1
|
Henke AN, Chilukuri S, Langan LM, Brooks BW. Reporting and reproducibility: Proteomics of fish models in environmental toxicology and ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168455. [PMID: 37979845 DOI: 10.1016/j.scitotenv.2023.168455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Environmental toxicology and ecotoxicology research efforts are employing proteomics with fish models as New Approach Methodologies, along with in silico, in vitro and other omics techniques to elucidate hazards of toxicants and toxins. We performed a critical review of toxicology studies with fish models using proteomics and reported fundamental parameters across experimental design, sample preparation, mass spectrometry, and bioinformatics of fish, which represent alternative vertebrate models in environmental toxicology, and routinely studied animals in ecotoxicology. We observed inconsistencies in reporting and methodologies among experimental designs, sample preparations, data acquisitions and bioinformatics, which can affect reproducibility of experimental results. We identified a distinct need to develop reporting guidelines for proteomics use in environmental toxicology and ecotoxicology, increased QA/QC throughout studies, and method optimization with an emphasis on reducing inconsistencies among studies. Several recommendations are offered as logical steps to advance development and application of this emerging research area to understand chemical hazards to public health and the environment.
Collapse
Affiliation(s)
- Abigail N Henke
- Department of Biology, Baylor University Waco, TX, USA; Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University Waco, TX, USA
| | | | - Laura M Langan
- Department of Environmental Science, Baylor University Waco, TX, USA; Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University Waco, TX, USA.
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University Waco, TX, USA; Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University Waco, TX, USA.
| |
Collapse
|
2
|
Stephani L, Rahayu P, Retnoningrum D, Suhartono MT, Rachmawati H, Tjandrawinata RR. Purification and proteomic analysis of potent fibrinolytic enzymes extracted from Lumbricus rubellus. Proteome Sci 2023; 21:8. [PMID: 37158880 PMCID: PMC10165752 DOI: 10.1186/s12953-023-00206-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/16/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Lumbrokinase derived from earthworms, Lumbricus rubellus is known to have fibrinolytic enzymes that have potential as therapeutic drugs due to its ability to dissolve fibrin. The current study is aimed to purify the Lumbrokinase from L. rubellus and identify its protein component. METHODS Water extract of local earthworm Lumbricus rubellus revealed several proteins. Therefore, to identify its protein component, purification through HiPrep DEAE fast flow and proteomic analysis were conducted prior to identifications. A combination of two-dimension gel electrophoresis (2DE) and electrospray ionization mass spectrometry analysis was used to identify the purified fractions. RESULTS The purified fractions contain five protein bands, namely F25-1, F25-2, F85-1, F85-2, and F85-3, which displayed strong fibrinogenolytic activity. F25 fractions showed fibrinogenolytic activity of 974.85 U/mg, while F85 fractions showed higher activity of 1,484.11 U/mg. Fractions F85-1, F85-2, and F85-3 showed molecular weights of 42.6 kDa, 27.03 kDa, and 14 kDa, respectively and were identified as Lumbrokinase iso-enzymes. CONCLUSION This preliminary study indicates that the F25 and F85 fractions are similar to published fibrinolytic protease-1 and lumbrokinase, respectively, in terms of their amino acid sequence.
Collapse
Affiliation(s)
- Laurentia Stephani
- Biopharmaceutical Technology Division, Research Innovation and Invention, Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Kawasan Industri Jababeka II, Industri Selatan V Block PP No. 7, Cikarang, 17550, Indonesia
| | - Puji Rahayu
- Biopharmaceutical Technology Division, Research Innovation and Invention, Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Kawasan Industri Jababeka II, Industri Selatan V Block PP No. 7, Cikarang, 17550, Indonesia
| | - Debbie Retnoningrum
- Research Group of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Maggy Thenawidjaja Suhartono
- Department of Food Science and Technology, Bogor Agricultural University, Fateta Building, Kampus IPB Darmaga, Bogor, Indonesia
| | - Heni Rachmawati
- Research Group of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Raymond R Tjandrawinata
- Biopharmaceutical Technology Division, Research Innovation and Invention, Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Kawasan Industri Jababeka II, Industri Selatan V Block PP No. 7, Cikarang, 17550, Indonesia.
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk-Lapan No. 10, Tangerang, 15345, Indonesia.
| |
Collapse
|
3
|
Li Z, Shen H, Liu Y, Zhou X, Yan M, He H, Zhao T, Zhang H, Li P. Subproteomic profiling from renal cortices in OLETF rats reveals mutations of multiple novel genes in diabetic nephropathy. Genes Genomics 2021; 44:109-122. [PMID: 34643893 DOI: 10.1007/s13258-021-01174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a serious threat to human health, but its pathogenesis is not fully understood. Otsuka Long-Evans Tokushima Fatty (OLETF) rats are very similar to human DN in many aspects such as pathological changes and processes, and are deemed to be an ideal rodent model. OBJECTIVE This study was aimed to explore the pathogenesis of DN by analyzing the protein expression profile from renal cortices in OLETF rats. METHODS Thirty-six-week-old diabetic OLETF rats and normal control Long-Evans Tokushima Otsuka (LETO) rats were nephrectomized, and the renal cortices were isolated. The proteins were separated by soluble and insoluble high-resolution subproteomics methods for the analysis and identification of differential proteins. RESULTS Thirty-six differentially expressed proteins were found. Among them, 11 proteins had different isoelectric points and molecular weights between OLETF and LETO rats. Further sequencing identified point mutations in genes encoding eight of these proteins, which are involved in many biological processes closely related to DN, including oxidative stress and inflammation. Five of these eight proteins have not been reported in DN. CONCLUSION This study reveals mutations of multiple novel genes in diabetic OLETF rats, providing some new potential targets for the pathogenesis of DN and helping to better understand the pathogenesis of DN.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for chronic disease, North China University of Science and Technology, Tangshan, 063000, China
| | - Hong Shen
- Department of Modern Technology and Education, North China University of Science and Technology, Tangshan, 063000, China
| | - Yeqiang Liu
- Department of Endocrinology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Xuefeng Zhou
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Meihua Yan
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Hailan He
- School of Graduate Studies, North China University of Science and Technology, Tangshan, 063000, China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
4
|
Chase Huizar C, Raphael I, Forsthuber TG. Genomic, proteomic, and systems biology approaches in biomarker discovery for multiple sclerosis. Cell Immunol 2020; 358:104219. [PMID: 33039896 PMCID: PMC7927152 DOI: 10.1016/j.cellimm.2020.104219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disorder characterized by autoimmune-mediated inflammatory lesions in CNS leading to myelin damage and axonal loss. MS is a heterogenous disease with variable and unpredictable disease course. Due to its complex nature, MS is difficult to diagnose and responses to specific treatments may vary between individuals. Therefore, there is an indisputable need for biomarkers for early diagnosis, prediction of disease exacerbations, monitoring the progression of disease, and for measuring responses to therapy. Genomic and proteomic studies have sought to understand the molecular basis of MS and find biomarker candidates. Advances in next-generation sequencing and mass-spectrometry techniques have yielded an unprecedented amount of genomic and proteomic data; yet, translation of the results into the clinic has been underwhelming. This has prompted the development of novel data science techniques for exploring these large datasets to identify biologically relevant relationships and ultimately point towards useful biomarkers. Herein we discuss optimization of omics study designs, advances in the generation of omics data, and systems biology approaches aimed at improving biomarker discovery and translation to the clinic for MS.
Collapse
Affiliation(s)
- Carol Chase Huizar
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, UPMC Children's Hospital, Pittsburgh, PA, USA.
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
5
|
Immunoreactive Proteins in the Esophageal Gland Cells of Anisakis Simplex Sensu Stricto Detected by MALDI-TOF/TOF Analysis. Genes (Basel) 2020; 11:genes11060683. [PMID: 32580523 PMCID: PMC7349779 DOI: 10.3390/genes11060683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/15/2023] Open
Abstract
In plant and animal nematode parasites, proteins derived from esophageal gland cells have been shown to be important in the host-nematodes relationship but little is known about the allergenic potential of these proteins in the genus Anisakis. Taking into account the increase of anisakiasis and allergies related to these nematodes, immunoreactive properties of gland cell proteins were investigated. Two hundred ventricles were manually dissected from L3 stage larvae of Aniskakis simplex s.s. to allow direct protein analysis. Denaturing gel electrophoresis followed by monochromatic silver staining which revealed the presence of differential (enriched) proteins when compared to total nematode extracts. Such comparison was performed by means of 1D and 2D electrophoresis. Pooled antisera from Anisakis spp.-allergic patients were used in western blots revealing the presence of 13 immunoreactive bands in the ventricular extracts in 1D, with 82 spots revealed in 2D. The corresponding protein bands and spots were excised from the silver-stained gel and protein assignation was made by MALDI-TOF/TOF. A total of 13 (including proteoforms) were unambiguously identified. The majority of these proteins are known to be secreted by nematodes into the external environment, of which three are described as being major allergens in other organisms with different phylogenetic origin and one is an Anisakis simplex allergen.
Collapse
|
6
|
Li Z, Liu Y, Zhang H, Pu Z, Wu X, Li P. Effect of fosinopril on the renal cortex protein expression profile of Otsuka Long-Evans Tokushima Fatty rats. Exp Ther Med 2019; 19:172-182. [PMID: 31853288 PMCID: PMC6909786 DOI: 10.3892/etm.2019.8188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Angiotensin-converting enzyme inhibitors (ACEIs) can reduce urinary protein excretion and postpone the deterioration of renal function. However, the mechanisms of renal protection are not yet fully understood. To investigate the mechanisms of ACEIs in the treatment of diabetic nephropathy (DN), the present study determined the effects of the ACEI fosinopril (FP) on the profiling of renal cortex protein expression in Otsuka Long-Evans Tokushima Fatty (OLETF) rats using Long-Evans Tokushima Otsuka (LETO) rats as controls. Urinary protein levels at 24 h were examined using the Broadford method. PAS staining was performed to observe renal histopathological changes. The kidney cortices of OLETF, FP-treated OLETF and LETO rats were examined using soluble and insoluble high-resolution subproteomic analysis methodology at age of 36 and 56 weeks. Differentiated proteins were further confirmed using western blotting analysis. The results demonstrated that FP significantly decreased the glomerulosclerosis index and reduced the 24 h urinary protein excretion of OLETF rats. Additionally, 17 proteins significantly changed following FP-treatment. Amongst these proteins, the abundances of the stress-response protein heat shock protein family A member 9 and the antioxidant glutathione peroxidase 3 were particularly increased. These results indicated that FP ameliorated diabetic renal injuries by inhibiting oxidative stress. In conclusion, the differentially expressed proteins may improve our understanding of the mechanism of ACEIs in the OLETF rats.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yeqiang Liu
- Department of Endocrinology, Kailuan General Hospital, Tangshan, Hebei 063000, P.R. China
| | - Haojun Zhang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Zhijie Pu
- Graduate School, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Xuejing Wu
- Graduate School, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
7
|
Wang J, Jia X, Meng X, Li Y, Wu W, Zhang X, Xu H, Cui J. Annexin A3 may play an important role in ochratoxin-induced malignant transformation of human gastric epithelium cells. Toxicol Lett 2019; 313:150-158. [PMID: 31276768 DOI: 10.1016/j.toxlet.2019.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Ochratoxin A (OTA), one of the most abundant food-contaminating mycotoxins, is a possible carcinogen to humans. We previously demonstrated that long-term (40 weeks) OTA exposure induces the malignant transformation of human gastric epithelium cells (GES-1) in vitro. However, the specific mechanism underlying OTA-induced gastric carcinogenesis is complex. In the present study, we used 2-DE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF MS) combined with bioinformatics and immunoblotting to investigate the differentially expressed proteins between GES-1 and OTA-malignant transformed GES-1 cells (OTA-GES-1T cells) in vitro. We found that four differentially expressed proteins were identified after malignant transformation, including actin, cytoplasmic 1 (ACTB), F-actin-capping protein subunit alpha-1 (CAPZA1), Annexin A3 (ANXA3), thioredoxin peroxidase B from red blood cells (TPx-B) and Fibrinogen beta B (Fibrinogen β). Among the differentially expressed proteins, the effect of Annexin A3 was analyzed by MTT assay, western blot, cell cycle analysis, wound healing assay, Transwell assay, and colony formation assay in OTA-GES-1T cells. The results showed that inhibition of Annexin A3 by siRNA effectively prevented the proliferation, migration, and invasion abilities of OTA-GES-1T cells. Collectively, the results of this study will guide future research on OTA carcinogenicity.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xin Jia
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xinxing Meng
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Yuehong Li
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Wenxin Wu
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Hong Xu
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
8
|
Acetylated α-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica. Sci Rep 2016; 6:32257. [PMID: 27577858 PMCID: PMC5006047 DOI: 10.1038/srep32257] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022] Open
Abstract
Silicosis is the most serious occupational disease in China. The objective of this study was to screen various proteins related to mechanisms of the pathogenesis of silicosis underlying the anti-fibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) using proteomic profile analysis. We also aimed to explore a potential mechanism of acetylated α-tubulin (α-Ac-Tub) regulation by Ac-SDKP. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to assess the different protein expression profiles between control and silicosis rats treated with or without Ac-SDKP. Twenty-nine proteins were identified to be potentially involved in the progression of silicosis and the anti-fibrotic effect of Ac-SDKP. Our current study finds that 1) the lost expression of Ac-Tub-α may be a new mechanism in rat silicosis; 2) treatment of silicotic rats with N-acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits myofibroblast differentiation and collagen deposition accompanied by stabilizing the expression of α-Ac-Tub in vivo and in vitro, which is related with deacetylase family member 6 (HDAC6) and α-tubulin acetyl transferase (α-TAT1). Our data suggest that α-Ac-Tub regulation by Ac-SDKP may potentially be a new anti-fibrosis mechanism.
Collapse
|
9
|
Du L, Song J, Forney C, Palmer LC, Fillmore S, Zhang Z. Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments. HORTICULTURE RESEARCH 2016; 3:16012. [PMID: 27162640 PMCID: PMC4846988 DOI: 10.1038/hortres.2016.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 05/04/2023]
Abstract
Banana (Musa AAA group) is one of the most consumed fruits in the world due to its flavor and nutritional value. As a typical climacteric fruit, banana responds to ethylene treatment, which induces rapid changes of color, flavor (aroma and taste), sweetness and nutritional composition. It has also been reported that ripening bananas at temperatures above 24 °C inhibits chlorophyll breakdown and color formation but increases the rate of senescence. To gain fundamental knowledge about the effects of high temperature and ethylene on banana ripening, a quantitative proteomic study employing multiplex peptide stable isotope dimethyl labeling was conducted. In this study, green (immature) untreated banana fruit were subjected to treatment with 10 μL L(-1) of ethylene for 24 h. After ethylene treatment, treated and untreated fruit were stored at 20 or 30 °C for 24 h. Fruit peel tissues were then sampled after 0 and 1 day of storage, and peel color and chlorophyll fluorescence were evaluated. Quantitative proteomic analysis was conducted on the fruit peels after 1 day of storage. In total, 413 common proteins were identified and quantified from two biological replicates. Among these proteins, 91 changed significantly in response to ethylene and high-temperature treatments. Cluster analysis on these 91 proteins identified 7 groups of changed proteins. Ethylene treatment and storage at 20 °C induced 40 proteins that are correlated with pathogen resistance, cell wall metabolism, ethylene biosynthesis, allergens and ribosomal proteins, and it repressed 36 proteins that are associated with fatty acid and lipid metabolism, redox-oxidative responses, and protein biosynthesis and modification. Ethylene treatment and storage at 30 °C induced 32 proteins, which were mainly similar to those in group 1 but also included 8 proteins in group 3 (identified as chitinase, cinnamyl alcohol dehydrogenase 1, cysteine synthase, villin-2, leucine-transfer RNA ligase, CP47 protein and calmodulin) and repressed 43 proteins in 4 groups (groups 4-7), of which 6 were associated with photosynthesis II oxygen-evolving protein, the photosynthesis I reaction center, sugar metabolism, the redox-oxidative system and fatty acid metabolism. Differences in the response to ethylene and holding temperature at 30 °C were also revealed and have been discussed. The identities and quantities of the proteins found were linked with quality changes. This study demonstrates that ethylene and high temperature influence banana fruit ripening and senescence at the proteomic level and reveals the mechanisms by which high temperature accelerates banana fruit ripening.
Collapse
Affiliation(s)
- Lina Du
- College of Horticulture, South China Agricultural University, GuangZhou, China
| | - Jun Song
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main St., Kentville, Nova Scotia B4N 1J5, Canada
| | - Charles Forney
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main St., Kentville, Nova Scotia B4N 1J5, Canada
| | - Leslie Campbell Palmer
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main St., Kentville, Nova Scotia B4N 1J5, Canada
| | - Sherry Fillmore
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main St., Kentville, Nova Scotia B4N 1J5, Canada
| | - ZhaoQi Zhang
- College of Horticulture, South China Agricultural University, GuangZhou, China
| |
Collapse
|
10
|
Mischak H, Critselis E, Hanash S, Gallagher WM, Vlahou A, Ioannidis JPA. Epidemiologic design and analysis for proteomic studies: a primer on -omic technologies. Am J Epidemiol 2015; 181:635-47. [PMID: 25792606 DOI: 10.1093/aje/kwu462] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022] Open
Abstract
Proteome analysis is increasingly being used in investigations elucidating the molecular basis of disease, identifying diagnostic and prognostic markers, and ultimately improving patient care. We appraised the current status of proteomic investigations using human samples, including the state of the art in proteomic technologies, from sample preparation to data evaluation approaches, as well as key epidemiologic, statistical, and translational issues. We systematically reviewed the most highly cited clinical proteomic studies published between January 2009 and March 2014 that included a minimum of 100 samples, as well as strategies that have been successfully implemented to enhance the translational relevance of proteomic investigations. Limited comparability between studies and lack of specification of biomarker context of use are frequently observed. Nevertheless, there are initial examples of successful biomarker discovery in cross-sectional studies followed by validation in high-risk longitudinal cohorts. Translational potential is currently hindered, as limitations in proteomic investigations are not accounted for. Interdisciplinary communication between proteomics experts, basic researchers, epidemiologists, and clinicians, an orchestrated assimilation of required resources, and a more systematic translational outlook for accumulation of evidence may augment the public health impact of proteomic investigations.
Collapse
|
11
|
Biron DG, Bonhomme L, Coulon M, Øverli Ø. Microbiomes, plausible players or not in alteration of host behavior. Front Microbiol 2015; 5:775. [PMID: 25628614 PMCID: PMC4290534 DOI: 10.3389/fmicb.2014.00775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/17/2014] [Indexed: 12/26/2022] Open
Affiliation(s)
- David G Biron
- Laboratoire "Microorganismes: Génome et Environnement," Clermont Université, Université Blaise Pascal Clermont-Ferrand, France ; CNRS, UMR 6023, LMGE Aubière, France
| | - Ludovic Bonhomme
- INRA, UMR 1095, Genetics, Diversity, and Ecophysiology of Cereals Clermont-Ferrand, France ; Department of Biology, UMR Genetics, Diversity and Ecophysiology of Cereals, Université Blaise Pascal Aubière, France
| | - Marianne Coulon
- Laboratoire "Microorganismes: Génome et Environnement," Clermont Université, Université Blaise Pascal Clermont-Ferrand, France ; CNRS, UMR 6023, LMGE Aubière, France
| | - Øyvind Øverli
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences Aas, Norway
| |
Collapse
|
12
|
Analytical Characterization and Comparison of Tristyrylphenol Ethoxylates Used in Agrochemical Formulations. J SURFACTANTS DETERG 2014. [DOI: 10.1007/s11743-014-1654-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Arcos SC, Ciordia S, Roberston L, Zapico I, Jiménez-Ruiz Y, Gonzalez-Muñoz M, Moneo I, Carballeda-Sangiao N, Rodriguez-Mahillo A, Albar JP, Navas A. Proteomic profiling and characterization of differential allergens in the nematodes Anisakis simplex sensu stricto and A. pegreffii. Proteomics 2014; 14:1547-68. [PMID: 24723494 DOI: 10.1002/pmic.201300529] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/07/2014] [Accepted: 03/27/2014] [Indexed: 12/30/2022]
Abstract
The parasite species complex Anisakis simplex sensu lato (Anisakis simplex sensu stricto; (A. simplex s.s.), A. pegreffii, A. simplex C) is the main cause of severe anisakiasis (allergy) worldwide and is now an important health matter. In this study, the relationship of this Anisakis species complex and their allergenic capacities is assessed by studying the differences between the two most frequent species (A. simplex s.s., A. pegreffii) and their hybrid haplotype by studying active L3 larvae parasiting Merluccius merluccius. They were compared by 2D gel electrophoresis and parallel Western blot (2DE gels were hybridized with pools of sera from Anisakis allergenic patients). Unambiguous spot differences were detected and protein assignation was made by MALDI-TOF/TOF analysis or de novo sequencing. Seventy-five gel spots were detected and the corresponding proteins were identified. Differentially expressed proteins for A. simplex s.s., A. pegreffii, and their hybrid are described and results are statistically supported. Twenty-eight different allergenic proteins are classified according to different families belonging to different biological functions. These proteins are described for the first time as antigenic and potentially new allergens in Anisakis. Comparative proteomic analyses of allergenic capacities are useful for diagnosis, epidemiological surveys, and clinical research. All MS data have been deposited in the ProteomeXchange with identifier PXD000662 (http://proteomecentral.proteomexchange.org/dataset/PXD000662).
Collapse
Affiliation(s)
- Susana C Arcos
- Department of Biodiversity and Evolutionary Biology Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
de Roos B. Proteomic analysis of human plasma and blood cells in nutritional studies: development of biomarkers to aid disease prevention. Expert Rev Proteomics 2014; 5:819-26. [DOI: 10.1586/14789450.5.6.819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Abstract
Portraying high-throughput genomics research as a wild frontier, Andrea Bild and colleagues use caricatures to highlight common pitfalls in genomic research and provide recommendations for navigating this terrain.
Collapse
|
16
|
Pinheiro C, Sergeant K, Machado CM, Renaut J, Ricardo CP. Two Traditional Maize Inbred Lines of Contrasting Technological Abilities Are Discriminated by the Seed Flour Proteome. J Proteome Res 2013; 12:3152-65. [DOI: 10.1021/pr400012t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carla Pinheiro
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República-EAN,
2780-157 Oeiras, Portugal
| | - Kjell Sergeant
- Department “Environment and Agro-biotechnologies” (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, rue
du Brill, 4422 Belvaux, Luxembourg
| | - Cátia M. Machado
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República-EAN,
2780-157 Oeiras, Portugal
| | - Jenny Renaut
- Department “Environment and Agro-biotechnologies” (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, rue
du Brill, 4422 Belvaux, Luxembourg
| | - Cândido P. Ricardo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República-EAN,
2780-157 Oeiras, Portugal
| |
Collapse
|
17
|
Biron DG, Loxdale HD. Host–parasite molecular cross-talk during the manipulative process of a host by its parasite. J Exp Biol 2013; 216:148-60. [DOI: 10.1242/jeb.073825] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Summary
Many parasite taxa are able to alter a wide range of phenotypic traits of their hosts in ways that seem to improve the parasite’s chance of completing its life cycle. Host behavioural alterations are classically seen as compelling illustrations of the ‘extended phenotype’ concept, which suggests that parasite genes have phenotype effects on the host. The molecular mechanisms and the host–parasite cross-talk involved during the manipulative process of a host by its parasite are still poorly understood. In this Review, the current knowledge on proximate mechanisms related to the ‘parasite manipulation hypothesis’ is presented. Parasite genome sequences do not themselves provide a full explanation of parasite biology nor of the molecular cross-talk involved in host–parasite associations. Recently, first-generation proteomics tools have been employed to unravel some aspects of the parasite manipulation process (i.e. proximate mechanisms and evolutionary convergence) using certain model arthropod-host–parasite associations. The pioneer proteomics results obtained on the manipulative process are here highlighted, along with the many gaps in our knowledge. Candidate genes and biochemical pathways potentially involved in the parasite manipulation are presented. Finally, taking into account the environmental factors, we suggest new avenues and approaches to further explore and understand the proximate mechanisms used by parasite species to alter phenotypic traits of their hosts.
Collapse
Affiliation(s)
- David G. Biron
- Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes: Génome et Environnement’, BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, F-63177 Aubiere, France
| | - Hugh D. Loxdale
- Royal Entomological Society, Chiswell Green Lane, St Albans AL2 3NS, UK
| |
Collapse
|
18
|
Teles LMB, Aquino EN, Neves ACD, Garcia CHS, Roepstorff P, Fontes B, Castro MS, Fontes W. Comparison of the neutrophil proteome in trauma patients and normal controls. Protein Pept Lett 2012; 19:663-72. [PMID: 22519539 PMCID: PMC3382372 DOI: 10.2174/092986612800493977] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 01/11/2023]
Abstract
Background: Neutrophils have an impressive array of microbicidal weapons, and in the presence of a pathogen, progress from a quiescent state in the bloodstream to a completely activated state. Failure to regulate this activation, for example, when the blood is flooded with cytokines after severe trauma, causes inappropriate neutrophil activation that paradoxically, is associated with tissue and organ damage. Acidic proteomic maps of quiescent human neutrophils were analyzed and compared to those of activated neutrophils from severe trauma patients. The analysis revealed 114 spots whose measured volumes differed between activated and quiescent neutrophils, with 27 upregulated and 87 downregulated in trauma conditions. Among the identified proteins, grancalcin, S100-A9 and CACNB2 reinforce observed correlations between motility and ion flux, ANXA3, SNAP, FGD1 and Zfyve19 are involved in vesicular transport and exocytosis, and GSTP1, HSPA1 HSPA1L, MAOB, UCH-L5, and PPA1 presented evidence that activated neutrophils may have diminished protection against oxidative damage and are prone to apoptosis. These are discussed, along with proteins involved in cytoskeleton reorganization, reactive oxygen species production, and ion flux. Proteins such as Zfyve19, MAOB and albumin- like protein were described for the first time in the neutrophil. In this work we achieved the identification of several proteins potentially involved in inflammatory signaling after trauma, as well as proteins described for the first time in neutrophils. | ![]() |
Collapse
Affiliation(s)
- Liz M B Teles
- Laboratory of Biochemistry and Protein Chemistry, Cell Biology Department, University of Brasília, Brasilia, DF, Brazil. CEP 70910-900
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lista S, Faltraco F, Hampel H. Biological and methodical challenges of blood-based proteomics in the field of neurological research. Prog Neurobiol 2012; 101-102:18-34. [PMID: 22743551 DOI: 10.1016/j.pneurobio.2012.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/28/2012] [Accepted: 06/18/2012] [Indexed: 12/17/2022]
Abstract
Biomarker discovery is an application of major importance in today's proteomic research. There is an urgent need for suitable biomarkers to improve diagnostic tools and treatment in various neurological diseases, such as neurodegenerative disorders. Recent years have witnessed an enormous interest in proteomics, which is currently seen as an invaluable tool to shed more light on complex interacting signalling pathways and molecular networks involved in several neuropathological conditions. However, while first results of proteomic research studies have sparked much public attention, the momentum of further proteomic biomarker research in neurological disorders may suffer by its very complex methodology which is sensitive to various sources of artefacts. A major source of variability is proteome perturbation caused by sample handling/preservation (preanalytical phase) and processing/measurement (analytical phase). The aim of the present review is to summarize the current literature focusing on the crucial role played by preanalytical and analytical factors that affect the quality of samples and the reliability of the data produced in blood-based proteomic biomarker research in neurology, which may apply to Alzheimer's disease (AD) as well as other neurological disorders. Procedures for sample preparation and protocols for the analysis of serum and plasma samples will be delineated. Finally, the potential usefulness of bioinformatics--allowing for the assembly, store, and processing of data--as well as its contribution to the execution of proteomic studies will be critically discussed.
Collapse
Affiliation(s)
- Simone Lista
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University of Frankfurt, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
20
|
Wu SH, Black MA, North RA, Rodrigo AG. A Bayesian model for classifying all differentially expressed proteins simultaneously in 2D PAGE gels. BMC Bioinformatics 2012; 13:137. [PMID: 22712439 PMCID: PMC3505467 DOI: 10.1186/1471-2105-13-137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 05/30/2012] [Indexed: 11/23/2022] Open
Abstract
Background Two-dimensional polyacrylamide gel electrophoresis (2D PAGE) is commonly used to identify differentially expressed proteins under two or more experimental or observational conditions. Wu et al (2009) developed a univariate probabilistic model which was used to identify differential expression between Case and Control groups, by applying a Likelihood Ratio Test (LRT) to each protein on a 2D PAGE. In contrast to commonly used statistical approaches, this model takes into account the two possible causes of missing values in 2D PAGE: either (1) the non-expression of a protein; or (2) a level of expression that falls below the limit of detection. Results We develop a global Bayesian model which extends the previously described model. Unlike the univariate approach, the model reported here is able treat all differentially expressed proteins simultaneously. Whereas each protein is modelled by the univariate likelihood function previously described, several global distributions are used to model the underlying relationship between the parameters associated with individual proteins. These global distributions are able to combine information from each protein to give more accurate estimates of the true parameters. In our implementation of the procedure, all parameters are recovered by Markov chain Monte Carlo (MCMC) integration. The 95% highest posterior density (HPD) intervals for the marginal posterior distributions are used to determine whether differences in protein expression are due to differences in mean expression intensities, and/or differences in the probabilities of expression. Conclusions Simulation analyses showed that the global model is able to accurately recover the underlying global distributions, and identify more differentially expressed proteins than the simple application of a LRT. Additionally, simulations also indicate that the probability of incorrectly identifying a protein as differentially expressed (i.e., the False Discovery Rate) is very low. The source code is available at https://github.com/stevenhwu/BIDE-2D.
Collapse
Affiliation(s)
- Steven H Wu
- Bioinformatics Institute, University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
21
|
Bradley BP. Finding biomarkers is getting easier. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:631-636. [PMID: 22410950 DOI: 10.1007/s10646-011-0848-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2011] [Indexed: 05/31/2023]
Abstract
Single biomarkers are rarely accurate. Even suites of biomarkers can give conflicting results. Ideally potent combinations of variables are isolated which accurately identify specific analytes and their level of toxicity. The search for such combinations can be done by reducing the thousands of candidate variables to the small number necessary for treatment classification. When the key variables are recognized by machine learning (ML) the results are quite surprising, given the apparent failure of other searching methods to produce good diagnostics. Proteins seem especially useful for portable field tests of a variety of adverse conditions. This review shows how ML, in particular artificial neural networks, can find potent biomarkers embedded in any type of expression data, mainly proteins in this article. A computer does multiple iterations to produce sets of proteins which systematically identify (to near 100% accuracy) the treatment classes of interest. Whether these proteins are useful in actual diagnoses is tested by presenting the computer model with unknown classes. Finding the biomarkers is getting easier but there still must be confirmation, by multivariable statistics and with field studies.
Collapse
Affiliation(s)
- Brian Patrick Bradley
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
22
|
A systems biology approach to nutritional immunology - focus on innate immunity. Mol Aspects Med 2011; 33:14-25. [PMID: 22061966 DOI: 10.1016/j.mam.2011.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/24/2011] [Accepted: 10/24/2011] [Indexed: 12/22/2022]
Abstract
Innate immunity and nutrient metabolism are complex biological systems that must work in concert to sustain and preserve life. The effector cells of the innate immune system rely on essential nutrients to generate energy, produce metabolic precursors for macromolecule biosynthesis and tune their responses to infectious agents. Thus disruptions to nutritional status have a substantial impact on immune competence and can result in increased susceptibility to infection in the case of nutrient deficiency, or chronic inflammation in the case of over-nutrition. The traditional, reductionist methods used in the study of nutritional immunology are incapable of exploring the extremely complex interactions between nutrient metabolism and innate immunity. Here, we review a relatively new analytical approach, systems biology, and highlight how it can be applied to nutritional immunology to provide a comprehensive view of the mechanisms behind nutritional regulation of the innate immune system.
Collapse
|
23
|
Hadrévi J, Hellström F, Kieselbach T, Malm C, Pedrosa-Domellöf F. Protein differences between human trapezius and vastus lateralis muscles determined with a proteomic approach. BMC Musculoskelet Disord 2011; 12:181. [PMID: 21831281 PMCID: PMC3173403 DOI: 10.1186/1471-2474-12-181] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 08/10/2011] [Indexed: 01/24/2023] Open
Abstract
Background The trapezius muscle is a neck muscle that is susceptible to chronic pain conditions associated with repetitive tasks, commonly referred to as chronic work-related myalgia, hence making the trapezius a muscle of clinical interest. To provide a basis for further investigations of the proteomic traits of the trapezius muscle in disease, two-dimensional difference gel electrophoresis (2D-DIGE) was performed on the healthy trapezius using vastus lateralis as a reference. To obtain as much information as possible from the vast proteomic data set, both one-way ANOVA, with and without false discovery rate (FDR) correlation, and partial least square projection to latent structures with discriminant analysis (PLS-DA) were combined to compare the outcome of the analysis. Results The trapezius and vastus lateralis showed significant differences in metabolic, contractile and regulatory proteins, with different results depending on choice of statistical approach and pre-processing technique. Using the standard method, FDR correlated one-way ANOVA, 42 protein spots differed significantly in abundance between the two muscles. Complementary analysis using immunohistochemistry and western blot confirmed the results from the 2D-DIGE analysis. Conclusions The proteomic approach used in the present study combining 2D-DIGE and multivariate modelling provided a more comprehensive comparison of the protein profiles of the human trapezius and vastus lateralis muscle, than previously possible to obtain with immunohistochemistry or SDS-PAGE alone. Although 2D-DIGE has inherent limitations it is particularly useful to comprehensively screen for important structural and metabolic proteins, and appears to be a promising tool for future studies of patients suffering from chronic work related myalgia or other muscle diseases.
Collapse
Affiliation(s)
- Jenny Hadrévi
- Department of Integrative Medical Biology, Anatomy, Umeå University, S-90187 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Rhea JM, Diwan CA, Molinaro RJ. Mass spectrometry-coupled techniques for viral-related disease biomarker identification. Biomark Med 2011; 4:859-70. [PMID: 21133707 DOI: 10.2217/bmm.10.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The advent of high-resolution mass spectrometers coupled with proteomic techniques has facilitated the discovery and characterization of novel viral proteins and the detection of virus-induced changes in the cellular proteome. These advances have enabled a more comprehensive characterization of viral interactions involved in infection and pathogenesis, and allowed the discovery of viral biomarkers. This article focuses on the role of mass spectrometry proteomic techniques to identify and characterize both prospective and verified viral biomarkers, and their implications on the diagnosis of disease.
Collapse
Affiliation(s)
- Jeanne M Rhea
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
26
|
Millioni R, Puricelli L, Sbrignadello S, Iori E, Murphy E, Tessari P. Operator- and software-related post-experimental variability and source of error in 2-DE analysis. Amino Acids 2011; 42:1583-90. [PMID: 21394601 DOI: 10.1007/s00726-011-0873-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/26/2011] [Indexed: 01/09/2023]
Abstract
In the field of proteomics, several approaches have been developed for separating proteins and analyzing their differential relative abundance. One of the oldest, yet still widely used, is 2-DE. Despite the continuous advance of new methods, which are less demanding from a technical standpoint, 2-DE is still compelling and has a lot of potential for improvement. The overall variability which affects 2-DE includes biological, experimental, and post-experimental (software-related) variance. It is important to highlight how much of the total variability of this technique is due to post-experimental variability, which, so far, has been largely neglected. In this short review, we have focused on this topic and explained that post-experimental variability and source of error can be further divided into those which are software-dependent and those which are operator-dependent. We discuss these issues in detail, offering suggestions for reducing errors that may affect the quality of results, summarizing the advantages and drawbacks of each approach.
Collapse
Affiliation(s)
- Renato Millioni
- Division of Metabolism, Department of Clinical and Experimental Medicine, University of Padua, via Giustiniani 2, 35128, Padua, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Plasma proteomic profiles of bovine growth hormone transgenic mice as they age. Transgenic Res 2011; 20:1305-20. [PMID: 21365322 DOI: 10.1007/s11248-011-9499-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/20/2011] [Indexed: 12/17/2022]
Abstract
Attenuation of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis results in extended lifespan in many organisms including mice. Conversely, GH transgenic mice have excess GH action and die prematurely. We have studied bovine (b) GH transgenic mice (n = 9) and their wild type (WT) littermates (n = 8) longitudinally and have determined several age-related changes. Compared to WT mice, bGH mice lost fat mass, became hypoglycemic and had lower insulin levels at older ages despite being hyperinsulinemic when young. To examine plasma protein differences in bGH mice relative to controls, samples at 2, 4, 8, 12 and 16 months of age were analyzed by two-dimensional gel electrophoresis followed by identification using mass spectrometry. We found several differences in plasma proteins of bGH mice compared to controls, including increased apolipoprotein E (five isoforms), haptoglobin (four isoforms) and mannose-binding protein-C (one out of three isoforms), and decreased transthyretin (six isoforms). In addition, clusterin (two out of six isoforms) and haptoglobin (four isoforms) were up-regulated in bGH mice as a function of age. Finally, alpha-2 macroglobulin (seven isoforms) was altered in an isoform-specific manner with two isoforms increased and two decreased in bGH mouse plasma compared to controls. In conclusion, identification of these proteins suggests that bGH mice exhibit an increased inflammatory state with an adverse lipid profile, possibly contributing to their diminished life expectancy. Also, these newly discovered plasma proteins may be indicative or 'biomarkers' of a shortened lifespan.
Collapse
|
28
|
Faergestad EM, Rye MB, Nhek S, Hollung K, Grove H. The use of chemometrics to analyse protein patterns from gel electrophoresis. ACTA CHROMATOGR 2011. [DOI: 10.1556/achrom.23.2011.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Mari A, Ciardiello MA, Tamburrini M, Rasi C, Palazzo P. Proteomic analysis in the identification of allergenic molecules. Expert Rev Proteomics 2011; 7:723-34. [PMID: 20973644 DOI: 10.1586/epr.10.44] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Conventional and innovative strategies can be exploited to identify and characterize new allergenic proteins. With the aim of obtaining suggestions for future improvements, this article describes our attempt to understand and describe some of the advantages and pitfalls of the methodologies and procedures often used in this field. The analysis includes the protein extract preparation, starting from the allergenic source, the separation of the proteins contained in a mixture and the detection, identification and characterization of IgE-binding molecules. Classic and emerging proteomic technologies, including mass spectrometry-based methodologies, Edman degradation procedure, microarray-based techniques and bioinformatics search strategies, have been explored. A comparative analysis of biochemistry-based proteomics and molecular biology strategies has also been given.
Collapse
Affiliation(s)
- Adriano Mari
- Center for Molecular Allergology, IDI-IRCCS, Via dei Monti di Creta 104, I-00167 Roma, Italy
| | | | | | | | | |
Collapse
|
30
|
Wittwer J, Rubio-Aliaga I, Hoeft B, Bendik I, Weber P, Daniel H. Nutrigenomics in human intervention studies: Current status, lessons learned and future perspectives. Mol Nutr Food Res 2011; 55:341-58. [DOI: 10.1002/mnfr.201000512] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 11/08/2022]
|
31
|
Li Z, Zhang H, Dong X, Burczynski FJ, Choy P, Yang F, Liu H, Li P, Gong Y. Proteomic profile of primary isolated rat mesangial cells in high-glucose culture condition and decreased expression of PSMA6 in renal cortex of diabetic rats. Biochem Cell Biol 2010; 88:635-48. [PMID: 20651835 DOI: 10.1139/o09-185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most important complications of diabetic patients and is characterized histologically by an accumulation of extracellular matrix (ECM) protein in the glomerular mesangium. Therefore, mesangial cells likely play an important role in the development of diabetic nephropathy. Here, we employed proteomic techniques to investigate the protein profile of rat mesangial cells under high-glucose culture conditions. Primary isolated rat glomerular mesangial cells were cultured under different concentrations of glucose (5.4 mmol.L-1 for normal control and 30 mmol.L-1 for high glucose) for 0, 8, 16, and 72 h, as well as for 25 days. Cellular total proteins were isolated from these cells and employed for two-dimensional gel electrophoresis (2-DE). Differentially expressed proteins were identified by matrix-assisted laser desorption - ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and some of these proteins were documented in rat models of diabetes by Western blot. Rat mesangial cells were successfully isolated in the laboratory and their proliferation rates were significantly inhibited by high glucose. Two-dimensional gel electrophoresis analyses revealed 28 differentially expressed protein spots between the normal and high-glucose groups. After MALDI-TOF-MS analysis, all 28 protein spots were successfully identified with the peptide mass fingerprint (PMF) method. Representatively, SOD1, PCBP1 and PSMA6 were validated by Western blot analysis following protein extractions from the normal and high-glucose groups. Abundance of these proteins was consistent with that found in 2-DE. Moreover, expression of SOD1, PCBP1, and PSMA6 in renal cortex was further examined in two rat models of diabetes (streptozotocin-induced and spontaneous OLETF diabetic models). Abundance of SOD1 and PCBP1 proteins did not show any significant difference between normal control and diabetic rats. However, abundance of the PSMA6 protein was significantly reduced in the renal cortex of both STZ-induced and spontaneous OLETF diabetic rats. Proteomic analysis identified 28 differentially expressed proteins in primary isolated rat mesangial cells between normal and high glucose treatments. Expression of one identified protein was found to be consistent with expression in the renal cortex of two rat diabetic models. Therefore, identification of protein expression patterns in mesangial cells can be employed to develop a therapeutic target for treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Zhiguo Li
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dowsey AW, English JA, Lisacek F, Morris JS, Yang GZ, Dunn MJ. Image analysis tools and emerging algorithms for expression proteomics. Proteomics 2010; 10:4226-57. [PMID: 21046614 PMCID: PMC3257807 DOI: 10.1002/pmic.200900635] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 08/28/2010] [Indexed: 11/11/2022]
Abstract
Since their origins in academic endeavours in the 1970s, computational analysis tools have matured into a number of established commercial packages that underpin research in expression proteomics. In this paper we describe the image analysis pipeline for the established 2-DE technique of protein separation, and by first covering signal analysis for MS, we also explain the current image analysis workflow for the emerging high-throughput 'shotgun' proteomics platform of LC coupled to MS (LC/MS). The bioinformatics challenges for both methods are illustrated and compared, whereas existing commercial and academic packages and their workflows are described from both a user's and a technical perspective. Attention is given to the importance of sound statistical treatment of the resultant quantifications in the search for differential expression. Despite wide availability of proteomics software, a number of challenges have yet to be overcome regarding algorithm accuracy, objectivity and automation, generally due to deterministic spot-centric approaches that discard information early in the pipeline, propagating errors. We review recent advances in signal and image analysis algorithms in 2-DE, MS, LC/MS and Imaging MS. Particular attention is given to wavelet techniques, automated image-based alignment and differential analysis in 2-DE, Bayesian peak mixture models, and functional mixed modelling in MS, and group-wise consensus alignment methods for LC/MS.
Collapse
Affiliation(s)
- Andrew W. Dowsey
- Institute of Biomedical Engineering, Imperial College London, South Kensington, London SW7 2AZ, U.K
| | - Jane A. English
- Proteome Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Frederique Lisacek
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CMU - 1, rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Jeffrey S. Morris
- Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4009, U.S.A
| | - Guang-Zhong Yang
- Institute of Biomedical Engineering, Imperial College London, South Kensington, London SW7 2AZ, U.K
| | - Michael J. Dunn
- Proteome Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| |
Collapse
|
33
|
Phylogenetic character mapping of proteomic diversity shows high correlation with subspecific phylogenetic diversity in Trypanosoma cruzi. Proc Natl Acad Sci U S A 2010; 107:20411-6. [PMID: 21059959 DOI: 10.1073/pnas.1015496107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We performed a phylogenetic character mapping on 26 stocks of Trypanosoma cruzi, the parasite responsible for Chagas disease, and 2 stocks of the sister taxon T. cruzi marinkellei to test for possible associations between T. cruzi-subspecific phylogenetic diversity and levels of protein expression, as examined by proteomic analysis and mass spectrometry. We observed a high level of correlation (P < 10(-4)) between genetic distance, as established by multilocus enzyme electrophoresis, and proteomic dissimilarities estimated by proteomic Euclidian distances. Several proteins were found to be specifically associated to T. cruzi phylogenetic subdivisions (discrete typing units). This study explores the previously uncharacterized links between infraspecific phylogenetic diversity and gene expression in a human pathogen. It opens the way to searching for new vaccine and drug targets and for identification of specific biomarkers at the subspecific level of pathogens.
Collapse
|
34
|
Gandra PG, Valente RH, Perales J, Pacheco AG, Macedo DV. Proteomic analysis of rat skeletal muscle submitted to one bout of incremental exercise. Scand J Med Sci Sports 2010; 22:207-16. [DOI: 10.1111/j.1600-0838.2010.01235.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Tessier D, Yclon P, Jacquemin I, Larré C, Rogniaux H. OVNIp: an open source application facilitating the interpretation, the validation and the edition of proteomics data generated by MS analyses and de novo sequencing. Proteomics 2010; 10:1794-801. [PMID: 20198638 DOI: 10.1002/pmic.200800783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several academic software are available to help the validation and reporting of proteomics data generated by MS analyses. However, to our knowledge, none of them have been conceived to meet the particular needs generated by the study of organisms whose genomes are not sequenced. In that context, we have developed OVNIp, an open-source application which facilitates the whole process of proteomics results interpretation. One of its unique attributes is its capacity to compile multiple results (from several search engines and/or several databank searches) with a resolution of conflicting interpretations. Moreover, OVNIp enables automated exploitation of de novo sequences generated from unassigned MS/MS spectra leading to higher sequence coverage and enhancing confidence in the identified proteins. The exploitation of these additional spectra might also identify novel proteins through a MS-BLAST search, which can be easily ran from the OVNIp interface. Beyond this primary scope, OVNIp can also benefit to users who look for a simple standalone application to both visualize and confirm MS/MS result interpretations through a simple graphical interface and generate reports according to user-defined forms which may integrate the prerequisites for publication. Sources, documentation and a stable release for Windows are available at http://wwwappli.nantes.inra.fr:8180/OVNIp.
Collapse
Affiliation(s)
- Dominique Tessier
- INRA, UR 1268 Biopolymères, Interactions, Assemblages, Nantes, France.
| | | | | | | | | |
Collapse
|
36
|
Pedreschi R, Hertog M, Lilley KS, Nicolaï B. Proteomics for the Food Industry: Opportunities and Challenges. Crit Rev Food Sci Nutr 2010; 50:680-92. [DOI: 10.1080/10408390903044214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Proteomics of plant pathogenic fungi. J Biomed Biotechnol 2010; 2010:932527. [PMID: 20589070 PMCID: PMC2878683 DOI: 10.1155/2010/932527] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 02/03/2010] [Accepted: 03/01/2010] [Indexed: 12/15/2022] Open
Abstract
Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.
Collapse
|
38
|
Abstract
New biomarkers are urgently needed to accelerate efforts in developing new drugs and treatments of known diseases. New clinical and translational proteomics studies emerge almost every day. However, discovery of new diagnostic biomarkers lags behind because of variability at every step in proteomics studies (e.g., assembly of a cohort of patients, sample preparation and the nature of body fluids, selection of a profiling method and uniform protocols for data analysis).Quite often, the validation step that follows the discovery phase does not reach desired levels of sensitivity and specificity or reproducibility between laboratories. Mass spectrometry and gel-based methods do not provide enough throughput for screening thousands of clinical samples. Further development of protein arrays may address this issue.Despite many obstacles, proteomics delivers vast amounts of information useful for understanding the molecular mechanisms underlying diseases.
Collapse
Affiliation(s)
- Jerzy Silberring
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
| | | |
Collapse
|
39
|
Affiliation(s)
- Daniela Albrecht
- Research Group Systems Biology/Bioinformatics, Hans-Knölle-Institute, Jena, Germany.
| | | | | | | |
Collapse
|
40
|
Masova A, Sanda M, Jiracek J, Selicharova I. Changes in the proteomes of the hemocytes and fat bodies of the flesh fly Sarcophaga bullata larvae after infection by Escherichia coli. Proteome Sci 2010; 8:1. [PMID: 20142993 PMCID: PMC2817646 DOI: 10.1186/1477-5956-8-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/13/2010] [Indexed: 01/21/2023] Open
Abstract
Background Insects have an efficient self-defense system that is based on innate immunity. Recent findings have disclosed many parallels between human and insect innate immunity, and simultaneously fine differences in the processes between various species have been revealed. Studies on the immune systems of various insect species may uncover the differences in their host defense strategies. Results We analyzed the proteomes of the hemocytes and fat bodies of Sarcophaga bullata larvae after infection by Escherichia coli. The 2-DE gels of the hemocytes and fat bodies of infected larvae were compared with those of aseptically injured larvae. Our analysis included the construction of protein maps of the hemocyte cells and cells from fat bodies, the identification of the changed proteins, in response to infection, using LC-MS/MS, and the estimation of the trends in expression of these proteins at three time points (30 min, 6 hours and 22 hours) after infection. In total, seven changed spots were found in the hemocytes, and four changed spots were found in the fat bodies. Three types of trends in protein expression were observed. Cofilin and transgelin were undetectable at 30 min after infection but were continuously up-regulated in the induced larvae after 22 hours. A prophenoloxidase isoform and lectin subunit α were slightly up-regulated at 30 min after infection, and their protein levels reached the highest points after 6 hours but decreased after 22 hours. T-Complex subunit α, GST, ferritin-like protein and an anterior fat body protein (regucalcin homologue) were down-regulated at 22 hours after infection. Conclusions Many proteins identified in our study corresponded to the proteins identified in other insects. Compared to the former studies performed in insects, we presented 2-D protein maps of the hemocytes and fat bodies and showed the trends in expression of the immune-elicited proteins.
Collapse
Affiliation(s)
- Alice Masova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, vvi Flemingovo nám 2, 166 10 Praha, Czech Republic
| | | | | | | |
Collapse
|
41
|
Jacob F, Goldstein DR, Fink D, Heinzelmann-Schwarz V. Proteogenomic studies in epithelial ovarian cancer: established knowledge and future needs. Biomark Med 2009; 3:743-56. [DOI: 10.2217/bmm.09.48] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There has been a concerted effort over the last decade to improve our understanding of the complex biology of ovarian cancer. A linear growth in published proteogenomic studies has addressed a variety of questions regarding its molecular pathogenesis. A number of genes have been identified by transcriptomic approaches, some of which are being investigated as putative tumor markers (HE4, OPN, Ep-CAM and Mesothelin), whilst others are potential targets for molecular therapeutic approaches (VEGF, IO4, EGFR, MUC1, CLDN4 and SLPI). Proteogenomics has the potential to further change our current characterization and treatment of ovarian cancer. Additional advances will depend on integrated study designs, interdisciplinary collaborations, use of robust high-throughput platforms, as well as uniform guidelines for bioinformatic analyses.
Collapse
Affiliation(s)
- Francis Jacob
- Translational Research Group, Department of Gynecology, University Hospital Zurich, Nord I D222, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Darlene R Goldstein
- Institut de mathématiques, Ecole Polytéchnique Fédérale, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Daniel Fink
- Department of Gynecology, University Hospital Zurich, Switzerland
| | - Viola Heinzelmann-Schwarz
- Translational Research Group, Department of Gynecology, University Hospital Zurich, Nord I D222, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| |
Collapse
|
42
|
Wu SH, Black MA, North RA, Atkinson KR, Rodrigo AG. A statistical model to identify differentially expressed proteins in 2D PAGE gels. PLoS Comput Biol 2009; 5:e1000509. [PMID: 19763172 PMCID: PMC2734266 DOI: 10.1371/journal.pcbi.1000509] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 08/19/2009] [Indexed: 11/18/2022] Open
Abstract
Two dimensional polyacrylamide gel electrophoresis (2D PAGE) is used to identify differentially expressed proteins and may be applied to biomarker discovery. A limitation of this approach is the inability to detect a protein when its concentration falls below the limit of detection. Consequently, differential expression of proteins may be missed when the level of a protein in the cases or controls is below the limit of detection for 2D PAGE. Standard statistical techniques have difficulty dealing with undetected proteins. To address this issue, we propose a mixture model that takes into account both detected and non-detected proteins. Non-detected proteins are classified either as (a) proteins that are not expressed in at least one replicate, or (b) proteins that are expressed but are below the limit of detection. We obtain maximum likelihood estimates of the parameters of the mixture model, including the group-specific probability of expression and mean expression intensities. Differentially expressed proteins can be detected by using a Likelihood Ratio Test (LRT). Our simulation results, using data generated from biological experiments, show that the likelihood model has higher statistical power than standard statistical approaches to detect differentially expressed proteins. An R package, Slider (Statistical Likelihood model for Identifying Differential Expression in R), is freely available at http://www.cebl.auckland.ac.nz/slider.php.
Collapse
Affiliation(s)
- Steven H. Wu
- Bioinformatics Institute, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Robyn A. North
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Kelly R. Atkinson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Allen G. Rodrigo
- Bioinformatics Institute, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
43
|
Moxon JV, Padula MP, Herbert BR, Golledge J. Challenges, current status and future perspectives of proteomics in improving understanding, diagnosis and treatment of vascular disease. Eur J Vasc Endovasc Surg 2009; 38:346-55. [PMID: 19541510 PMCID: PMC2727576 DOI: 10.1016/j.ejvs.2009.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/11/2009] [Indexed: 01/21/2023]
Abstract
Technical advances have seen the rapid adoption of genomics and multiplex genetic polymorphism identification to research on vascular diseases. The utilization of proteomics for the study of vascular diseases has been limited by comparison. In this review we outline currently available proteomics techniques, the challenges to using these approaches and modifications which may improve the utilization of proteomics in the study of vascular diseases.
Collapse
Affiliation(s)
- Joseph V. Moxon
- Vascular Biology Unit, School of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Matthew P. Padula
- Proteomics Technology Centre of Expertise, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
| | - Ben R. Herbert
- Proteomics Technology Centre of Expertise, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
| | - Jonathan Golledge
- Vascular Biology Unit, School of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
44
|
Bradley BP, Kalampanayil B, O'Neill MC. Protein expression profiling. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2009; 519:455-68. [PMID: 19381602 DOI: 10.1007/978-1-59745-281-6_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein expression profiling is defined in general as identifying the proteins expressed in a particular tissue, under a specified set of conditions and at a particular time, usually compared to expression in reference samples. This information is useful in drug discovery and diagnosis as well as in understanding response mechanisms at the protein level. We may identify all the proteins responding to a particular stimulus and select those whose expression changes most. Or we may isolate significant protein variables and then identify them. These definitive sets of proteins (protein expression signatures; PES) are specific to diseases, toxicants, physical stresses, and to degrees of stress severity. Here we describe a method, based on machine learning, for isolating the sets of proteins, before identifying them by name, which classify accurately the treatment classes in a study. The principle in this chapter is that if proteins associated with known classes of interest can be used to identify unknown classes then the proteins are definitive for diagnosis.The proteins in each class, including controls, are converted to digital data and serve as input to artificial neural network (ANN) models. Multiple two-dimensional electrophoresis (2DE) gel patterns are included in each treatment class. A training subset of digitized individual, not composite, gel images is used to construct an ANN model which is then applied to a test set of images. Successful classification of the unknown (test) data confirms that the variables included in the model are indeed significant in discrimination among the classes. In the study described here the misclassifications were 5% or less using the ANN models. The ANN method seems to be a useful complement to image analysis, described in Chapter "Troubleshooting Image Analysis in 2DE". The reduction in protein variables permits multivariable statistics such as cluster and discriminant analyses.
Collapse
Affiliation(s)
- Brian P Bradley
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
45
|
Fröhlich T, Arnold GJ, Fritsch R, Mayr T, Laforsch C. LC-MS/MS-based proteome profiling in Daphnia pulex and Daphnia longicephala: the Daphnia pulex genome database as a key for high throughput proteomics in Daphnia. BMC Genomics 2009; 10:171. [PMID: 19383153 PMCID: PMC2674882 DOI: 10.1186/1471-2164-10-171] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 04/21/2009] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Daphniids, commonly known as waterfleas, serve as important model systems for ecology, evolution and the environmental sciences. The sequencing and annotation of the Daphnia pulex genome both open future avenues of research on this model organism. As proteomics is not only essential to our understanding of cell function, and is also a powerful validation tool for predicted genes in genome annotation projects, a first proteomic dataset is presented in this article. RESULTS A comprehensive set of 701,274 peptide tandem-mass-spectra, derived from Daphnia pulex, was generated, which lead to the identification of 531 proteins. To measure the impact of the Daphnia pulex filtered models database for mass spectrometry based Daphnia protein identification, this result was compared with results obtained with the Swiss-Prot and the Drosophila melanogaster database. To further validate the utility of the Daphnia pulex database for research on other Daphnia species, additional 407,778 peptide tandem-mass-spectra, obtained from Daphnia longicephala, were generated and evaluated, leading to the identification of 317 proteins. CONCLUSION Peptides identified in our approach provide the first experimental evidence for the translation of a broad variety of predicted coding regions within the Daphnia genome. Furthermore it could be demonstrated that identification of Daphnia longicephala proteins using the Daphnia pulex protein database is feasible but shows a slightly reduced identification rate. Data provided in this article clearly demonstrates that the Daphnia genome database is the key for mass spectrometry based high throughput proteomics in Daphnia.
Collapse
Affiliation(s)
- Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilian University, Munich, Germany.
| | | | | | | | | |
Collapse
|
46
|
Holzmuller P, Grébaut P, Brizard JP, Berthier D, Chantal I, Bossard G, Bucheton B, Vezilier F, Chuchana P, Bras-Gonçalves R, Lemesre JL, Vincendeau P, Cuny G, Frutos R, Biron DG. "Pathogeno-proteomics". Ann N Y Acad Sci 2009; 1149:66-70. [PMID: 19120176 DOI: 10.1196/annals.1428.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many scientists working on pathogens (viruses, bacteria, fungi, parasites) are betting heavily on data generated by longitudinal genomic-transcriptomic-proteomic studies to explain biochemical host-vector-pathogen interactions and thus to contribute to disease control. Availability of genome sequences of various organisms, from viruses to complex metazoans, led to the discovery of the functions of the genes themselves. The postgenomic era stimulated the development of proteomic and bioinformatics tools to identify the locations, functions, and interactions of the gene products in tissues and/or cells of living organisms. Because of the diversity of available methods and the level of integration they promote, proteomics tools are potentially able to resolve interesting issues specific not only to host-vector-pathogen interactions in cell immunobiology, but also to ecology and evolution, population biology, and adaptive processes. These new analytical tools, as all new tools, contain pitfalls directly related to experimental design, statistical treatment, and protein identification. Nevertheless, they offer the potency of building large protein-protein interaction networks for in silico analysis of novel biological entities named "interactomes," a way of modeling host-vector-pathogen interactions to define new interference strategies.
Collapse
|
47
|
Pérès S, Molina L, Salvetat N, Granier C, Molina F. A new method for 2D gel spot alignment: application to the analysis of large sample sets in clinical proteomics. BMC Bioinformatics 2008; 9:460. [PMID: 18957120 PMCID: PMC2628390 DOI: 10.1186/1471-2105-9-460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 10/28/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In current comparative proteomics studies, the large number of images generated by 2D gels is currently compared using spot matching algorithms. Unfortunately, differences in gel migration and sample variability make efficient spot alignment very difficult to obtain, and, as consequence most of the software alignments return noisy gel matching which needs to be manually adjusted by the user. RESULTS We present Sili2DGel an algorithm for automatic spot alignment that uses data from recursive gel matching and returns meaningful Spot Alignment Positions (SAP) for a given set of gels. In the algorithm, the data are represented by a graph and SAP by specific subgraphs. The results are returned under various forms (clickable synthetic gel, text file, etc.). We have applied Sili2DGel to study the variability of the urinary proteome from 20 healthy subjects. CONCLUSION Sili2DGel performs noiseless automatic spot alignment for variability studies (as well as classical differential expression studies) of biological samples. It is very useful for typical clinical proteomic studies with large number of experiments.
Collapse
Affiliation(s)
- Sabine Pérès
- Sysdiag CNRS FRE 3009 BIO-RAD, Cap delta/Parc Euromédecine, 1682 rue de la Valsière, CS 61003, 34184 Montpellier Cedex 4, France.
| | | | | | | | | |
Collapse
|
48
|
Damodaran S, Wood TD, Nagarajan P, Rabin RA. Evaluating peptide mass fingerprinting-based protein identification. GENOMICS PROTEOMICS & BIOINFORMATICS 2008; 5:152-7. [PMID: 18267296 PMCID: PMC5054195 DOI: 10.1016/s1672-0229(08)60002-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Identification of proteins by mass spectrometry (MS) is an essential step in proteomic studies and is typically accomplished by either peptide mass fingerprinting (PMF) or amino acid sequencing of the peptide. Although sequence information from MS/MS analysis can be used to validate PMF-based protein identification, it may not be practical when analyzing a large number of proteins and when high- throughput MS/MS instrumentation is not readily available. At present, a vast majority of proteomic studies employ PMF. However, there are huge disparities in criteria used to identify proteins using PMF. Therefore, to reduce incorrect protein identification using PMF, and also to increase confidence in PMF-based protein identification without accompanying MS/MS analysis, definitive guiding principles are essential. To this end, we propose a value-based scoring system that provides guidance on evaluating when PMF-based protein identification can be deemed sufficient without accompanying amino acid sequence data from MS/MS analysis.
Collapse
Affiliation(s)
- Senthilkumar Damodaran
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
49
|
de Roos B, Geelen A, Ross K, Rucklidge G, Reid M, Duncan G, Caslake M, Horgan G, Brouwer IA. Identification of potential serum biomarkers of inflammation and lipid modulation that are altered by fish oil supplementation in healthy volunteers. Proteomics 2008; 8:1965-74. [DOI: 10.1002/pmic.200700457] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Vydra J, Selicharová I, Smutná K, Šanda M, Matoušková E, Buršíková E, Prchalová M, Velenská Z, Coufal D, Jiráček J. Two-dimensional electrophoretic comparison of metastatic and non-metastatic human breast tumors using in vitro cultured epithelial cells derived from the cancer tissues. BMC Cancer 2008; 8:107. [PMID: 18416831 PMCID: PMC2377273 DOI: 10.1186/1471-2407-8-107] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 04/16/2008] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Breast carcinomas represent a heterogeneous group of tumors diverse in behavior, outcome, and response to therapy. Identification of proteins resembling the tumor biology can improve the diagnosis, prediction, treatment selection, and targeting of therapy. Since the beginning of the post-genomic era, the focus of molecular biology gradually moved from genomes to proteins and proteomes and to their functionality. Proteomics can potentially capture dynamic changes in protein expression integrating both genetic and epigenetic influences. METHODS We prepared primary cultures of epithelial cells from 23 breast cancer tissue samples and performed comparative proteomic analysis. Seven patients developed distant metastases within three-year follow-up. These samples were included into a metastase-positive group, the others formed a metastase-negative group. Two-dimensional electrophoretical (2-DE) gels in pH range 4-7 were prepared. Spot densities in 2-DE protein maps were subjected to statistical analyses (R/maanova package) and data-mining analysis (GUHA). For identification of proteins in selected spots, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed. RESULTS Three protein spots were significantly altered between the metastatic and non-metastatic groups. The correlations were proven at the 0.05 significance level. Nucleophosmin was increased in the group with metastases. The levels of 2,3-trans-enoyl-CoA isomerase and glutathione peroxidase 1 were decreased. CONCLUSION We have performed an extensive proteomic study of mammary epithelial cells from breast cancer patients. We have found differentially expressed proteins between the samples from metastase-positive and metastase-negative patient groups.
Collapse
Affiliation(s)
- Jan Vydra
- Department of Oncology, 1st Faculty of Medicine, Charles University Prague, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Kateřina Smutná
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miloslav Šanda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Eva Matoušková
- Institute of Biochemistry and Experimental Oncology, 1st Faculty of Medicine, Charles University Prague, Czech Republic
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Prague Burn Centre, 3rd Faculty of Medicine, Charles University Prague, Czech Republic
| | - Eva Buršíková
- Institute of Biochemistry and Experimental Oncology, 1st Faculty of Medicine, Charles University Prague, Czech Republic
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Prague Burn Centre, 3rd Faculty of Medicine, Charles University Prague, Czech Republic
| | - Markéta Prchalová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Prague Burn Centre, 3rd Faculty of Medicine, Charles University Prague, Czech Republic
| | - Zuzana Velenská
- Institute of Pathology 1st Faculty of Medicine, Charles University Prague and General Teaching Hospital, Prague, Czech Republic
| | - David Coufal
- Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|