1
|
Pryce G, Sisay S, Giovannoni G, Selwood DL, Baker D. Neuroprotection in an Experimental Model of Multiple Sclerosis via Opening of Big Conductance, Calcium-Activated Potassium Channels. Pharmaceuticals (Basel) 2023; 16:972. [PMID: 37513884 PMCID: PMC10383993 DOI: 10.3390/ph16070972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Big conductance calcium-activated (BK) channel openers can inhibit pathologically driven neural hyperactivity to control symptoms via hyperpolarizing signals to limit neural excitability. We hypothesized that BK channel openers would be neuroprotective during neuroinflammatory, autoimmune disease. The neurodegenerative disease was induced in a mouse experimental autoimmune encephalomyelitis model with translational value to detect neuroprotection in multiple sclerosis. Following the treatment with the BK channel openers, BMS-204253 and VSN16R, neuroprotection was assessed using subjective and objective clinical outcomes and by quantitating spinal nerve content. Treatment with BMS-204253 and VSN16R did not inhibit the development of relapsing autoimmunity, consistent with minimal channel expression via immune cells, nor did it change leukocyte levels in rodents or humans. However, it inhibited the accumulation of nerve loss and disability as a consequence of autoimmunity. Therefore, in addition to symptom control, BK channel openers have the potential to save nerves from excitotoxic damage and could be useful as either stand-alone neuroprotective agents or as add-ons to current disease-modifying treatments that block relapsing MS but do not have any direct neuroprotective activity.
Collapse
Affiliation(s)
- Gareth Pryce
- BartsMS, The Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Sofia Sisay
- BartsMS, The Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Gavin Giovannoni
- BartsMS, The Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - David L Selwood
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - David Baker
- BartsMS, The Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
2
|
The Relationship of the Mechanisms of the Pathogenesis of Multiple Sclerosis and the Expression of Endogenous Retroviruses. BIOLOGY 2020; 9:biology9120464. [PMID: 33322628 PMCID: PMC7764762 DOI: 10.3390/biology9120464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Simple Summary Multiple sclerosis is a neurodegenerative disease of the central nervous system, develops at an early age and often leads to a disability. The etiological cause of the disease has not been fully elucidated, and as a result, no effective treatment is available. This review summarizes the current knowledge about the relationship between the expression of human endogenous retroviruses and the pathogenesis of multiple sclerosis. The epigenetic mechanisms of transcriptional regulation, the role of transcription factors, cytokines, and exogenous viruses are also addressed in this review. The elucidation of the mechanisms of an increase in endogenous retrovirus expression in multiple sclerosis could help to develop therapeutic strategies and novel methods for early diagnosis and treatment of the disease. Abstract Two human endogenous retroviruses of the HERV-W family can act as cofactors triggering multiple sclerosis (MS): MS-associated retrovirus (MSRV) and ERVWE1. Endogenous retroviral elements are believed to have integrated in our ancestors’ DNA millions of years ago. Their involvement in the pathogenesis of various diseases, including neurodegenerative pathologies, has been demonstrated. Numerous studies have shown a correlation between the deterioration of patients’ health and increased expression of endogenous retroviruses. The exact causes and mechanisms of endogenous retroviruses activation remains unknown, which hampers development of therapeutics. In this review, we will summarize the main characteristics of human endogenous W retroviruses and describe the putative mechanisms of activation, including epigenetic mechanisms, humoral factors as well as the role of the exogenous viral infections.
Collapse
|
3
|
Villalobo A, Ishida H, Vogel HJ, Berchtold MW. Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:507-521. [PMID: 29247668 DOI: 10.1016/j.bbamcr.2017.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/29/2023]
Abstract
Calmodulin (CaM) is a universal regulator for a huge number of proteins in all eukaryotic cells. Best known is its function as a calcium-dependent modulator of the activity of enzymes, such as protein kinases and phosphatases, as well as other signaling proteins including membrane receptors, channels and structural proteins. However, less well known is the fact that CaM can also function as a Ca2+-dependent adaptor protein, either by bridging between different domains of the same protein or by linking two identical or different target proteins together. These activities are possible due to the fact that CaM contains two independently-folded Ca2+ binding lobes that are able to interact differentially and to some degree separately with targets proteins. In addition, CaM can interact with and regulates several proteins that function exclusively as adaptors. This review provides an overview over our present knowledge concerning the structural and functional aspects of the role of CaM as an adaptor protein and as a regulator of known adaptor/scaffold proteins.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain.
| | - Hiroaki Ishida
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada
| | - Hans J Vogel
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada.
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
4
|
Abstract
Large conductance Ca(2+)- and voltage-activated K(+) (BK) channels are widely distributed in the postnatal central nervous system (CNS). BK channels play a pleiotropic role in regulating the activity of brain and spinal cord neural circuits by providing a negative feedback mechanism for local increases in intracellular Ca(2+) concentrations. In neurons, they regulate the timing and duration of K(+) influx such that they can either increase or decrease firing depending on the cellular context, and they can suppress neurotransmitter release from presynaptic terminals. In addition, BK channels located in astrocytes and arterial myocytes modulate cerebral blood flow. Not surprisingly, both loss and gain of BK channel function have been associated with CNS disorders such as epilepsy, ataxia, mental retardation, and chronic pain. On the other hand, the neuroprotective role played by BK channels in a number of pathological situations could potentially be leveraged to correct neurological dysfunction.
Collapse
|
5
|
Protein Network Interacting with BK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:127-61. [DOI: 10.1016/bs.irn.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
6
|
Abstract
Substantial evidences implicate that sample preparation and protein extraction in proteomic studies of plant-pathogen interactions are critical to understand cross talk between host and pathogen. Therefore, interest is growing in applying proteomics techniques to investigate simultaneously secreted proteins from rice and pathogen. We have found, however, that most proteins of interest are low abundant so that proper prefractionation or extraction of secreted proteins from extracellular space (ECS) in the rice leaf is required to excavate relevant protein. This chapter describes the preparation of sample and extraction procedure to enrich the proteins interested before separation by 2-DE or LC-MS/MS. This method significantly increases the sensitivity of proteomic comparisons.
Collapse
|
7
|
Kim SG, Wang Y, Lee KH, Park ZY, Park J, Wu J, Kwon SJ, Lee YH, Agrawal GK, Rakwal R, Kim ST, Kang KY. In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J Proteomics 2013; 78:58-71. [DOI: 10.1016/j.jprot.2012.10.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/04/2012] [Accepted: 10/26/2012] [Indexed: 12/22/2022]
|
8
|
Danış Ö, Demir S, Günel A, Aker RG, Gülçebi M, Onat F, Ogan A. Changes in intracellular protein expression in cortex, thalamus and hippocampus in a genetic rat model of absence epilepsy. Brain Res Bull 2011; 84:381-8. [DOI: 10.1016/j.brainresbull.2011.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/03/2011] [Accepted: 02/01/2011] [Indexed: 11/28/2022]
|
9
|
Li Y, Atkin GM, Morales MM, Liu LQ, Tong M, Duncan RK. Developmental expression of BK channels in chick cochlear hair cells. BMC DEVELOPMENTAL BIOLOGY 2009; 9:67. [PMID: 20003519 PMCID: PMC2803478 DOI: 10.1186/1471-213x-9-67] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 12/15/2009] [Indexed: 12/19/2022]
Abstract
Background Cochlear hair cells are high-frequency sensory receptors. At the onset of hearing, hair cells acquire fast, calcium-activated potassium (BK) currents, turning immature spiking cells into functional receptors. In non-mammalian vertebrates, the number and kinetics of BK channels are varied systematically along the frequency-axis of the cochlea giving rise to an intrinsic electrical tuning mechanism. The processes that control the appearance and heterogeneity of hair cell BK currents remain unclear. Results Quantitative PCR results showed a non-monotonic increase in BK α subunit expression throughout embryonic development of the chick auditory organ (i.e. basilar papilla). Expression peaked near embryonic day (E) 19 with six times the transcript level of E11 sensory epithelia. The steady increase in gene expression from E11 to E19 could not explain the sudden acquisition of currents at E18-19, implicating post-transcriptional mechanisms. Protein expression also preceded function but progressed in a sequence from diffuse cytoplasmic staining at early ages to punctate membrane-bound clusters at E18. Electrophysiology data confirmed a continued refinement of BK trafficking from E18 to E20, indicating a translocation of BK clusters from supranuclear to subnuclear domains over this critical developmental age. Conclusions Gene products encoding BK α subunits are detected up to 8 days before the acquisition of anti-BK clusters and functional BK currents. Therefore, post-transcriptional mechanisms seem to play a key role in the delayed emergence of calcium-sensitive currents. We suggest that regulation of translation and trafficking of functional α subunits, near voltage-gated calcium channels, leads to functional BK currents at the onset of hearing.
Collapse
Affiliation(s)
- Yi Li
- University of Illinois at Chicago, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Kathiresan T, Harvey M, Orchard S, Sakai Y, Sokolowski B. A protein interaction network for the large conductance Ca(2+)-activated K(+) channel in the mouse cochlea. Mol Cell Proteomics 2009; 8:1972-87. [PMID: 19423573 PMCID: PMC2722780 DOI: 10.1074/mcp.m800495-mcp200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 05/06/2009] [Indexed: 12/21/2022] Open
Abstract
The large conductance Ca(2+)-activated K(+) or BK channel has a role in sensory/neuronal excitation, intracellular signaling, and metabolism. In the non-mammalian cochlea, the onset of BK during development correlates with increased hearing sensitivity and underlies frequency tuning in non-mammals, whereas its role is less clear in mammalian hearing. To gain insights into BK function in mammals, coimmunoprecipitation and two-dimensional PAGE, combined with mass spectrometry, were used to reveal 174 putative BKAPs from cytoplasmic and membrane/cytoskeletal fractions of mouse cochlea. Eleven BKAPs were verified using reciprocal coimmunoprecipitation, including annexin, apolipoprotein, calmodulin, hippocalcin, and myelin P0, among others. These proteins were immunocolocalized with BK in sensory and neuronal cells. A bioinformatics approach was used to mine databases to reveal binary partners and the resultant protein network, as well as to determine previous ion channel affiliations, subcellular localization, and cellular processes. The search for binary partners using the IntAct molecular interaction database produced a putative global network of 160 nodes connected with 188 edges that contained 12 major hubs. Additional mining of databases revealed that more than 50% of primary BKAPs had prior affiliations with K(+) and Ca(2+) channels. Although a majority of BKAPs are found in either the cytoplasm or membrane and contribute to cellular processes that primarily involve metabolism (30.5%) and trafficking/scaffolding (23.6%), at least 20% are mitochondrial-related. Among the BKAPs are chaperonins such as calreticulin, GRP78, and HSP60 that, when reduced with siRNAs, alter BKalpha expression in CHO cells. Studies of BKalpha in mitochondria revealed compartmentalization in sensory cells, whereas heterologous expression of a BK-DEC splice variant cloned from cochlea revealed a BK mitochondrial candidate. The studies described herein provide insights into BK-related functions that include not only cell excitation, but also cell signaling and apoptosis, and involve proteins concerned with Ca(2+) regulation, structure, and hearing loss.
Collapse
Affiliation(s)
- Thandavarayan Kathiresan
- From the ‡Department of Otolaryngology – Head and Neck Surgery, University of South Florida, College of Medicine, Tampa, Florida 33612 and
| | - Margaret Harvey
- From the ‡Department of Otolaryngology – Head and Neck Surgery, University of South Florida, College of Medicine, Tampa, Florida 33612 and
| | - Sandra Orchard
- §European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, CB10 1SD, United Kingdom
| | - Yoshihisa Sakai
- From the ‡Department of Otolaryngology – Head and Neck Surgery, University of South Florida, College of Medicine, Tampa, Florida 33612 and
| | - Bernd Sokolowski
- From the ‡Department of Otolaryngology – Head and Neck Surgery, University of South Florida, College of Medicine, Tampa, Florida 33612 and
| |
Collapse
|
11
|
Chen XY, Kim ST, Cho WK, Rim Y, Kim S, Kim SW, Kang KY, Park ZY, Kim JY. Proteomics of weakly bound cell wall proteins in rice calli. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:675-685. [PMID: 19038476 DOI: 10.1016/j.jplph.2008.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/27/2008] [Accepted: 09/27/2008] [Indexed: 05/27/2023]
Abstract
In the present work, we present a proteomic analysis of weakly bound cell wall proteins (CWPs) in rice. CWPs from rice calli were extracted with mannitol/CaCl(2), followed by back extraction with water-saturated phenol. The isolated CWPs were evaluated for contamination by cytosolic proteins by measuring the enzymatic activity of an intracellular marker (glucose-6-phosphate dehydrogenase). This revealed the presence of low levels of intracellular proteins and a significant enrichment of CWPs, as compared to the total extract. Protein samples were digested in gels with trypsin and analyzed using the multidimensional protein identification technology (MudPIT). A total of 292 proteins were identified, which included numerous classical CWPs and antioxidant proteins. Bioinformatics analysis showed that 72.6% of these proteins possessed a signal peptide, and a total of 198 proteins were determined to be CWPs in rice. Functional classification divided the extracellular proteins into different groups, including glycosyl hydrolases (23%), antioxidant proteins (12%), cell wall structure-related proteins (6%), metabolic pathways (9%), protein modifications (4%), defense (4%), and protease inhibitors (3%). Furthermore, comparative analysis of our identified rice CWPs with known Arabidopsis CWPs revealed 25 novel rice-specific CWPs. The study described here is an unprecedented large-scale analysis of CWPs in rice.
Collapse
Affiliation(s)
- Xiong-Yan Chen
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cho WK, Chen XY, Chu H, Rim Y, Kim S, Kim ST, Kim SW, Park ZY, Kim JY. Proteomic analysis of the secretome of rice calli. PHYSIOLOGIA PLANTARUM 2009; 135:331-41. [PMID: 19226311 DOI: 10.1111/j.1399-3054.2008.01198.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The cell wall and extracellular matrix in higher plants include secreted proteins that play critical roles in a wide range of cellular processes, such as structural integrity and biogenesis. Compared with the intensive cell wall proteomic studies in Arabidopsis, the list of cell wall proteins identified in monocot species is lacking. Therefore, we conducted a large-scale proteomic analysis of secreted proteins from rice. Highly purified secreted rice proteins were obtained from the medium of a suspension of callus culture and were analyzed with multidimensional protein identification technology (MudPIT). As a result, we could detect a total of 555 rice proteins by MudPIT analysis. Based on bioinformatic analyses, 27.7% (154 proteins) of the identified proteins are considered to be secreted proteins because they possess a signal peptide for the secretory pathway. Among the 154 identified proteins, 27% were functionally categorized as stress response proteins, followed by metabolic proteins (26%) and factors involved in protein modification (24%). Comparative analysis of cell wall proteins from Arabidopsis and rice revealed that one third of the secreted rice proteins overlapped with those of Arabidopsis. Furthermore, 25 novel rice-specific secreted proteins were found. This work presents the large scale of the rice secretory proteome from culture medium, which contributes to a deeper understanding of the rice secretome.
Collapse
Affiliation(s)
- Won Kyong Cho
- Division of Applied Life Science (BK21 Program), Graduate School, Environmental Biotechnology National Core Research Center, PMBBRC, Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Backbone dynamics of the 18.5 kDa isoform of myelin basic protein reveals transient alpha-helices and a calmodulin-binding site. Biophys J 2008; 94:4847-66. [PMID: 18326633 DOI: 10.1529/biophysj.107.125823] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The 18.5 kDa isoform of myelin basic protein (MBP) is the predominant form in adult human central nervous system myelin. It is an intrinsically disordered protein that functions both in membrane adhesion, and as a linker connecting the oligodendrocyte membrane to the underlying cytoskeleton; its specific interactions with calmodulin and SH3-domain containing proteins suggest further multifunctionality in signaling. Here, we have used multidimensional heteronuclear nuclear magnetic resonance spectroscopy to study the conformational dependence on environment of the protein in aqueous solution (100 mM KCl) and in a membrane-mimetic solvent (30% TFE-d(2)), particularly to analyze its secondary structure using chemical shift indexing, and to investigate its backbone dynamics using (15)N spin relaxation measurements. Collectively, the data revealed three major segments of the protein with a propensity toward alpha-helicity that was stabilized by membrane-mimetic conditions: T33-D46, V83-T92, and T142-L154 (murine 18.5 kDa sequence numbering). All of these regions corresponded with bioinformatics predictions of ordered secondary structure. The V83-T92 region comprises a primary immunodominant epitope that had previously been shown by site-directed spin labeling and electron paramagnetic resonance spectroscopy to be alpha-helical in membrane-reconstituted systems. The T142-L154 segment overlapped with a predicted calmodulin-binding site. Chemical shift perturbation experiments using labeled MBP and unlabeled calmodulin demonstrated a dramatic conformational change in MBP upon association of the two proteins, and were consistent with the C-terminal segment of MBP being the primary binding site for calmodulin.
Collapse
|
14
|
Intracellular complexes of the beta2 subunit of the nicotinic acetylcholine receptor in brain identified by proteomics. Proc Natl Acad Sci U S A 2007; 104:20570-5. [PMID: 18077321 DOI: 10.1073/pnas.0710314104] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nicotine acetylcholine receptors (nAChRs) comprise a family of ligand-gated channels widely expressed in the mammalian brain. The beta2 subunit is an abundant protein subunit critically involved in the cognitive and behavioral properties of nicotine as well as in the mechanisms of nicotine addiction. In this work, we used matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS/MS) to uncover protein interactions of the intracellular loop of the beta2 subunit and components of immunoprecipitated beta2-nAChR complexes from mouse brain. Using the beta2-knockout mouse to exclude nonspecific binding to the beta2 antibody, we identify 21 nAChR-interacting proteins (NIPs) expressed in brain. Western blot analysis confirmed the association between the beta2 subunit and candidate NIPs. Based on their functional profiles, the hypothesis is suggested that the identified NIPs can regulate the trafficking and signaling of the beta2-nAChR. Interactions of the beta2 subunit with NIPs such as G protein alpha, G protein-regulated inducer of neurite outgrowth 1, and G protein-activated K(+) channel 1 suggest a link between nAChRs and cellular G protein pathways. These findings reveal intracellular interactions of the beta2 subunit and may contribute to the understanding of the mechanisms of nAChR signaling and trafficking in neurons.
Collapse
|
15
|
Kim JY, Park CS. Potentiation of large-conductance calcium-activated potassium (BK(Ca)) channels by a specific isoform of protein kinase C. Biochem Biophys Res Commun 2007; 365:459-65. [PMID: 17991423 DOI: 10.1016/j.bbrc.2007.10.179] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 10/30/2007] [Indexed: 01/16/2023]
Abstract
The phosphorylation state of large-conductance calcium-activated potassium (BK(Ca)) channels regulates their activity and is dynamically regulated by protein phosphatases and kinases, including protein kinase C (PKC). In this study, we showed that PKC activators up-regulate the activity of the BK(Ca) channel alpha (alpha)-subunit, Slo1, in cell-attached patches of transfected COS7 cells. In an immune complex kinase assay, BK(Ca) channels isolated from rat brain were phosphorylated in the presence of PKC activators, without the addition of exogenous PKC, which suggests that PKC and BK(Ca) channels functionally interact in vivo. Four different PKC isozymes, including PKCdelta, phosphorylated the C-terminus of Slo1 and the addition of purified PKCdelta-activated BK(Ca) channels in excised patches of transfected HEK293 cells. Our results demonstrate that PKC up-regulates BK(Ca) channels and that PKCdelta may functionally interact with BK(Ca) channel complexes in vivo.
Collapse
Affiliation(s)
- Ji-Yoen Kim
- Department of Life Science, Gwangju Institute of Science & Technology, Gwangju 500-712, Republic of Korea
| | | |
Collapse
|