1
|
Pandita D, Pandita A. Omics Technology for the Promotion of Nutraceuticals and Functional Foods. Front Physiol 2022; 13:817247. [PMID: 35634143 PMCID: PMC9136416 DOI: 10.3389/fphys.2022.817247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
The influence of nutrition and environment on human health has been known for ages. Phytonutrients (7,000 flavonoids and phenolic compounds; 600 carotenoids) and pro-health nutrients—nutraceuticals positively add to human health and may prevent disorders such as cancer, diabetes, obesity, cardiovascular diseases, and dementia. Plant-derived bioactive metabolites have acquired an imperative function in human diet and nutrition. Natural phytochemicals affect genome expression (nutrigenomics and transcriptomics) and signaling pathways and act as epigenetic modulators of the epigenome (nutri epigenomics). Transcriptomics, proteomics, epigenomics, miRNomics, and metabolomics are some of the main platforms of complete omics analyses, finding use in functional food and nutraceuticals. Now the recent advancement in the integrated omics approach, which is an amalgamation of multiple omics platforms, is practiced comprehensively to comprehend food functionality in food science.
Collapse
Affiliation(s)
- Deepu Pandita
- Government Department of School Education, Jammu, India
- *Correspondence: Deepu Pandita,
| | | |
Collapse
|
2
|
del Río-Moreno M, Luque RM, Rangel-Zúñiga OA, Alors-Pérez E, Alcalá-Diaz JF, Roncero-Ramos I, Camargo A, Gahete MD, López-Miranda J, Castaño JP. Dietary Intervention Modulates the Expression of Splicing Machinery in Cardiovascular Patients at High Risk of Type 2 Diabetes Development: From the CORDIOPREV Study. Nutrients 2020; 12:E3528. [PMID: 33212780 PMCID: PMC7696699 DOI: 10.3390/nu12113528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) has become a major health problem worldwide. T2DM risk can be reduced with healthy dietary interventions, but the precise molecular underpinnings behind this association are still incompletely understood. We recently discovered that the expression profile of the splicing machinery is associated with the risk of T2DM development. Thus, the aim of this work was to evaluate the influence of 3-year dietary intervention in the expression pattern of the splicing machinery components in peripheral blood mononuclear cells (PBMCs) from patients within the CORDIOPREV study. Expression of splicing machinery components was determined in PBMCs, at baseline and after 3 years of follow-up, from all patients who developed T2DM (Incident-T2DM, n = 107) and 108 randomly selected non-T2DM subjects, who were randomly enrolled in two healthy dietary patterns (Mediterranean or low-fat diets). Dietary intervention modulated the expression of key splicing machinery components (i.e., up-regulation of SPFQ/RMB45/RNU6, etc., down-regulation of RNU2/SRSF6) after three years, independently of the type of healthy diet. Some of these changes (SPFQ/RMB45/SRSF6) were associated with key clinical features and were differentially induced in Incident-T2DM patients and non-T2DM subjects. This study reveals that splicing machinery can be modulated by long-term dietary intervention, and could become a valuable tool to screen the progression of T2DM.
Collapse
Grants
- PIE14/00005 Instituto de Salud Carlos III
- PIE14/00031 Instituto de Salud Carlos III
- PI16/00264 Instituto de Salud Carlos III
- CP15/00156 Instituto de Salud Carlos III
- PI17/002287 Instituto de Salud Carlos III
- BFU2016-80360-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- TIN2017-83445-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
- PI13/00023 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- AGL2012/39615 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- AGL2015-67896-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BIO-0139 Junta de Andalucía
- CTS-1406 Junta de Andalucía
- CTS-525 Junta de Andalucía
- PI-0541-2013 Junta de Andalucía
- CVI-7450 Junta de Andalucía
Collapse
Affiliation(s)
- Mercedes del Río-Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- Department of Cell Biology, University of Córdoba, 14004 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- Department of Cell Biology, University of Córdoba, 14004 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
| | - Oriol A. Rangel-Zúñiga
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
- Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- Department of Cell Biology, University of Córdoba, 14004 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
| | - Juan F. Alcalá-Diaz
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
- Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Irene Roncero-Ramos
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
- Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Antonio Camargo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
- Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Manuel D. Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- Department of Cell Biology, University of Córdoba, 14004 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
| | - José López-Miranda
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
- Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- Department of Cell Biology, University of Córdoba, 14004 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
| |
Collapse
|
3
|
Pieczynska MD, Yang Y, Petrykowski S, Horbanczuk OK, Atanasov AG, Horbanczuk JO. Gut Microbiota and Its Metabolites in Atherosclerosis Development. Molecules 2020; 25:molecules25030594. [PMID: 32013236 PMCID: PMC7037843 DOI: 10.3390/molecules25030594] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota metabolites have a great influence on host digestive function and body health itself. The effects of intestinal microbes on the host metabolism and nutrients absorption are mainly due to regulatory mechanisms related to serotonin, cytokines, and metabolites. Multiple studies have repeatedly reported that the gut microbiota plays a fundamental role in the absorption of bioactive compounds by converting dietary polyphenols into absorbable bioactive substances. Moreover, some intestinal metabolites derived from natural polyphenol products have more biological activities than their own fundamental biological functions. Bioactive like polyphenolic compounds, prebiotics and probiotics are the best known dietary strategies for regulating the composition of gut microbial populations or metabolic/immunological activities, which are called “three “p” for gut health”. Intestinal microbial metabolites have an indirect effect on atherosclerosis, by regulating lipid metabolism and inflammation. It has been found that the diversity of intestinal microbiota negatively correlates with the development of atherosclerosis. The fewer the variation and number of microbial species in the gut, the higher the risk of developing atherosclerosis. Therefore, the atherosclerosis can be prevented and treated from the perspective of improving the number and variability of gut microbiota. In here, we summarize the effects of gut metabolites of natural products on the pathological process of the atherosclerosis, since gut intestinal metabolites not only have an indirect effect on macrophage foaming in the vessel wall, but also have a direct effect on vascular endothelial cells.
Collapse
Affiliation(s)
- Magdalena D. Pieczynska
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A Street, 02-106 Warsaw, Poland
- Correspondence: (M.D.P.); (J.O.H.); Tel.: +48-22-736-70-00
| | - Yang Yang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - S. Petrykowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
| | - Olaf K. Horbanczuk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska, 02-776 Warsaw, Poland;
| | - Atanas G. Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Jaroslaw O. Horbanczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Correspondence: (M.D.P.); (J.O.H.); Tel.: +48-22-736-70-00
| |
Collapse
|
4
|
Boadi WY, Myles EL, Garcia AS. Phospho Tensin Homolog in Human and Lipid Peroxides in Peripheral Blood Mononuclear Cells Following Exposure to Flavonoids. J Am Coll Nutr 2019; 39:135-146. [PMID: 31192773 DOI: 10.1080/07315724.2019.1616234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: Studies have shown that human and peripheral blood mononuclear cells (PBMCs) are mostly used for research purposes to study several biochemical endpoints. The effects of the flavonoids, genistein, kaempferol, and quercetin on phospho tensin homolog (PTEN) levels in cancer cells (i.e., breast [BT549], lung [A549]), human embryonic kidney cells (HEK293), and the levels of lipid peroxides (LP) in PBMCs were respectively investigated.Materials and methods: Cancer, kidney, and PBMCs from several donors were each exposed to each of the flavonoids at concentrations of 0, 5, 10, 15, 20, and 25 µM. Our hypotheses were that exposure of cancer and kidney cells to genistein, kaempferol, and quercetin can increase PTEN and decrease lipid peroxides in PBMCs levels respectively to better cope with oxidative stress.Results: The results indicate that the flavonoids increased total PTEN levels in a dose-dependent manner. The effect of quercetin was more pronounced followed by genistein and kaempferol. Furthermore, decreases in lipid peroxides were observed in the PBMCs for the flavonoid-treated samples compared to those exposed to flavonoids and with oxidative stress as described by Fenton's chemistry. Levels of LP in quercetin-treated samples were lower compared to kaempferol and genistein.Conclusions: The findings suggest that the flavonoids play an important role in controlling oxidative stress in several human cells.
Collapse
Affiliation(s)
- William Y Boadi
- Department of Chemistry, Tennessee State University, Nashville, Tennessee, USA
| | - Elbert L Myles
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Alekzander S Garcia
- Department of Chemistry, Tennessee State University, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Kuang A, Erlund I, Herder C, Westerhuis JA, Tuomilehto J, Cornelis MC. Targeted proteomic response to coffee consumption. Eur J Nutr 2019; 59:1529-1539. [PMID: 31154491 DOI: 10.1007/s00394-019-02009-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Coffee is widely consumed and implicated in numerous health outcomes but the mechanisms by which coffee contributes to health is unclear. The purpose of this study was to test the effect of coffee drinking on candidate proteins involved in cardiovascular, immuno-oncological and neurological pathways. METHODS We examined fasting serum samples collected from a previously reported single blinded, three-stage clinical trial. Forty-seven habitual coffee consumers refrained from drinking coffee for 1 month, consumed 4 cups of coffee/day in the second month and 8 cups/day in the third month. Samples collected after each coffee stage were analyzed using three multiplex proximity extension assays that, after quality control, measured a total of 247 proteins implicated in cardiovascular, immuno-oncological and neurological pathways and of which 59 were previously linked to coffee exposure. Repeated measures ANOVA was used to test the relationship between coffee treatment and each protein. RESULTS Two neurology-related proteins including carboxypeptidase M (CPM) and neutral ceramidase (N-CDase or ASAH2), significantly increased after coffee intake (P < 0.05 and Q < 0.05). An additional 46 proteins were nominally associated with coffee intake (P < 0.05 and Q > 0.05); 9, 8 and 29 of these proteins related to cardiovascular, immuno-oncological and neurological pathways, respectively, and the levels of 41 increased with coffee intake. CONCLUSIONS CPM and N-CDase levels increased in response to coffee intake. These proteins have not previously been linked to coffee and are thus novel markers of coffee response worthy of further study. CLINICAL TRIAL REGISTRY: http://www.isrctn.com/ISRCTN12547806.
Collapse
Affiliation(s)
- Alan Kuang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 North Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - Iris Erlund
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, P.O. Box 30, 00271, Helsinki, Finland
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johan A Westerhuis
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Centre for Human Metabolomics, Faculty of Natural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Jaakko Tuomilehto
- Disease Risk Unit, National Institute for Health and Welfare, 00271, Helsinki, Finland
- Department of Public Health, University of Helsinki, 00014, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jidda, 21589, Saudi Arabia
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 North Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Gęgotek A, Domingues P, Wroński A, Ambrożewicz E, Skrzydlewska E. The Proteomic Profile of Keratinocytes and Lymphocytes in Psoriatic Patients. Proteomics Clin Appl 2019; 13:e1800119. [DOI: 10.1002/prca.201800119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical ChemistryMedical University of Bialystok 15‐089 Bialystok Poland
| | - Pedro Domingues
- Mass Spectrometry Center, QOPNA, Department of ChemistryUniversity of Aveiro 3810‐193 Aveiro Portugal
| | - Adam Wroński
- Dermatological Specialized Center “DERMAL” NZOZ in Bialystok 15‐453 Bialystok Poland
| | - Ewa Ambrożewicz
- Department of Analytical ChemistryMedical University of Bialystok 15‐089 Bialystok Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical ChemistryMedical University of Bialystok 15‐089 Bialystok Poland
| |
Collapse
|
7
|
Biological Activities, Health Benefits, and Therapeutic Properties of Avenanthramides: From Skin Protection to Prevention and Treatment of Cerebrovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6015351. [PMID: 30245775 PMCID: PMC6126071 DOI: 10.1155/2018/6015351] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
Oat (Avena sativa) is a cereal known since antiquity as a useful grain with abundant nutritional and health benefits. It contains distinct molecular components with high antioxidant activity, such as tocopherols, tocotrienols, and flavanoids. In addition, it is a unique source of avenanthramides, phenolic amides containing anthranilic acid and hydroxycinnamic acid moieties, and endowed with major beneficial health properties because of their antioxidant, anti-inflammatory, and antiproliferative effects. In this review, we report on the biological activities of avenanthramides and their derivatives, including analogs produced in recombinant yeast, with a major focus on the therapeutic potential of these secondary metabolites in the treatment of aging-related human diseases. Moreover, we also present recent advances pointing to avenanthramides as interesting therapeutic candidates for the treatment of cerebral cavernous malformation (CCM) disease, a major cerebrovascular disorder affecting up to 0.5% of the human population. Finally, we highlight the potential of foodomics and redox proteomics approaches in outlining distinctive molecular pathways and redox protein modifications associated with avenanthramide bioactivities in promoting human health and contrasting the onset and progression of various pathologies. The paper is dedicated to the memory of Adelia Frison.
Collapse
|
8
|
Abstract
BACKGROUND Differential gene expression in peripheral blood mononuclear cells (PBMCs) after Roux-en-Y gastric bypass (RYGB) is poorly characterized. Markers of these processes may provide a deeper understanding of the mechanisms that underlie these events. The main goal of this study was to identify changes in PBMC gene expression in women with obesity before and 6 months after RYGB-induced weight loss. METHODS The ribonucleic acid (RNA) of PBMCs from 13 obese women was analyzed before and 6 months after RYGB; the RNA of PBMCs from nine healthy women served as control. The gene expression levels were determined by microarray analysis. Significant differences in gene expression were validated by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS Microarray analysis for comparison of the pre- and postoperative periods showed that 1366 genes were differentially expressed genes (DEGs). The main pathways were related to gene transcription; lipid, energy, and glycide metabolism; inflammatory and immunological response; cell differentiation; oxidative stress regulation; response to endogenous and exogenous stimuli; substrate oxidation; mTOR signaling pathway; interferon signaling; mitogen-activated protein kinases (MAPK), cAMP response element binding protein (CREB1), heat shock factor 1 (HSF1), and sterol regulatory element binding protein 1c (SREBP-1c) gene expression; adipocyte differentiation; and methylation. CONCLUSIONS Six months after bariatric surgery and significant weight loss, many molecular pathways involved in obesity and metabolic diseases change. These findings are an important tool to identify potential targets for therapeutic intervention and clinical practice of nutritional genomics in obesity.
Collapse
|
9
|
|
10
|
Chaves DFS, Carvalho PC, Brasili E, Rogero MM, Hassimotto NA, Diedrich JK, Moresco JJ, Yates JR, Lajolo FM. Proteomic Analysis of Peripheral Blood Mononuclear Cells after a High-Fat, High-Carbohydrate Meal with Orange Juice. J Proteome Res 2017; 16:4086-4092. [DOI: 10.1021/acs.jproteome.7b00476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Daniela F. S. Chaves
- Department of Food Science and Experimental Nutrition, School of
Pharmaceutical Sciences, University of São Paulo, São
Paulo 03178-200, Brazil
- Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, São Paulo 05468-140, Brazil
| | - Paulo C. Carvalho
- Laboratory
for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz, Paraná 81310-020, Brazil
| | - Elisa Brasili
- Department of Food Science and Experimental Nutrition, School of
Pharmaceutical Sciences, University of São Paulo, São
Paulo 03178-200, Brazil
- Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, São Paulo 05468-140, Brazil
| | - Marcelo M. Rogero
- Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, São Paulo 05468-140, Brazil
- Department of Nutrition, School of Public
Health, University of São Paulo, São Paulo 03178-200, Brazil
| | - Neuza A. Hassimotto
- Department of Food Science and Experimental Nutrition, School of
Pharmaceutical Sciences, University of São Paulo, São
Paulo 03178-200, Brazil
- Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, São Paulo 05468-140, Brazil
| | - Jolene K. Diedrich
- Department of Chemical Physiology, The Scripps Research Institute, San Diego, California 92121, United States
| | - James J. Moresco
- Department of Chemical Physiology, The Scripps Research Institute, San Diego, California 92121, United States
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, San Diego, California 92121, United States
| | - Franco M. Lajolo
- Department of Food Science and Experimental Nutrition, School of
Pharmaceutical Sciences, University of São Paulo, São
Paulo 03178-200, Brazil
- Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, São Paulo 05468-140, Brazil
| |
Collapse
|
11
|
Saboori S, Koohdani F, Nematipour E, Yousefi Rad E, Saboor-Yaraghi AA, Javanbakht MH, Eshraghian MR, Ramezani A, Djalali M. Beneficial effects of omega-3 and vitamin E coadministration on gene expression of SIRT1 and PGC1α and serum antioxidant enzymes in patients with coronary artery disease. Nutr Metab Cardiovasc Dis 2016; 26:489-494. [PMID: 27033026 DOI: 10.1016/j.numecd.2015.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIM SIRT1 and PGC1α are two important genes, which play critical roles in regulating oxidative stress and inflammation processes. The study aimed assess the effects of coadministration of omega-3 and vitamin E supplements on SIRT1 and PGC1α gene expression and serum levels of antioxidant enzymes in coronary artery disease (CAD) patients. METHODS AND RESULTS Participants of this randomized controlled trial included 60 CAD male patients who were categorized into three groups: Group 1 received omega-3 (4 g/day) and vitamin E placebo (OP), group 2 omega-3 (4 g/day) and vitamin E (400 IU/day; OE), and group 3 omega-3 and vitamin E placebos (PP) for 2 months. Gene expression of SIRT1 and PGC1α in peripheral blood mononuclear cells (PBMCS) was assessed by reverse transcription polymerase chain reaction (RT-PCR). Furthermore, serum antioxidant enzyme and high-sensitivity C-reactive protein (hsCRP) levels were assessed at the beginning and end of the intervention. Gene expression of SIRT1 and PGC1α increased significantly in the OE group (P = 0.039 and P = 0.050, respectively). Catalase and hsCRP levels increased significantly in the OE and OP groups. However, glutathione peroxidase (GPX) and superoxide dismutase (SOD) levels did not statistically change in all groups. The total antioxidant capacity (TAC) increased significantly in the OE group (P = 0.009) but not in OP and PP groups. CONCLUSION Supplementation of omega-3 fatty acids in combination with vitamin E may have beneficial effects on CAD patients by increasing gene expression of SIRT1 and PGC1α and improving oxidative stress and inflammation in these patients.
Collapse
Affiliation(s)
- S Saboori
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, HojatDoost St, Tehran, Iran; Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - F Koohdani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, HojatDoost St, Tehran, Iran
| | - E Nematipour
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - E Yousefi Rad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - A A Saboor-Yaraghi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, HojatDoost St, Tehran, Iran
| | - M H Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, HojatDoost St, Tehran, Iran
| | - M R Eshraghian
- Department of Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - A Ramezani
- Department of Basic sciences and Nutrition, Cardiovascular Research Center, School of public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - M Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, HojatDoost St, Tehran, Iran.
| |
Collapse
|
12
|
Odriozola L, Corrales FJ. Discovery of nutritional biomarkers: future directions based on omics technologies. Int J Food Sci Nutr 2016; 66 Suppl 1:S31-40. [PMID: 26241009 DOI: 10.3109/09637486.2015.1038224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the interactions between food and human biology is of utmost importance to facilitate the development of more efficient nutritional interventions that might improve our wellness status and future health outcomes by reducing risk factors for non-transmittable chronic diseases, such as cardiovascular diseases, cancer, obesity and metabolic syndrome. Dissection of the molecular mechanisms that mediate the physiological effects of diets and bioactive compounds is one of the main goals of current nutritional investigation and the food industry as might lead to the discovery of novel biomarkers. It is widely recognized that the availability of robust nutritional biomarkers represents a bottleneck that delays the innovation process of the food industry. In this regard, omics sciences have opened up new avenues of research and opportunities in nutrition. Advances in mass spectrometry, nuclear magnetic resonance, next generation sequencing and microarray technologies allow massive genome, gene expression, proteomic and metabolomic profiling, obtaining a global and in-depth analysis of physiological/pathological scenarios. For this reason, omics platforms are most suitable for the discovery and characterization of novel nutritional markers that will define the nutritional status of both individuals and populations in the near future, and to identify the nutritional bioactive compounds responsible for the health outcomes.
Collapse
Affiliation(s)
- Leticia Odriozola
- Proteomics Laboratory, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | | |
Collapse
|
13
|
Shen X, Nair B, Mahajan SD, Jiang X, Li J, Shen S, Tu C, Hsiao CB, Schwartz SA, Qu J. New Insights into the Disease Progression Control Mechanisms by Comparing Long-Term-Nonprogressors versus Normal-Progressors among HIV-1-Positive Patients Using an Ion Current-Based MS1 Proteomic Profiling. J Proteome Res 2015; 14:5225-39. [PMID: 26484939 DOI: 10.1021/acs.jproteome.5b00621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For decades, epidemiological studies have found significant differences in the susceptibility to disease progression among HIV-carrying patients. One unique group of HIV-1-positive patients, the long-term-nonprogressors (LTNP), exhibits far superior ability in virus control compared with normal-progressors (NP), which proceed to Acquired Immune Deficiency Syndrome (AIDS) much more rapidly. Nonetheless, elucidation of the underlying mechanisms of virus control in LTNP is highly valuable in disease management and treatment but remains poorly understood. Peripheral blood mononuclear cells (PBMC) have been known to play important roles in innate immune responses and thereby would be of great interest for the investigation of the mechanisms of virus defense in LTNP. Here, we described the first comparative proteome analysis of PBMC from LTNP (n = 10) and NP (n = 10) patients using a reproducible ion-current-based MS1 approach, which includes efficient and reproducible sample preparation and chromatographic separation followed by an optimized pipeline for protein identification and quantification. This strategy enables analysis of many biological samples in one set with high quantitative precision and extremely low missing data. In total, 925 unique proteins were quantified under stringent criteria without missing value in any of the 20 subjects, and 87 proteins showed altered expressions between the two patient groups. These proteins are implicated in key processes such as cytoskeleton organization, defense response, apoptosis regulation, intracellular transport, etc., which provided novel insights into the control of disease progressions in LTNP versus NP, and the expression and phosphorylation states of key regulators were further validated by immunoassay. For instance, (1) SAMH1, a potent and "hot" molecule facilitating HIV-1 defense, was for the first time found elevated in LTNP compared with NP or healthy controls; elevated proteins from IFN-α response pathway may also contribute to viral control in LTNP; (2) decreased proapoptotic protein ASC along with the elevation of antiapoptotic proteins may contribute to the less apoptotic profile in PBMC of LTNP; and (3) elevated actin polymerization and less microtubule assembly that impede viral protein transport were first observed in LTNP. These results not only enhanced the understanding of the mechanisms for nonprogression of LTNP, but also may afford highly valuable clues to direct therapeutic efforts. Moreover, this work also demonstrated the ion-current-based MS1 approach as a reliable tool for large-scale clinical research.
Collapse
Affiliation(s)
- Xiaomeng Shen
- The State of New York Center for Excellence in Bioinformatics and Life Science, 701 Ellicott Street, Buffalo, New York 14203, United States
| | | | | | - Xiaosheng Jiang
- The State of New York Center for Excellence in Bioinformatics and Life Science, 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Jun Li
- The State of New York Center for Excellence in Bioinformatics and Life Science, 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Shichen Shen
- The State of New York Center for Excellence in Bioinformatics and Life Science, 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Chengjian Tu
- The State of New York Center for Excellence in Bioinformatics and Life Science, 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Chiu-Bin Hsiao
- Infectious Disease Division, Department of Medicine, Allegheny General Hospital , Pittsburgh, Pennsylvania 15212, United States
| | | | - Jun Qu
- The State of New York Center for Excellence in Bioinformatics and Life Science, 701 Ellicott Street, Buffalo, New York 14203, United States
| |
Collapse
|
14
|
Polkinghorne VR, Standeven KF, Schroeder V, Carter AM. Role of proteomic technologies in understanding risk of arterial thrombosis. Expert Rev Proteomics 2014; 6:539-50. [DOI: 10.1586/epr.09.75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Kussmann M. Role of proteomics in nutrigenomics and nutrigenetics. Expert Rev Proteomics 2014; 6:453-6. [DOI: 10.1586/epr.09.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
de Roos B. Proteomic analysis of human plasma and blood cells in nutritional studies: development of biomarkers to aid disease prevention. Expert Rev Proteomics 2014; 5:819-26. [DOI: 10.1586/14789450.5.6.819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Marlow G, Ellett S, Ferguson IR, Zhu S, Karunasinghe N, Jesuthasan AC, Han DY, Fraser AG, Ferguson LR. Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn's disease patients. Hum Genomics 2013; 7:24. [PMID: 24283712 PMCID: PMC4174666 DOI: 10.1186/1479-7364-7-24] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/16/2013] [Indexed: 12/13/2022] Open
Abstract
Background Inflammation is an essential immune response; however, chronic inflammation results in disease including Crohn's disease. Therefore, reducing the inflammation can yield a significant health benefit, and one way to achieve this is through diet. We developed a Mediterranean-inspired anti-inflammatory diet and used this diet in a 6-week intervention in a Crohn's disease population. We examined changes in inflammation and also in the gut microbiota. We compared the results of established biomarkers, C-reactive protein and the micronuclei assay, of inflammation with results from a transcriptomic approach. Results Data showed that being on our diet for 6 weeks was able to reduce the established biomarkers of inflammation. However, using transcriptomics, we observed significant changes in gene expression. Although no single gene stood out, the cumulative effect of small changes in many genes combined to have a beneficial effect. Data also showed that our diet resulted in a trend of normalising the microbiota. Conclusions This study showed that our Mediterranean-inspired diet appeared to benefit the health of people with Crohn's disease. Our participants showed a trend for reduced markers of inflammation and normalising of the microbiota. The significant changes in gene expression after 6 weeks highlighted the increased sensitivity of using transcriptomics when compared to the established biomarkers and open up a new era of dietary intervention studies.
Collapse
Affiliation(s)
- Gareth Marlow
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cornelis MC, Hu FB. Systems Epidemiology: A New Direction in Nutrition and Metabolic Disease Research. Curr Nutr Rep 2013; 2. [PMID: 24278790 DOI: 10.1007/s13668-013-0052-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Systems epidemiology applied to the field of nutrition has potential to provide new insight into underlying mechanisms and ways to study the health effects of specific foods more comprehensively. Human intervention and population-based studies have identified i) common genetic factors associated with several nutrition-related traits and ii) dietary factors altering the expression of genes and levels of proteins and metabolites related to inflammation, lipid metabolism and/or gut microbial metabolism, results of high relevance to metabolic disease. System-level tools applied type 2 diabetes and related conditions have revealed new pathways that are potentially modified by diet and thus offer additional opportunities for nutritional investigations. Moving forward, harnessing the resources of existing large prospective studies within which biological samples have been archived and diet and lifestyle have been measured repeatedly within individual will enable systems-level data to be integrated, the outcome of which will be improved personalized optimal nutrition for prevention and treatment of disease.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|
19
|
Flaxseed lignan complex administration in older human type 2 diabetics manages central obesity and prothrombosis-an invitation to further investigation into polypharmacy reduction. J Nutr Metab 2012; 2012:585170. [PMID: 23094144 PMCID: PMC3471460 DOI: 10.1155/2012/585170] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/11/2022] Open
Abstract
Aim. Animal and human study evidence supports the hypothesis that flaxseed lignan complex (FLC) at a dose of 600 mg secoisolariciresinol diglucoside (SDG)/day for three months would combat hyperglycaemia, dyslipidemia, blood pressure, central obesity, prothrombotic state, inflammation, and low density lipoprotein (LDL) oxidation. Methods. Sixteen type 2 diabetic patients completed this double-blind, randomised crossover placebo-controlled study. A univariate repeated measures analysis of covariance (significance P < 0.05) was followed by a mixed linear model effects analysis corrected for multiple comparisons (MCC). Results. Prior to MCC, FLC caused decreased fasting plasma glucose, A1c, inflammation (c-reactive protein (CRP) and interleukin-6 (IL-6)), and increased bleeding time. After correction for multiple comparisons, FLC induced a statistically significant increase in bleeding time and smaller waist circumference gain. No treatment effect occurred in the other variables before or after adjustment. Conclusions. It is concluded that FLC significantly increased bleeding time thus reducing the prothrombotic state, reduced central obesity gain as measured by waist circumference, and did not affect significantly the other dependent variables measured after adjustment for multiple comparisons. These findings, not yet published in human type 2 diabetes, suggest that this FLC dose over at least three months, may, subject to further investigation, reduce polypharmacy.
Collapse
|
20
|
de Mello VDF, Kolehmanien M, Schwab U, Pulkkinen L, Uusitupa M. Gene expression of peripheral blood mononuclear cells as a tool in dietary intervention studies: What do we know so far? Mol Nutr Food Res 2012; 56:1160-72. [PMID: 22610960 DOI: 10.1002/mnfr.201100685] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/01/2012] [Accepted: 03/11/2012] [Indexed: 12/21/2022]
Abstract
Peripheral blood mononuclear cells (PBMCs) generally refer to monocytes and lymphocytes, representing cells of the innate and adaptive immune systems. PBMCs are a promising target tissue in the field of nutrigenomics because they seem to reflect the effects of dietary modifications at the level of gene expression. In this review, we describe and discuss the scientific literature concerning the use of gene expression at the mRNA level measured from PBMCs in dietary interventions studies conducted in humans. A search of literature was undertaken using PubMed (last assessed November 24, 2011) and 20 articles were selected for discussion. Currently, results from these studies showed that PBMCs seem to reflect liver environment and complement adipose tissue findings in transcriptomics. PBMC gene expression after dietary intervention studies can be used for studying the response of certain genes related to fatty acid and cholesterol metabolism, and to explore the response of dietary interventions in relation to inflammation. However, PBMC transcriptomics from dietary intervention studies have not resulted yet in clear confirmation of candidate genes related to disease risk. Use of microarray technology in larger well-designed dietary intervention studies is still needed for exploring PBMC potential in the field of nutrigenomics.
Collapse
Affiliation(s)
- Vanessa Derenji Ferreira de Mello
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | |
Collapse
|
21
|
Dukes F, Kanterakis S, Lee J, Pietrofesa R, Andersen ES, Arguiri E, Tyagi S, Showe L, Amrani Y, Christofidou-Solomidou M. Gene expression profiling of flaxseed in mouse lung tissues-modulation of toxicologically relevant genes. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:47. [PMID: 22520446 PMCID: PMC3409040 DOI: 10.1186/1472-6882-12-47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/20/2012] [Indexed: 01/19/2023]
Abstract
BACKGROUND Flaxseed (FS), a nutritional supplement consisting mainly of omega-3 fatty acids and lignan phenolics has potent anti-inflammatory, anti-fibrotic and antioxidant properties. The usefulness of flaxseed as an alternative and complimentary treatment option has been known since ancient times. We have shown that dietary FS supplementation ameliorates oxidative stress and inflammation in experimental models of acute and chronic lung injury in mice resulting from diverse toxicants. The development of lung tissue damage in response to direct or indirect oxidant stress is a complex process, associated with changes in expression levels of a number of genes. We therefore postulated that flaxseed might modulate gene expression of vital signaling pathways, thus interfering with the development of tissue injury. METHODS We evaluated gene expression in lungs of flaxseed-fed (10%FS) mice under unchallenged, control conditions. We reasoned that array technology would provide a powerful tool for studying the mechanisms behind this response and aid the evaluation of dietary flaxseed intervention with a focus on toxicologically relevant molecular gene targets. Gene expression levels in lung tissues were analyzed using a large-scale array whereby 28,800 genes were evaluated. RESULTS 3,713 genes (12.8%) were significantly (p < 0.05) differentially expressed, of which 2,088 had a >1.5-fold change. Genes affected by FS include those in protective pathways such as Phase I and Phase II. CONCLUSIONS The array studies have provided information on how FS modulates gene expression in lung and how they might be related to protective mechanisms. In addition, our study has confirmed that flaxseed is a nutritional supplement with potentially useful therapeutic applications in complementary and alternative (CAM) medicine especially in relation to treatment of lung disease.
Collapse
|
22
|
Cardoso Carraro JC, Dantas MIDS, Espeschit ACR, Martino HSD, Ribeiro SMR. Flaxseed and Human Health: Reviewing Benefits and Adverse Effects. FOOD REVIEWS INTERNATIONAL 2012. [DOI: 10.1080/87559129.2011.595025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Shamsara J, Behravan J, Falsoleiman H, Mohammadpour AH, Rendeirs J, Ramezani M. Pentoxifylline administration changes protein expression profile of coronary artery disease patients. Gene 2011; 487:107-11. [DOI: 10.1016/j.gene.2011.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 10/17/2022]
|
24
|
Shamsara J, Mohammadpour AH, Behravan J, Falsoleiman H, Ramezani M. Pentoxifylline decreases soluble CD40 ligand concentration and CD40 gene expression in coronary artery disease patients. Immunopharmacol Immunotoxicol 2011; 34:523-9. [PMID: 21999662 DOI: 10.3109/08923973.2011.621435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
CONTEXT AND OBJECTIVE Increased level of inflammatory mediators plays a central role in the features of coronary artery diseases (CAD). As pentoxifylline could suppress the inflammatory process and has shown some promising beneficial effects in inflammatory diseases, we evaluated the effect of 2 months pentoxifylline administration in patients with CAD. MATERIALS AND METHODS A randomized placebo-controlled double-blind study design was used. Forty CAD patients (32 males and 8 females) were randomized into either 2 months of pentoxifylline treatment (1200 mg/day) (n = 20) or placebo treatment (n = 20). Blood samples were obtained before and after treatment. Gene expression analysis for mRNA of CD40, p65 and IκBα in peripheral blood mononuclear cells (PBMCs) were performed using real-time reverse-transcription polymerase chain reaction (RT-PCR). Plasma concentration of soluble CD40 (sCD40) ligand as well as protein concentration of p50 were measured by ELISA method. RESULTS Pentoxifylline decreased CD40 mRNA by 45% (p < 0.05) in PBMCs and sCD40 ligand level in plasma of CAD patients by 34% (p < 0.01). DISCUSSION AND CONCLUSION Pentoxifylline treatment can suppress the CD40/CD40 ligand system activation in CAD patients. As this system has a role in plaque progression and plaque rupture, pentoxifylline could be a good choice for future studies in preventing cardiovascular events.
Collapse
Affiliation(s)
- Jamal Shamsara
- Department of Biotechnology, School of Pharmacy, Mashhad, Iran
| | | | | | | | | |
Collapse
|
25
|
Moore JB, Weeks ME. Proteomics and systems biology: current and future applications in the nutritional sciences. Adv Nutr 2011; 2:355-64. [PMID: 22332076 PMCID: PMC3125684 DOI: 10.3945/an.111.000554] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the last decade, advances in genomics, proteomics, and metabolomics have yielded large-scale datasets that have driven an interest in global analyses, with the objective of understanding biological systems as a whole. Systems biology integrates computational modeling and experimental biology to predict and characterize the dynamic properties of biological systems, which are viewed as complex signaling networks. Whereas the systems analysis of disease-perturbed networks holds promise for identification of drug targets for therapy, equally the identified critical network nodes may be targeted through nutritional intervention in either a preventative or therapeutic fashion. As such, in the context of the nutritional sciences, it is envisioned that systems analysis of normal and nutrient-perturbed signaling networks in combination with knowledge of underlying genetic polymorphisms will lead to a future in which the health of individuals will be improved through predictive and preventative nutrition. Although high-throughput transcriptomic microarray data were initially most readily available and amenable to systems analysis, recent technological and methodological advances in MS have contributed to a linear increase in proteomic investigations. It is now commonplace for combined proteomic technologies to generate complex, multi-faceted datasets, and these will be the keystone of future systems biology research. This review will define systems biology, outline current proteomic methodologies, highlight successful applications of proteomics in nutrition research, and discuss the challenges for future applications of systems biology approaches in the nutritional sciences.
Collapse
Affiliation(s)
- J. Bernadette Moore
- Nutritional Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK,To whom correspondence should be addressed. E-mail:
| | - Mark E. Weeks
- Veterinary Laboratories Agency, New Haw, KT15 3NB, UK
| |
Collapse
|
26
|
Wittwer J, Rubio-Aliaga I, Hoeft B, Bendik I, Weber P, Daniel H. Nutrigenomics in human intervention studies: Current status, lessons learned and future perspectives. Mol Nutr Food Res 2011; 55:341-58. [DOI: 10.1002/mnfr.201000512] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 11/08/2022]
|
27
|
Peterson J, Dwyer J, Adlercreutz H, Scalbert A, Jacques P, McCullough ML. Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutr Rev 2010; 68:571-603. [PMID: 20883417 DOI: 10.1111/j.1753-4887.2010.00319.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The present review of the literature on lignan physiology and lignan intervention and epidemiological studies was conducted to determine if lignans decrease the risks of cardiovascular disease in Western populations. Five intervention studies using flaxseed lignan supplements indicated beneficial associations with C-reactive protein, and a meta-analysis that included these studies also suggested lignans have a lowering effect on plasma total and low-density lipoprotein cholesterol. Three intervention studies using sesamin supplements indicated possible lipid- and blood pressure-lowering associations. Eleven human observational epidemiological studies examined dietary intakes of lignans in relation to cardiovascular disease risk. Five showed decreased risk with either increasing dietary intakes of lignans or increased levels of serum enterolactone (an enterolignan used as a biomarker of lignan intake), five studies were of borderline significance, and one was null. The associations between lignans and decreased risk of cardiovascular disease are promising, but they are yet not well established, perhaps due to low lignan intakes in habitual Western diets. At the higher doses used in intervention studies, associations were more evident.
Collapse
Affiliation(s)
- Julia Peterson
- Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging and Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachussets, USA
| | | | | | | | | | | |
Collapse
|
28
|
Kussmann M, Panchaud A, Affolter M. Proteomics in nutrition: status quo and outlook for biomarkers and bioactives. J Proteome Res 2010; 9:4876-87. [PMID: 20718507 DOI: 10.1021/pr1004339] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Food and beverages are the only physical matter we take into our body, if we disregard the air we inhale and the drugs we may have to apply. While traditional nutrition research has aimed at providing nutrients to nourish populations and preventing specific nutrient deficiencies, it more recently explores health-related aspects of individual bioactive components as well as entire diets and this at group rather than population level. The new era of nutrition research translates empirical knowledge to evidence-based molecular science. Modern nutrition research focuses on promoting health, preventing or delaying the onset of disease, optimizing performance, and assessing risk. Personalized nutrition is a conceptual analogue to personalized medicine and means adapting food to individual needs. Nutrigenomics and nutrigenetics build the science foundation for understanding human variability in preferences, requirements, and responses to diet and may become the future tools for consumer assessment motivated by personalized nutritional counseling for health maintenance and disease prevention. The scope of this paper is to review the current and future aspects of nutritional proteomics, focusing on the two main outputs: identification of health biomarkers and analysis of food bioactives.
Collapse
Affiliation(s)
- Martin Kussmann
- Functional Genomics Group, Department of BioAnalytical Sciences, Nestlé Research Center, Lausanne, Switzerland.
| | | | | |
Collapse
|
29
|
Proteomics at the center of nutrigenomics: Comprehensive molecular understanding of dietary health effects. Nutrition 2009; 25:1085-93. [DOI: 10.1016/j.nut.2009.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 05/31/2009] [Indexed: 11/18/2022]
|
30
|
Crosley LK, Duthie SJ, Polley AC, Bouwman FG, Heim C, Mulholland F, Horgan G, Johnson IT, Mariman EC, Elliott RM, Daniel H, de Roos B. Variation in protein levels obtained from human blood cells and biofluids for platelet, peripheral blood mononuclear cell, plasma, urine and saliva proteomics. GENES AND NUTRITION 2009; 4:95-102. [PMID: 19408033 DOI: 10.1007/s12263-009-0121-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 04/14/2009] [Indexed: 12/21/2022]
Abstract
Blood cells and biofluid proteomics are emerging as a valuable tool to assess effects of interventions on health and disease. This study is aimed to assess the amount and variability of proteins from platelets, peripheral blood mononuclear cells (PBMC), plasma, urine and saliva from ten healthy volunteers for proteomics analysis, and whether protein yield is affected by prolonged fasting. Volunteers provided blood, saliva and morning urine samples once a week for 4 weeks after an overnight fast. Volunteers were fasted for a further 24 h after the fourth sampling before providing their final samples. Each 10 mL whole blood provided 400-1,500 mug protein from platelets, and 100-600 mug from PBMC. 30 muL plasma depleted of albumin and IgG provided 350-650 mug protein. A sample of morning urine provided 0.9-8.6 mg protein/dL, and a sample of saliva provided 70-950 mug protein/mL. None of these yields were influenced by the degree of fasting (overnight or 36 h). In conclusion, in contrast to the yields from plasma, platelets and PBMC, the protein yields of urine and saliva samples were highly variable within and between subjects. Certain disease conditions may cause higher or lower PBMC counts and thus protein yields, or increased urinary protein levels.
Collapse
Affiliation(s)
- L Katie Crosley
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen, AB51 7HJ, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rideout TC, Harding SV, Jones PJ, Fan MZ. Guar gum and similar soluble fibers in the regulation of cholesterol metabolism: current understandings and future research priorities. Vasc Health Risk Manag 2009; 4:1023-33. [PMID: 19183750 PMCID: PMC2605338 DOI: 10.2147/vhrm.s3512] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The hypocholesterolemic effects associated with soluble fiber consumption are clear from animal model and human clinical investigations. Moreover, the modulation of whole-body cholesterol metabolism in response to dietary fiber consumption, including intestinal cholesterol absorption and fecal sterol and bile acid loss, has been the subject of many published reports. However, our understanding of how dietary fibers regulate molecular events at the gene/protein level and alter cellular cholesterol metabolism is limited. The modern emphasis on molecular nutrition and rapid progress in 'high-dimensional' biological techniques will permit further explorations of the role of genetic polymorphisms in determining the variable interindividual responses to soluble fibers. Furthermore, with traditional molecular biology tools and the application of 'omic' technology, specific insight into how fibers modulate the expression of genes and proteins that regulate intestinal cholesterol absorption and alter hepatic sterol balance will be gained. Detailed knowledge of the molecular mechanisms by which soluble fibers reduce plasma cholesterol concentrations is paramount to developing novel fiber-based "cocktails" that target specific metabolic pathways to gain maximal cholesterol reductions.
Collapse
Affiliation(s)
- Todd C Rideout
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
32
|
Vergara D, Chiriacò F, Acierno R, Maffia M. Proteomic map of peripheral blood mononuclear cells. Proteomics 2008; 8:2045-51. [PMID: 18491318 DOI: 10.1002/pmic.200700726] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the field of proteomics extensive efforts have been focused on the knowledge of proteins expressed by different cell types. In particular, enormous progress has been done in the characterization of blood cellular components. In this work, we have established a public 2-DE database for human peripheral blood mononuclear cells (PBMCs) proteins. Two hundred and forty-six spots corresponding to 174 different proteins have been identified on 2-DE gels from PBMCs isolated from six healthy individuals. All the identified proteins have been classified in thirteen categories on the basis of their differential functions or cellular localization and annotated at the http://physiology.unile.it/proteomics. The role of several proteins has been discussed in relation to their biological function. We intend to show the potentiality of PBMCs to investigate the proteomics changes possibly associated with a large number of pathologies such as autoimmune, neurodegenerative and cancer diseases.
Collapse
Affiliation(s)
- Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | | | | |
Collapse
|
33
|
Linseisen J, Rohrmann S. Biomarkers of dietary intake of flavonoids and phenolic acids for studying diet-cancer relationship in humans. Eur J Nutr 2008; 47 Suppl 2:60-8. [PMID: 18458835 DOI: 10.1007/s00394-008-2007-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND For many polyphenolic compounds found in plant-derived food, biological effects possibly relevant for cancer prevention have been shown. Since dietary intake estimates suffer from imprecision, the measurement of these compounds (or metabolites of) in biological specimens collected in epidemiological studies is expected to improve accuracy of exposure estimation. AIM OF THE STUDY The current use of biomarkers in etiologic studies on polyphenolics and cancer risk is evaluated. In addition, available analytical methods are discussed with respect to the requirements for their integration in epidemiological studies, putting specific emphasis on the epidemiological validation of such markers. METHODS The scientific literature was screened for epidemiologic studies on the relationship of flavonoid and phenolic acid concentrations in human specimens (i.e. blood, urine) and cancer risk. In addition, original data on intra- and inter-subject variability of several flavonoids and phenolic acids are presented. RESULTS Although several techniques are used in bioavailability or short-term intervention studies, their integration in epidemiological studies is very limited. An exception are phytoestrogens where validated immunoassays allow the rapid measurement of large sample numbers with small sample volume. For several polyphenols, the data on the epidemiologic validity encourages for their use in epidemiological studies. CONCLUSIONS There are valid possibilities for additional biomarkers of flavonoid and phenolic acid intake that are best applied in prospective studies with more than one biological sample per subject. Currently, a combination of a single biomarker measurement with long-term dietary intake estimates will probably be the most valuable choice to decrease measurement error in exposure data.
Collapse
Affiliation(s)
- Jakob Linseisen
- Unit of Nutritional Epidemiology, Division of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | | |
Collapse
|
34
|
Proteomics as a tool for the modelling of biological processes and biomarker development in nutrition research. Br J Nutr 2008; 99 Suppl 3:S66-71. [DOI: 10.1017/s0007114508006909] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nutrition research has slowly started to adopt the proteomics techniques to measure changes in the protein complement of a biological system. This enables modelling of biological processes in response to dietary interventions, as well as the elucidation of novel biomarkers for health or disease that are sensitive to such interventions. There are limited studies on the effect of micronutrients on the proteome, so this review concentrates rather more on dietary intervention studies that have used proteomics (mainly classical 2D gel electrophoresis combined with mass spectrometry) to elucidate changes in pathways that relate to glucose and fatty acid metabolism, oxidative stress, anti-oxidant defence mechanisms and redox status. The ability to measure regulation of more low abundant proteins, such as those involved in inflammatory pathways, as well as the evaluation and validation of newly discovered candidate biomarkers in human biofluids, may depend on the introduction of more quantitative and sensitive methods like multiple reaction monitoring (MRM) and multiplexed immunoassays in nutrition research.
Collapse
|
35
|
Kussmann M, Rezzi S, Daniel H. Profiling techniques in nutrition and health research. Curr Opin Biotechnol 2008; 19:83-99. [DOI: 10.1016/j.copbio.2008.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 12/13/2022]
|