolites and metabolic modules related to ethanol tolerance. Interestingly, the results showed that there was a significant overlapping of the responsive metabolites and metabolic modules between three regulatory proteins, suggesting that a possible crosstalk between various regulatory proteins may be involved in combating against ethanol toxicity in Synechocystis. The study provided new insights into ethanol-tolerance regulation and knowledge important to rational tolerance engineering in Synechocystis.
Collapse
Affiliation(s)
- Ye Zhu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Integrated proteomic and metabolomic characterization of a novel two-component response regulator Slr1909 involved in acid tolerance in Synechocystis sp. PCC 6803. J Proteomics 2014; 109:76-89. [DOI: 10.1016/j.jprot.2014.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/13/2014] [Accepted: 06/22/2014] [Indexed: 11/17/2022]
|
35
|
Tillich UM, Wolter N, Franke P, Dühring U, Frohme M. Screening and genetic characterization of thermo-tolerant Synechocystis sp. PCC6803 strains created by adaptive evolution. BMC Biotechnol 2014; 14:66. [PMID: 25029912 PMCID: PMC4110520 DOI: 10.1186/1472-6750-14-66] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/10/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Temperature tolerance is an important aspect for commercial scale outdoor cultivation of microalgae and cyanobacteria. While various genes are known to be related to Synechocystis sp. PCC6803's heat shock response, there is very limited published data concerning the specific genes involved in long term thermal tolerance. We have previously used random mutagenesis and adaptive evolution to generate a mixture of strains of Synechocystis sp. PCC6803 with significantly increased thermal tolerance. The genetic modifications leading to the phenotypes of the newly generated strains are the focus of this work. RESULTS We used a custom screening platform, based on 96-deepwell microplate culturing in an in house designed cultivation chamber integrated in a liquid handling robot for screening and selection; in addition we also used a more conventional system. The increased thermal tolerances of the isolated monoclonal strains were validated in larger bioreactors and their whole genomes sequenced. Comparison of the sequence information to the parental wild type identified various mutations responsible for the enhanced phenotypes. Among the affected genes identified are clpC, pnp, pyk2, sigF, nlpD, pyrR, pilJ and cya1. CONCLUSIONS The applied methods (random mutagenesis, in vivo selection, screening, validation, whole genome sequencing) were successfully applied to identify various mutations, some of which are very unlikely to have been identified by other approaches. Several of the identified mutations are found in various strains and (due to their distribution) are likely to have occurred independently. This, coupled with the relatively low number of affected genes underscores the significance of these specific mutations to convey thermal tolerance in Synechocystis.
Collapse
Affiliation(s)
- Ulrich M Tillich
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Bahnhofstraße 1, 16-2001, D-15745 Wildau, Germany
- Institute of Biology, Humboldt-University Berlin, Berlin, Germany
| | - Nick Wolter
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Bahnhofstraße 1, 16-2001, D-15745 Wildau, Germany
| | - Philipp Franke
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Bahnhofstraße 1, 16-2001, D-15745 Wildau, Germany
| | - Ulf Dühring
- Algenol Biofuels Germany GmbH, Berlin, Germany
| | - Marcus Frohme
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Bahnhofstraße 1, 16-2001, D-15745 Wildau, Germany
| |
Collapse
|
36
|
Li Y, Rao N, Yang F, Zhang Y, Yang Y, Liu HM, Guo F, Huang J. Biocomputional construction of a gene network under acid stress in Synechocystis sp. PCC 6803. Res Microbiol 2014; 165:420-8. [PMID: 24787285 DOI: 10.1016/j.resmic.2014.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/14/2014] [Indexed: 11/25/2022]
Abstract
Acid stress is one of the most serious threats that cyanobacteria have to face, and it has an impact at all levels from genome to phenotype. However, very little is known about the detailed response mechanism to acid stress in this species. We present here a general analysis of the gene regulatory network of Synechocystis sp. PCC 6803 in response to acid stress using comparative genome analysis and biocomputational prediction. In this study, we collected 85 genes and used them as an initial template to predict new genes through co-regulation, protein-protein interactions and the phylogenetic profile, and 179 new genes were obtained to form a complete template. In addition, we found that 11 enriched pathways such as glycolysis are closely related to the acid stress response. Finally, we constructed a regulatory network for the intricate relationship of these genes and summarize the key steps in response to acid stress. This is the first time a bioinformatic approach has been taken systematically to gene interactions in cyanobacteria and the elaboration of their cell metabolism and regulatory pathways under acid stress, which is more efficient than a traditional experimental study. The results also provide theoretical support for similar research into environmental stresses in cyanobacteria and possible industrial applications.
Collapse
Affiliation(s)
- Yi Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Nini Rao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Feng Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Han-ming Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengbiao Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
37
|
Rakleova G, Pouneva I, Dobrev N, Tchorbadjieva M. Differentially Secreted Proteins of Antarctic and Mesophilic Strains ofSynechocystis SalinaandChlorella Vulgarisafter UV-B and Temperature Stress Treatment. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2013.0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Zhang H, Jiang X, Xiao W, Lu L. Proteomic strategy for the analysis of the polychlorobiphenyl-degrading cyanobacterium Anabaena PD-1 exposed to Aroclor 1254. PLoS One 2014; 9:e91162. [PMID: 24618583 PMCID: PMC3949748 DOI: 10.1371/journal.pone.0091162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022] Open
Abstract
The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB)-contaminated paddy soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25 upregulated proteins were identified using 2D electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). These proteins were involved in (i) PCB degradation (i.e., 3-chlorobenzoate-3,4-dioxygenase); (ii) transport processes [e.g., ATP-binding cassette (ABC) transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein, putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and xylose ABC transporter substrate-binding protein]; (iii) energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline quinone (PQQ)-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase β subunit, FOF1 ATP synthase subunit beta, ATP synthase α subunit, and IMP cyclohydrolase); (iv) electron transport (cytochrome b6f complex Fe-S protein); (v) general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation factor thermostable); (vi) carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta); and (vii) nitrogen reductase (nitrous oxide reductase). The results of real-time polymerase chain reaction showed that the genes encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the complexity of PCB catabolism by Anabaena PD-1.
Collapse
Affiliation(s)
- Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaojun Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenfeng Xiao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liping Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Kim HW, Vannela R, Rittmann BE. Responses of Synechocystis sp. PCC 6803 to total dissolved solids in long-term continuous operation of a photobioreactor. BIORESOURCE TECHNOLOGY 2013. [PMID: 23201518 DOI: 10.1016/j.biortech.2012.10.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study evaluated how Synechocystis sp. PCC 6803 responds to high total dissolved solids (TDS) associated with eliminating nutrient limitation during long-term operation of a photobioreactor. The unique feature is that the TDS were not dominated by Na(+) and Cl(-), as in seawater, but by HCO(3)(-) and NO(3)(-) from nutrient delivery. The TDS-stress threshold was about 10 g/L. Whereas inorganic N and P limitations slowed the rate of inorganic C (C(i)) uptake in the light, TDS stress was manifested most strongly as a substantial increase of endogenous respiration rate at night. Relief from TDS stress was incomplete when lowered pH led to a HCO(3)(-) increase (560 mgC/L as a threshold). Impaired photosynthesis led to a cascade of reduced C(i)-uptake, pH decrease, HCO(3)(-) accumulation, and HCO(3)(-)-associated stress. Thus, long-term photobioreactor operation requires balancing the delivery rates of CO(2), N, P, and other TDS components to avoid general and C(i)-associated TDS stresses.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, PO Box 875701, Tempe, AZ 85287-5701, USA
| | | | | |
Collapse
|
40
|
Tonietto A, Petriz BA, Araújo WC, Mehta A, Magalhães BS, Franco OL. Comparative proteomics between natural Microcystis isolates with a focus on microcystin synthesis. Proteome Sci 2012; 10:38. [PMID: 22676507 PMCID: PMC3522533 DOI: 10.1186/1477-5956-10-38] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/09/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Microcystis aeruginosa is a species of cyanobacteria commonly found in a number of countries and frequently related to animal poisoning episodes due to its capacity to produce the cyanotoxin known as microcystin. Despite vast literature on microcystin structures and their deleterious effects, little is known about its synthesis by cyanobacteria. Therefore, this study used proteomic tools to compare two M. aeruginosa strains, contrasting them for microcystin production. RESULTS 2-DE gels were performed and 30 differential protein spots were chosen. Among them, 11 protein spots were unique in the toxin producing strain and 8 in the non-toxin producing strain, and 14 protein spots were shown on both 2-DE gels but expressed differently in intensity. Around 57% of the tandem mass spectrometry identified proteins were related to energy metabolism, with these proteins being up-regulated in the toxin producing strain. CONCLUSIONS These data suggest that the presence of higher quantities of metabolic enzymes could be related to microcystin metabolism in comparison to the non-toxin producing strain. Moreover, it was suggested that the production of microcystin could also be related to other proteins than those directly involved in its production, such as the enzymes involved in the Calvin cycle and glycolysis.
Collapse
Affiliation(s)
- Angela Tonietto
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Pós Graduação em Ciências Genômicas e Biotecnologia, SGAN 916 Norte Av, W5, Brasília, DF, Brazil.
| | | | | | | | | | | |
Collapse
|
41
|
Lopo M, Montagud A, Navarro E, Cunha I, Zille A, de Córdoba PF, Moradas-Ferreira P, Tamagnini P, Urchueguía JF. Experimental and modeling analysis of Synechocystis sp. PCC 6803 growth. J Mol Microbiol Biotechnol 2012; 22:71-82. [PMID: 22508451 DOI: 10.1159/000336850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The influence of different parameters such as temperature, irradiance, nitrate concentration, pH, and an external carbon source on Synechocystis PCC 6803 growth was evaluated. METHODS 4.5-ml cuvettes containing 2 ml of culture, a high-throughput system equivalent to batch cultures, were used with gas exchange ensured by the use of a Parafilm™ cover. The effect of the different variables on maximum growth was assessed by a multi-way statistical analysis. RESULTS Temperature and pH were identified as the key factors. It was observed that Synechocystis cells have a strong influence on the external pH. The optimal growth temperature was 33°C while light-saturating conditions were reached at 40 µE·m⁻²·s⁻¹. CONCLUSION It was demonstrated that Synechocystis exhibits a marked difference in behavior between autotrophic and glucose-based mixotrophic conditions, and that nitrate concentrations did not have a significant influence, probably due to endogenous nitrogen reserves. Furthermore, a dynamic metabolic model of Synechocystis photosynthesis was developed to gain insights on the underlying mechanism enabling this cyanobacterium to control the levels of external pH. The model showed a coupled effect between the increase of the pH and ATP production which in turn allows a higher carbon fixation rate.
Collapse
Affiliation(s)
- Miguel Lopo
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Recombinant Deg/HtrA proteases from Synechocystis sp. PCC 6803 differ in substrate specificity, biochemical characteristics and mechanism. Biochem J 2011; 435:733-42. [PMID: 21332448 PMCID: PMC3195437 DOI: 10.1042/bj20102131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cyanobacteria require efficient protein-quality-control mechanisms to survive under dynamic, often stressful, environmental conditions. It was reported that three serine proteases, HtrA (high temperature requirement A), HhoA (HtrA homologue A) and HhoB (HtrA homologue B), are important for survival of Synechocystis sp. PCC 6803 under high light and temperature stresses and might have redundant physiological functions. In the present paper, we show that all three proteases can degrade unfolded model substrates, but differ with respect to cleavage sites, temperature and pH optima. For recombinant HhoA, and to a lesser extent for HtrA, we observed an interesting shift in the pH optimum from slightly acidic to alkaline in the presence of Mg2+ and Ca2+ ions. All three proteases formed different homo-oligomeric complexes with and without substrate, implying mechanistic differences in comparison with each other and with the well-studied Escherichia coli orthologues DegP (degradation of periplasmic proteins P) and DegS. Deletion of the PDZ domain decreased, but did not abolish, the proteolytic activity of all three proteases, and prevented substrate-induced formation of complexes higher than trimers by HtrA and HhoA. In summary, biochemical characterization of HtrA, HhoA and HhoB lays the foundation for a better understanding of their overlapping, but not completely redundant, stress-resistance functions in Synechocystis sp. PCC 6803.
Collapse
|
43
|
Kim HW, Marcus AK, Shin JH, Rittmann BE. Advanced control for photoautotrophic growth and CO2-utilization efficiency using a membrane carbonation photobioreactor (MCPBR). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:5032-5038. [PMID: 21557590 DOI: 10.1021/es104235v] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A membrane carbonation (MC) module uses bubbleless gas-transfer membranes to supply inorganic carbon (C(i)) for photoautotrophic cyanobacterial growth in a photobioreactor (PBR); this creates the novel MCPBR system, which allows precise control of the CO(2)-delivery rate and minimal loss of CO(2) to the atmosphere. Experiments controlled the supply rate of C(i) to the main PBR by regulating the recirculation rate (Q(R)) between the module of MC chamber and the main PBR. The experiments evaluated how Q(R) controls the CO(2) mass transport in MC chamber and how it connects with the biomass production rate, C(i) concentration, pH in the PBR, and CO(2)-utilization efficiency. The biomass production rate and C(i) concentration increased in response to the C(i) supply rate (controlled by Q(R)), but not in linear proportion. The biomass production rate increased less than C(i) due to increased light limitation. Except for the highest Q(R), when the higher C(i) concentration caused the pH to decrease, CO(2) loss to gas ventilation was negligible. The results demonstrate that this MCPBR offers independent control over the growth of photoautotrophic biomass, pH control, and minimal loss of CO(2) to the atmosphere.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287-5701, USA
| | | | | | | |
Collapse
|
44
|
Wegener KM, Singh AK, Jacobs JM, Elvitigala T, Welsh EA, Keren N, Gritsenko MA, Ghosh BK, Camp DG, Smith RD, Pakrasi HB. Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations. Mol Cell Proteomics 2010; 9:2678-89. [PMID: 20858728 DOI: 10.1074/mcp.m110.000109] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in nature, cyanobacteria utilize a host of stress responses to accommodate periodic changes in environmental conditions. A detailed knowledge of the composition of, as well as the dynamic changes in, the proteome is necessary to gain fundamental insights into such stress responses. Toward this goal, we have performed a large-scale proteomic analysis of the widely studied model cyanobacterium Synechocystis sp. PCC 6803 under 33 different environmental conditions. The resulting high-quality dataset consists of 22,318 unique peptides corresponding to 1955 proteins, a coverage of 53% of the predicted proteome. Quantitative determination of protein abundances has led to the identification of 1198 differentially regulated proteins. Notably, our analysis revealed that a common stress response under various environmental perturbations, irrespective of amplitude and duration, is the activation of atypical pathways for the acquisition of carbon and nitrogen from urea and arginine. In particular, arginine is catabolized via putrescine to produce succinate and glutamate, sources of carbon and nitrogen, respectively. This study provides the most comprehensive functional and quantitative analysis of the Synechocystis proteome to date, and shows that a significant stress response of cyanobacteria involves an uncommon mode of acquisition of carbon and nitrogen.
Collapse
|
45
|
Mäkelä MR, Hildén K, Lundell TK. Oxalate decarboxylase: biotechnological update and prevalence of the enzyme in filamentous fungi. Appl Microbiol Biotechnol 2010; 87:801-14. [PMID: 20464388 DOI: 10.1007/s00253-010-2650-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/26/2010] [Accepted: 04/26/2010] [Indexed: 12/17/2022]
Abstract
Oxalate decarboxylase (ODC) is a manganese-containing, multimeric enzyme of the cupin protein superfamily. ODC is one of the three enzymes identified to decompose oxalic acid and oxalate, and within ODC catalysis, oxalate is split into formate and CO(2). This primarily intracellular enzyme is found in fungi and bacteria, and currently the best characterized enzyme is the Bacillus subtilis OxdC. Although the physiological role of ODC is yet unidentified, the feasibility of this enzyme in diverse biotechnological applications has been recognized for a long time. ODC could be exploited, e.g., in diagnostics, therapeutics, process industry, and agriculture. So far, the sources of ODC enzyme have been limited including only a few fungal and bacterial species. Thus, there is potential for identification and cloning of new ODC variants with diverse biochemical properties allowing e.g. more enzyme fitness to process applications. This review gives an insight to current knowledge on the biochemical characteristics of ODC, and the relevance of oxalate-converting enzymes in biotechnological applications. Particular emphasis is given to fungal enzymes and the inter-connection of ODC to fungal metabolism of oxalic acid.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology, Viikki Biocenter 1, P.O.B. 56, 00014, Helsinki, Finland.
| | | | | |
Collapse
|
46
|
Leão PN, Vasconcelos MTSD, Vasconcelos VM. Allelopathy in freshwater cyanobacteria. Crit Rev Microbiol 2010; 35:271-82. [PMID: 19863381 DOI: 10.3109/10408410902823705] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Freshwater cyanobacteria produce several bioactive secondary metabolites with diverse chemical structure, which may achieve high concentrations in the aquatic medium when cyanobacterial blooms occur. Some of the compounds released by cyanobacteria have allelopathic properties, influencing the biological processes of other phytoplankton or aquatic plants. These kinds of interactions are more easily detectable under laboratory studies; however their ecological relevance is often debated. Recent research has discovered new allelopathic properties in some cyanobacteria species, new allelochemicals and elucidated some of the allelopathic mechanisms. Ecosystem-level approaches have shed some light on the factors that influence allelopathic interactions, as well as how cyanobacteria may be able to modulate their surrounding environment by means of allelochemical release. Nevertheless, the role of allelopathy in cyanobacteria ecology is still not well understood, and its clarification should benefit from carefully designed field studies, chemical characterization of allelochemicals and new methodological approaches at the "omics" level.
Collapse
Affiliation(s)
- Pedro N Leão
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Porto, Portugal.
| | | | | |
Collapse
|
47
|
Zhang LF, Yang HM, Cui SX, Hu J, Wang J, Kuang TY, Norling B, Huang F. Proteomic analysis of plasma membranes of cyanobacterium Synechocystis sp. Strain PCC 6803 in response to high pH stress. J Proteome Res 2009; 8:2892-902. [PMID: 19351138 DOI: 10.1021/pr900024w] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are unique prokaryotes possessing plasma-, outer- and thylakoid membranes. The plasma membrane of a cyanobacterial cell serves as a crucial barrier against its environment and is essential for biogenesis of cyanobacterial photosystems. Previously, we have identified 79 different proteins in the plasma membrane of Synechocystis sp. Strain PCC 6803 based on 2D- and 1D- gels and MALDI-TOF MS. In this work, we have performed a proteomic study screening for high-pH-stress proteins in Synechocystis. 2-D gel profiles of plasma membranes isolated from both control and high pH-treated cells were constructed and compared quantitatively based on different protein staining methods including DIGE analysis. A total of 55 differentially expressed protein spots were identified using MALDI-TOF MS and MALDI-TOF/TOF MS, corresponding to 39 gene products. Twenty-five proteins were enhanced/induced and 14 reduced by high pH. One-third of the enhanced/induced proteins were transport and binding proteins of ABC transporters including 3 phosphate transport proteins. Other proteins include MinD involved in cell division, Cya2 in signaling and proteins involved in photosynthesis and respiration. Furthermore, among these proteins regulated by high pH, eight were found to be hypothetical proteins. Functional significance of the high-pH-stress proteins is discussed integrating current knowledge on cyanobacterial cell physiology.
Collapse
Affiliation(s)
- Li-Fang Zhang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang Y, Xu W, Chitnis PR. Identification and bioinformatic analysis of the membrane proteins of synechocystis sp. PCC 6803. Proteome Sci 2009; 7:11. [PMID: 19320970 PMCID: PMC2666656 DOI: 10.1186/1477-5956-7-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 03/25/2009] [Indexed: 01/13/2023] Open
Abstract
Background The membranes of Synechocystis sp. PCC 6803 play a central role in photosynthesis, respiration and other important metabolic pathways. Comprehensive identification of the membrane proteins is of importance for a better understanding of the diverse functions of its unique membrane structures. Up to date, approximately 900 known or predicted membrane proteins, consisting 24.5% of Synechocystis sp. PCC 6803 proteome, have been indentified by large-scale proteomic studies. Results To resolve more membrane proteins on 2-D gels for mass spectrometry identification, we separated integral proteins from membrane associated proteins and collected them as the integral and peripheral fractions, respectively. In total, 95 proteins in the peripheral fraction and 29 proteins in the integral fraction were identified, including the 5 unique proteins that were not identified by any previous studies. Bioinformatic analysis revealed that the identified proteins can be functionally classified into 14 distinct groups according to the cellular functions annotated by Cyanobase, including the two largest groups hypothetical and unknown, and photosynthesis and respiration. Homology analysis indicates that the identified membrane proteins are more conserved than the rest of the proteome. Conclusion The proteins identified in this study combined with other published proteomic data provide the most comprehensive Synechocystis proteome catalog, which will serve as a useful reference for further detailed studies to address protein functions through both traditional gene-by-gene and systems biology approaches.
Collapse
Affiliation(s)
- Yingchun Wang
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, 50011, USA.
| | | | | |
Collapse
|
49
|
Lacerda CMR, Reardon KF. Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:75-87. [PMID: 19279070 DOI: 10.1093/bfgp/elp005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this review, we present the use of proteomics to advance knowledge in the field of environmental biotechnology, including studies of bacterial physiology, metabolism and ecology. Bacteria are widely applied in environmental biotechnology for their ability to catalyze dehalogenation, methanogenesis, denitrification and sulfate reduction, among others. Their tolerance to radiation and toxic compounds is also of importance. Proteomics has an important role in helping uncover the pathways behind these cellular processes. Environmental samples are often highly complex, which makes proteome studies in this field especially challenging. Some of these challenges are the lack of genome sequences for the vast majority of environmental bacteria, difficulties in isolating bacteria and proteins from certain environments, and the presence of complex microbial communities. Despite these challenges, proteomics offers a unique dynamic view into cellular function. We present examples of environmental proteomics of model organisms, and then discuss metaproteomics (microbial community proteomics), which has the potential to provide insights into the function of a community without isolating organisms. Finally, the environmental proteomics literature is summarized as it pertains to the specific application areas of wastewater treatment, metabolic engineering, microbial ecology and environmental stress responses.
Collapse
Affiliation(s)
- Carla M R Lacerda
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523-1370, USA
| | | |
Collapse
|
50
|
Gao Y, Xiong W, Li XB, Gao CF, Zhang YL, Li H, Wu QY. Identification of the proteomic changes in Synechocystis sp. PCC 6803 following prolonged UV-B irradiation. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1141-1154. [PMID: 19261921 DOI: 10.1093/jxb/ern356] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The diversified physiological responses in cyanobacteria under ultraviolet-B (UV-B) radiation have been broadly researched. The changes in the metabolic control mechanisms hidden behind these physiological traits still need to be further investigated. This research attempts to identify some of the internal mechanisms of several stressful phenotypes such as a decreased growth rate, an impaired photosystem, and the degradation of photosynthetic pigments. Different expression levels of proteins in the cytoplasm of Synechocystis sp. PCC 6803 under short-term and long-term UV-B stress were investigated by using a comparative proteomic approach. One hundred and twelve differentially expressed protein spots were identified by mass spectrometry to match 75 diverse protein species. They mainly focus on amino acid biosynthesis, photosynthesis and respiration, energy metabolism, protein biosynthesis, cell defence, and other functional groups. By focusing on these areas, the study reveals the correlation between UV-B stress-responsive proteins and the physiological changes listed above. The research, showing that short-term response-proteins are quite different from long-term response-proteins, helps to identify the change in homeostatic mechanisms in Synechocystis sp. PCC 6803. Related putative functions of these proteins and the physiological responses of cyanobacteria under UV-B stress, a UV-B responsive protein network in Synechocystis sp. PCC 6803 under long-term stress was successfully produced. Such a protein network helps to increase our understanding of the comprehensive functional network cyanobacteria use to adapt to UV-B stress. In addition, 30 novel proteins not previously found related to UV-B stress were identified. This opens up new areas for exploration to identify the response to UV-B stress in cyanobacteria.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | | | | | |
Collapse
|