1
|
Seeger C, Dyrhage K, Mahajan M, Odelgard A, Lind SB, Andersson SGE. The Subcellular Proteome of a Planctomycetes Bacterium Shows That Newly Evolved Proteins Have Distinct Fractionation Patterns. Front Microbiol 2021; 12:643045. [PMID: 34745019 PMCID: PMC8567305 DOI: 10.3389/fmicb.2021.643045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The Planctomycetes bacteria have unique cell architectures with heavily invaginated membranes as confirmed by three-dimensional models reconstructed from FIB-SEM images of Tuwongella immobilis and Gemmata obscuriglobus. The subcellular proteome of T. immobilis was examined by differential solubilization followed by LC-MS/MS analysis, which identified 1569 proteins in total. The Tris-soluble fraction contained mostly cytoplasmic proteins, while inner and outer membrane proteins were found in the Triton X-100 and SDS-soluble fractions, respectively. For comparisons, the subcellular proteome of Escherichia coli was also examined using the same methodology. A notable difference in the overall fractionation pattern of the two species was a fivefold higher number of predicted cytoplasmic proteins in the SDS-soluble fraction in T. immobilis. One category of such proteins is represented by innovations in the Planctomycetes lineage, including unique sets of serine/threonine kinases and extracytoplasmic sigma factors with WD40 repeat domains for which no homologs are present in E. coli. Other such proteins are members of recently expanded protein families in which the newly evolved paralog with a new domain structure is recovered from the SDS-soluble fraction, while other paralogs may have similar domain structures and fractionation patterns as the single homolog in E. coli. The expanded protein families in T. immobilis include enzymes involved in replication-repair processes as well as in rRNA and tRNA modification and degradation. These results show that paralogization and domain shuffling have yielded new proteins with distinct fractionation characteristics. Understanding the molecular intricacies of these adaptive changes might aid in the development of a model for the evolution of cellular complexity.
Collapse
Affiliation(s)
- Christian Seeger
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Karl Dyrhage
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Mayank Mahajan
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Anna Odelgard
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Siv G E Andersson
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Mahajan M, Seeger C, Yee B, Andersson SGE. Evolutionary Remodeling of the Cell Envelope in Bacteria of the Planctomycetes Phylum. Genome Biol Evol 2020; 12:1528-1548. [PMID: 32761170 DOI: 10.1093/gbe/evaa159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 01/09/2023] Open
Abstract
Bacteria of the Planctomycetes phylum have many unique cellular features, such as extensive membrane invaginations and the ability to import macromolecules. These features raise intriguing questions about the composition of their cell envelopes. In this study, we have used microscopy, phylogenomics, and proteomics to examine the composition and evolution of cell envelope proteins in Tuwongella immobilis and other members of the Planctomycetes. Cryo-electron tomography data indicated a distance of 45 nm between the inner and outer membranes in T. immobilis. Consistent with the wide periplasmic space, our bioinformatics studies showed that the periplasmic segments of outer-membrane proteins in type II secretion systems are extended in bacteria of the order Planctomycetales. Homologs of two highly abundant cysteine-rich cell wall proteins in T. immobilis were identified in all members of the Planctomycetales, whereas genes for peptidoglycan biosynthesis and cell elongation have been lost in many members of this bacterial group. The cell wall proteins contain multiple copies of the YTV motif, which is the only domain that is conserved and unique to the Planctomycetales. Earlier diverging taxa in the Planctomycetes phylum contain genes for peptidoglycan biosynthesis but no homologs to the YTV cell wall proteins. The major remodeling of the cell envelope in the ancestor of the Planctomycetales coincided with the emergence of budding and other unique cellular phenotypes. The results have implications for hypotheses about the process whereby complex cellular features evolve in bacteria.
Collapse
Affiliation(s)
- Mayank Mahajan
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Christian Seeger
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Benjamin Yee
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Siv G E Andersson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| |
Collapse
|
3
|
van Vliet DM, Palakawong Na Ayudthaya S, Diop S, Villanueva L, Stams AJM, Sánchez-Andrea I. Anaerobic Degradation of Sulfated Polysaccharides by Two Novel Kiritimatiellales Strains Isolated From Black Sea Sediment. Front Microbiol 2019; 10:253. [PMID: 30833937 PMCID: PMC6388578 DOI: 10.3389/fmicb.2019.00253] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/30/2019] [Indexed: 12/04/2022] Open
Abstract
The marine environment contains a large diversity of sulfated polysaccharides and other glycopolymers. Saccharolytic microorganisms degrade these compounds through hydrolysis, which includes the hydrolysis of sulfate groups from sugars by sulfatases. Various marine bacteria of the Planctomycetes-Verrucomicrobia-Chlamydia (PVC) superphylum have exceptionally high numbers of sulfatase genes associated with the degradation of sulfated polysaccharides. However, thus far no sulfatase-rich marine anaerobes are known. In this study, we aimed to isolate marine anaerobes using sulfated polysaccharides as substrate. Anoxic enrichment cultures were set up with a mineral brackish marine medium, inoculated with anoxic Black Sea sediment sampled at 2,100 m water depth water and incubated at 15°C (in situ T = 8°C) for several weeks. Community analysis by 16S rRNA gene amplicon sequencing revealed the enrichment of Kiritimatiellaeota clade R76-B128 bacteria in the enrichments with the sulfated polysaccharides fucoidan and iota-carrageenan as substrate. We isolated two strains, F1 and F21, which represent a novel family within the order of the Kiritimatiellales. They were capable of growth on various mono-, di-, and polysaccharides, including fucoidan. The desulfation of iota-carrageenan by strain F21 was confirmed quantitatively by an increase in free sulfate concentration. Strains F1 and F21 represent the first marine sulfatase-rich anaerobes, encoding more sulfatases (521 and 480, 8.0 and 8.4% of all coding sequences, respectively) than any other microorganism currently known. Specific encoded sulfatase subfamilies could be involved in desulfating fucoidan (S1_15, S1_17 and S1_25) and iota-carrageenan (S1_19). Strains F1 and F21 had a sulfatase gene classification profile more similar to aerobic than anaerobic sulfatase-rich PVC bacteria, including Kiritimatiella glycovorans, the only other cultured representative within the Kiritimatiellaeota. Both strains encoded a single anaerobic sulfatase-maturating enzyme which could be responsible for post-translational modification of formylglycine-dependent sulfatases. Strains F1 and F21 are potential anaerobic platforms for future studies on sulfatases and their maturation enzymes.
Collapse
Affiliation(s)
- Daan M. van Vliet
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Susakul Palakawong Na Ayudthaya
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
- Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Sally Diop
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Den Burg, Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | |
Collapse
|
4
|
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74:331-414. [PMID: 31126533 DOI: 10.1016/bs.ampbs.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diversity of microbial cells is reflected in differences in cell size and shape, motility, mechanisms of cell division, pathogenicity or adaptation to different environmental niches. All these variations are achieved by the distinct metabolic strategies adopted by the organisms. The respiratory chains are integral parts of those strategies especially because they perform the most or, at least, most efficient energy conservation in the cell. Respiratory chains are composed of several membrane proteins, which perform a stepwise oxidation of metabolites toward the reduction of terminal electron acceptors. Many of these membrane proteins use the energy released from the oxidoreduction reaction they catalyze to translocate charges across the membrane and thus contribute to the establishment of the membrane potential, i.e. they conserve energy. In this work we illustrate and discuss the composition of the respiratory chains of different taxonomic clades, based on bioinformatic analyses and on biochemical data available in the literature. We explore the diversity of the respiratory chains of Animals, Plants, Fungi and Protists kingdoms as well as of Prokaryotes, including Bacteria and Archaea. The prokaryotic phyla studied in this work are Gammaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Chlamydiae, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Aquificae, Thermotogae, Deferribacteres, Nitrospirae, Euryarchaeota, Crenarchaeota and Thaumarchaeota.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal; University of Lisboa, Faculty of Sciences, BIOISI- Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
5
|
Guo M, Yang R, Huang C, Liao Q, Fan G, Sun C, Lee SMY. Evolutionary gradient of predicted nuclear localization signals (NLS)-bearing proteins in genomes of family Planctomycetaceae. BMC Microbiol 2017; 17:86. [PMID: 28376722 PMCID: PMC5381049 DOI: 10.1186/s12866-017-0981-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 03/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear envelope is considered a key classification marker that distinguishes prokaryotes from eukaryotes. However, this marker does not apply to the family Planctomycetaceae, which has intracellular spaces divided by lipidic intracytoplasmic membranes (ICMs). Nuclear localization signal (NLS), a short stretch of amino acid sequence, destines to transport proteins from cytoplasm into nucleus, and is also associated with the development of nuclear envelope. We attempted to investigate the NLS motifs in Planctomycetaceae genomes to demonstrate the potential molecular transition in the development of intracellular membrane system. RESULTS In this study, we identified NLS-like motifs that have the same amino acid compositions as experimentally identified NLSs in genomes of 11 representative species of family Planctomycetaceae. A total of 15 NLS types and 170 NLS-bearing proteins were detected in the 11 strains. To determine the molecular transformation, we compared NLS-bearing protein abundances in the 11 representative Planctomycetaceae genomes with them in genomes of 16 taxonomically varied microorganisms: nine bacteria, two archaea and five fungi. In the 27 strains, 29 NLS types and 1101 NLS-bearing proteins were identified, principal component analysis showed a significant transitional gradient from bacteria to Planctomycetaceae to fungi on their NLS-bearing protein abundance profiles. Then, we clustered the 993 non-redundant NLS-bearing proteins into 181 families and annotated their involved metabolic pathways. Afterwards, we aligned the ten types of NLS motifs from the 13 families containing NLS-bearing proteins among bacteria, Planctomycetaceae or fungi, considering their diversity, length and origin. A transition towards increased complexity from non-planctomycete bacteria to Planctomycetaceae to archaea and fungi was detected based on the complexity of the 10 types of NLS-like motifs in the 13 NLS-bearing proteins families. CONCLUSION The results of this study reveal that Planctomycetaceae separates slightly from the members of non-planctomycete bacteria but still has substantial differences from fungi, based on the NLS-like motifs and NLS-bearing protein analysis.
Collapse
Affiliation(s)
- Min Guo
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chen Huang
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qiwen Liao
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guangyi Fan
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chenghang Sun
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
6
|
Sagulenko E, Nouwens A, Webb RI, Green K, Yee B, Morgan G, Leis A, Lee KC, Butler MK, Chia N, Pham UTP, Lindgreen S, Catchpole R, Poole AM, Fuerst JA. Nuclear Pore-Like Structures in a Compartmentalized Bacterium. PLoS One 2017; 12:e0169432. [PMID: 28146565 PMCID: PMC5287468 DOI: 10.1371/journal.pone.0169432] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/02/2016] [Indexed: 01/02/2023] Open
Abstract
Planctomycetes are distinguished from other Bacteria by compartmentalization of cells via internal membranes, interpretation of which has been subject to recent debate regarding potential relations to Gram-negative cell structure. In our interpretation of the available data, the planctomycete Gemmata obscuriglobus contains a nuclear body compartment, and thus possesses a type of cell organization with parallels to the eukaryote nucleus. Here we show that pore-like structures occur in internal membranes of G.obscuriglobus and that they have elements structurally similar to eukaryote nuclear pores, including a basket, ring-spoke structure, and eight-fold rotational symmetry. Bioinformatic analysis of proteomic data reveals that some of the G. obscuriglobus proteins associated with pore-containing membranes possess structural domains found in eukaryote nuclear pore complexes. Moreover, immunogold labelling demonstrates localization of one such protein, containing a β-propeller domain, specifically to the G. obscuriglobus pore-like structures. Finding bacterial pores within internal cell membranes and with structural similarities to eukaryote nuclear pore complexes raises the dual possibilities of either hitherto undetected homology or stunning evolutionary convergence.
Collapse
Affiliation(s)
- Evgeny Sagulenko
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard I. Webb
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Kathryn Green
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin Yee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Garry Morgan
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Leis
- CSIRO - Livestock Industries, Australian Animal Health Laboratory, Biosecurity Microscopy Facility (ABMF), Geelong, Victoria, Australia
| | - Kuo-Chang Lee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Margaret K. Butler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Chia
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Uyen Thi Phuong Pham
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Stinus Lindgreen
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ryan Catchpole
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Anthony M. Poole
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Allan Wilson Centre, University of Canterbury, Christchurch, New Zealand
- Bioinformatics Institute, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - John A. Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
7
|
Guo M, Zhou Q, Zhou Y, Yang L, Liu T, Yang J, Chen Y, Su L, Xu J, Chen J, Liu F, Chen J, Dai W, Ni P, Fang C, Yang R. Genomic evolution of 11 type strains within family Planctomycetaceae. PLoS One 2014; 9:e86752. [PMID: 24489782 PMCID: PMC3906078 DOI: 10.1371/journal.pone.0086752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022] Open
Abstract
The species in family Planctomycetaceae are ideal groups for investigating the origin of eukaryotes. Their cells are divided by a lipidic intracytoplasmic membrane and they share a number of eukaryote-like molecular characteristics. However, their genomic structures, potential abilities, and evolutionary status are still unknown. In this study, we searched for common protein families and a core genome/pan genome based on 11 sequenced species in family Planctomycetaceae. Then, we constructed phylogenetic tree based on their 832 common protein families. We also annotated the 11 genomes using the Clusters of Orthologous Groups database. Moreover, we predicted and reconstructed their core/pan metabolic pathways using the KEGG (Kyoto Encyclopedia of Genes and Genomes) orthology system. Subsequently, we identified genomic islands (GIs) and structural variations (SVs) among the five complete genomes and we specifically investigated the integration of two Planctomycetaceae plasmids in all 11 genomes. The results indicate that Planctomycetaceae species share diverse genomic variations and unique genomic characteristics, as well as have huge potential for human applications.
Collapse
Affiliation(s)
- Min Guo
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | | | - Yizhuang Zhou
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Jinlong Yang
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | | | - Longxiang Su
- Medical College, Nankai University, Tianjin, China
| | - Jin Xu
- BGI-Shenzhen, Shenzhen, China
| | - Jing Chen
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | | | - Chengxiang Fang
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Ruifu Yang
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
8
|
Paparoditis P, Vastermark A, Le AJ, Fuerst JA, Saier MH. Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:193-215. [PMID: 23969110 PMCID: PMC3905805 DOI: 10.1016/j.bbamem.2013.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 02/04/2023]
Abstract
Rhodopirellula baltica (R. baltica) is a Planctomycete, known to have intracellular membranes. Because of its unusual cell structure and ecological significance, we have conducted comprehensive analyses of its transmembrane transport proteins. The complete proteome of R. baltica was screened against the Transporter Classification Database (TCDB) to identify recognizable integral membrane transport proteins. 342 proteins were identified with a high degree of confidence, and these fell into several different classes. R. baltica encodes in its genome channels (12%), secondary carriers (33%), and primary active transport proteins (41%) in addition to classes represented in smaller numbers. Relative to most non-marine bacteria, R. baltica possesses a larger number of sodium-dependent symporters but fewer proton-dependent symporters, and it has dimethylsulfoxide (DMSO) and trimethyl-amine-oxide (TMAO) reductases, consistent with its Na(+)-rich marine environment. R. baltica also possesses a Na(+)-translocating NADH:quinone dehydrogenase (Na(+)-NDH), a Na(+) efflux decarboxylase, two Na(+)-exporting ABC pumps, two Na(+)-translocating F-type ATPases, two Na(+):H(+) antiporters and two K(+):H(+) antiporters. Flagellar motility probably depends on the sodium electrochemical gradient. Surprisingly, R. baltica also has a complete set of H(+)-translocating electron transport complexes similar to those present in α-proteobacteria and eukaryotic mitochondria. The transport proteins identified proved to be typical of the bacterial domain with little or no indication of the presence of eukaryotic-type transporters. However, novel functionally uncharacterized multispanning membrane proteins were identified, some of which are found only in Rhodopirellula species, but others of which are widely distributed in bacteria. The analyses lead to predictions regarding the physiology, ecology and evolution of R. baltica.
Collapse
Affiliation(s)
- Philipp Paparoditis
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Ake Vastermark
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Andrew J. Le
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - John A. Fuerst
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
9
|
Viana F, Lage OM, Oliveira R. High ultraviolet C resistance of marine Planctomycetes. Antonie van Leeuwenhoek 2013; 104:585-95. [PMID: 24052365 DOI: 10.1007/s10482-013-0027-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/03/2013] [Indexed: 02/07/2023]
Abstract
Planctomycetes are bacteria with particular characteristics such as internal membrane systems encompassing intracellular compartments, proteinaceous cell walls, cell division by yeast-like budding and large genomes. These bacteria inhabit a wide range of habitats, including marine ecosystems, in which ultra-violet radiation has a potential harmful impact in living organisms. To evaluate the effect of ultra-violet C on the genome of several marine strains of Planctomycetes, we developed an easy and fast DNA diffusion assay in which the cell wall was degraded with papain, the wall-free cells were embedded in an agarose microgel and lysed. The presence of double strand breaks and unwinding by single strand breaks allow DNA diffusion, which is visible as a halo upon DNA staining. The number of cells presenting DNA diffusion correlated with the dose of ultra-violet C or hydrogen peroxide. From DNA damage and viability experiments, we found evidence indicating that some strains of Planctomycetes are significantly resistant to ultra-violet C radiation, showing lower sensitivity than the known resistant Arthrobacter sp. The more resistant strains were those phylogenetically closer to Rhodopirellula baltica, suggesting that these species are adapted to habitats under the influence of ultra-violet radiation. Our results provide evidence indicating that the mechanism of resistance involves DNA damage repair and/or other DNA ultra-violet C-protective mechanism.
Collapse
Affiliation(s)
- Flávia Viana
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | | |
Collapse
|
10
|
Wegner CE, Richter-Heitmann T, Klindworth A, Klockow C, Richter M, Achstetter T, Glöckner FO, Harder J. Expression of sulfatases in Rhodopirellula baltica and the diversity of sulfatases in the genus Rhodopirellula. Mar Genomics 2012; 9:51-61. [PMID: 23273849 DOI: 10.1016/j.margen.2012.12.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
Abstract
The whole genome sequence of Rhodopirellula baltica SH1(T), published nearly 10years ago, already revealed a high amount of sulfatase genes. So far, little is known about the diversity and potential functions mediated by sulfatases in Planctomycetes. We combined in vivo and in silico techniques to gain insights into the ecophysiology of planktomycetal sulfatases. Comparative genomics of nine recently sequenced Rhodopirellula strains detected 1120 open reading frames annotated as sulfatases (Enzyme Commission number (EC) 3.1.6.*). These were clustered into 173 groups of orthologous and paralogous genes. To analyze the functional aspects, 708 sulfatase protein sequences from these strains were aligned with 67 sulfatase reference sequences of reviewed functionality. Our analysis yielded 22 major similarity clusters, but only five of these clusters contained Rhodopirellula sequences homologous to reference sequences, indicating a surprisingly high diversity. Exemplarily, R. baltica SH1(T) was grown on different sulfated polysaccharides, chondroitin sulfate, λ-carrageenan and fucoidan. Subsequent gene expression analyses using whole genome microarrays revealed distinct sulfatase expression profiles based on substrates tested. This might be indicative for a high structural diversity of sulfated polysaccharides as potential substrates. The pattern of sulfatases in individual planctomycete species may reflect ecological niche adaptation.
Collapse
Affiliation(s)
- Carl-Eric Wegner
- Microbial Genomics and Bioinformatics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Voigt B, Hieu CX, Hempel K, Becher D, Schlüter R, Teeling H, Glöckner FO, Amann R, Hecker M, Schweder T. Cell surface proteome of the marine planctomycete Rhodopirellula baltica. Proteomics 2012; 12:1781-91. [PMID: 22623273 DOI: 10.1002/pmic.201100512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The surface proteome (surfaceome) of the marine planctomycete Rhodopirellula baltica SH1(T) was studied using a biotinylation and a proteinase K approach combined with SDS-PAGE and mass spectrometry. 52 of the proteins identified in both approaches could be assigned to the group of potential surface proteins. Among them are some high molecular weight proteins, potentially involved in cell-cell attachment, that contain domains shown before to be typical for surface proteins like cadherin/dockerin domains, a bacterial adhesion domain or the fasciclin domain. The identification of proteins with enzymatic functions in the R. baltica surfaceome provides further clues for the suggestion that some degradative enzymes may be anchored onto the cell surface. YTV proteins, which have been earlier supposed to be components of the proteinaceous cell wall of R. baltica, were detected in the surface proteome. Additionally, 8 proteins with a novel protein structure combining a conserved type IV pilin/N-methylation domain and a planctomycete-typical DUF1559 domain were identified.
Collapse
Affiliation(s)
- Birgit Voigt
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Slattery M, Ankisetty S, Corrales J, Marsh-Hunkin KE, Gochfeld DJ, Willett KL, Rimoldi JM. Marine proteomics: a critical assessment of an emerging technology. JOURNAL OF NATURAL PRODUCTS 2012; 75:1833-1877. [PMID: 23009278 DOI: 10.1021/np300366a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The application of proteomics to marine sciences has increased in recent years because the proteome represents the interface between genotypic and phenotypic variability and, thus, corresponds to the broadest possible biomarker for eco-physiological responses and adaptations. Likewise, proteomics can provide important functional information regarding biosynthetic pathways, as well as insights into mechanism of action, of novel marine natural products. The goal of this review is to (1) explore the application of proteomics methodologies to marine systems, (2) assess the technical approaches that have been used, and (3) evaluate the pros and cons of this proteomic research, with the intent of providing a critical analysis of its future roles in marine sciences. To date, proteomics techniques have been utilized to investigate marine microbe, plant, invertebrate, and vertebrate physiology, developmental biology, seafood safety, susceptibility to disease, and responses to environmental change. However, marine proteomics studies often suffer from poor experimental design, sample processing/optimization difficulties, and data analysis/interpretation issues. Moreover, a major limitation is the lack of available annotated genomes and proteomes for most marine organisms, including several "model species". Even with these challenges in mind, there is no doubt that marine proteomics is a rapidly expanding and powerful integrative molecular research tool from which our knowledge of the marine environment, and the natural products from this resource, will be significantly expanded.
Collapse
Affiliation(s)
- Marc Slattery
- Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Speth DR, van Teeseling MCF, Jetten MSM. Genomic analysis indicates the presence of an asymmetric bilayer outer membrane in planctomycetes and verrucomicrobia. Front Microbiol 2012; 3:304. [PMID: 22934092 PMCID: PMC3422733 DOI: 10.3389/fmicb.2012.00304] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/31/2012] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the phylum Planctomycetes are of special interest for the study of compartmental cellular organization. Members of this phylum share a very unusual prokaryotic cell plan, featuring several membrane-bound compartments. Recently, it was shown that this cellular organization might extend to certain members of the phylum Verrucomicrobia. The Planctomycete cell plan has been defined as featuring a proteinaceous cell wall, a cytoplasmic membrane surrounding the paryphoplasm, and an intracytoplasmic membrane defining the riboplasm. So far it was presumed that Planctomycetes did not have an asymmetric bilayer outer membrane as observed in Gram-negative bacteria. However, recent work on outer membrane biogenesis has provided several marker genes in the outer membrane protein (OMP) assembly and the lipopolysaccharide (LPS) insertion complexes. Additionally, advances in computational prediction of OMPs provided new tools to perform more accurate genomic screening for such proteins. Here we searched all 22 Planctomycetes and Verrucomicrobia genomes available in GenBank, plus the recently published genome of "Candidatus Scalindua profunda," for markers of outer membrane biogenesis and OMPs. We were able to identify the key components of LPS insertion, OMP assembly and at least eight OMPs in all genomes tested. Additionally, we have analyzed the transcriptome and proteome data of the Planctomycetes "Candidatus Kuenenia stuttgartiensis" and "Ca. S. profunda" and could confirm high expression of several predicted OMPs, including the biomarkers of outer membrane biogenesis. These analyses provide a strong indication that an asymmetrical outer membrane may be present in bacteria of both phyla. However, previous experiments have made obvious that the cell envelope of Planctomycetes is clearly divergent from both the Gram-negative and Gram-positive cell types. Thus, the functional implications of the presence of an outer membrane for the Planctomycete cell plan and compartmentalization are discussed and a revised model including an outer membrane is proposed. Although this model agrees with most experimental data, we do note that the presence, location, and role of an outer membrane within the Planctomycetes and Verrucomicrobia awaits further experimental validation.
Collapse
Affiliation(s)
- Daan R. Speth
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University NijmegenNijmegen, Netherlands
| | - Muriel C. F. van Teeseling
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University NijmegenNijmegen, Netherlands
| | - Mike S. M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University NijmegenNijmegen, Netherlands
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| |
Collapse
|
14
|
Fuerst JA, Sagulenko E. Keys to eukaryality: planctomycetes and ancestral evolution of cellular complexity. Front Microbiol 2012; 3:167. [PMID: 22586422 PMCID: PMC3343278 DOI: 10.3389/fmicb.2012.00167] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/13/2012] [Indexed: 12/26/2022] Open
Abstract
Planctomycetes are known to display compartmentalization via internal membranes, thus resembling eukaryotes. Significantly, the planctomycete Gemmata obscuriglobus has not only a nuclear region surrounded by a double-membrane, but is also capable of protein uptake via endocytosis. In order to clearly analyze implications for homology of their characters with eukaryotes, a correct understanding of planctomycete structure is an essential starting point. Here we outline the major features of such structure necessary for assessing the case for or against homology with eukaryote cell complexity. We consider an evolutionary model for cell organization involving reductive evolution of Planctomycetes from a complex proto-eukaryote-like last universal common ancestor, and evaluate alternative models for origins of the unique planctomycete cell plan. Overall, the structural and molecular evidence is not consistent with convergent evolution of eukaryote-like features in a bacterium and favors a homologous relationship of Planctomycetes and eukaryotes.
Collapse
Affiliation(s)
- John A Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | | |
Collapse
|
15
|
Enomoto M, Nakagawa S, Sawabe T. Microbial communities associated with holothurians: presence of unique bacteria in the coelomic fluid. Microbes Environ 2012; 27:300-5. [PMID: 22446312 PMCID: PMC4036045 DOI: 10.1264/jsme2.me12020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Marine invertebrates interact with various microorganisms ranging from pathogens to symbionts. One-to-one symbiosis between a single microbial species and a single host animal has served as a model for the study of host-microbe interactions. In addition, increasing attention has recently been focused on the complex symbiotic associations, e.g., associations between sponges and their symbionts, due to their biotechnological potential; however, relatively little is known about the microbial diversity associated with members of the phylum Echinodermata. Here, for the first time, we investigated microbial communities associated with a commercially important holothurian species, Apostichopus japonicus, using culture-dependent and -independent methods. Diverse and abundant heterotrophs, mostly Gammaproteobacteria members, were cultured semi-quantitatively. Using the cloning and sequencing technique, different microbial communities were found in different holothurian tissues. In the holothurian coelomic fluid, potentially metabolically active and phylogenetically unique members of Epsilonproteobacteria and Rickettsiales were discovered. This study suggests that coelomic fluids of marine invertebrates, at least those inhabiting intertidal areas where physical and chemical conditions fluctuate, provide microbes with unique and stable habitats.
Collapse
Affiliation(s)
- Masaki Enomoto
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | | | | |
Collapse
|
16
|
Fuchsman CA, Staley JT, Oakley BB, Kirkpatrick JB, Murray JW. Free-living and aggregate-associated Planctomycetes in the Black Sea. FEMS Microbiol Ecol 2012; 80:402-16. [DOI: 10.1111/j.1574-6941.2012.01306.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - James T. Staley
- Department of Microbiology; University of Washington; Seattle; WA; USA
| | - Brian B. Oakley
- Department of Microbiology; University of Washington; Seattle; WA; USA
| | | | - James W. Murray
- School of Oceanography; University of Washington; Seattle; WA; USA
| |
Collapse
|
17
|
Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 2011; 9:403-13. [PMID: 21572457 DOI: 10.1038/nrmicro2578] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Planctomycetes form a distinct phylum of the domain Bacteria and possess unusual features such as intracellular compartmentalization and a lack of peptidoglycan in their cell walls. Remarkably, cells of the genus Gemmata even contain a membrane-bound nucleoid analogous to the eukaryotic nucleus. Moreover, the so-called 'anammox' planctomycetes have a unique anaerobic, autotrophic metabolism that includes the ability to oxidize ammonium; this process is dependent on a characteristic membrane-bound cell compartment called the anammoxosome, which might be a functional analogue of the eukaryotic mitochondrion. The compartmentalization of planctomycetes challenges our hypotheses regarding the origins of eukaryotic organelles. Furthermore, the recent discovery of both an endocytosis-like ability and proteins homologous to eukaryotic clathrin in a planctomycete marks this phylum as one to watch for future research on the origin and evolution of the eukaryotic cell.
Collapse
|
18
|
Rebuffet E, Groisillier A, Thompson A, Jeudy A, Barbeyron T, Czjzek M, Michel G. Discovery and structural characterization of a novel glycosidase family of marine origin. Environ Microbiol 2011; 13:1253-70. [PMID: 21332624 DOI: 10.1111/j.1462-2920.2011.02426.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The genomic data on heterotrophic marine bacteria suggest the crucial role that microbes play in the global carbon cycle. However, the massive presence of hypothetical proteins hampers our understanding of the mechanisms by which this carbon cycle is carried out. Moreover, genomic data from marine microorganisms are essentially annotated in the light of the biochemical knowledge accumulated on bacteria and fungi which decompose terrestrial plants. However marine algal polysaccharides clearly differ from their terrestrial counterparts, and their associated enzymes usually constitute novel protein families. In this study, we have applied a combination of bioinformatics, targeted activity screening and structural biology to characterize a hypothetical protein from the marine bacterium Zobellia galactanivorans, which is distantly related to GH43 family. This protein is in fact a 1,3-α-3,6-anhydro-l-galactosidase (AhgA) which catalyses the last step in the degradation pathway of agars, a family of polysaccharides unique to red macroalgae. AhgA adopts a β-propeller fold and displays a zinc-dependent catalytic machinery. This enzyme is the first representative of a new family of glycoside hydrolases, especially abundant in coastal waters. Such genes of marine origin have been transferred to symbiotic microbes associated with marine fishes, but also with some specific human populations.
Collapse
Affiliation(s)
- Etienne Rebuffet
- UPMC University Paris 6 CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique de Roscoff, Roscoff, Bretagne, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Wilmes B, Kock H, Glagla S, Albrecht D, Voigt B, Markert S, Gardebrecht A, Bode R, Danchin A, Feller G, Hecker M, Schweder T. Cytoplasmic and periplasmic proteomic signatures of exponentially growing cells of the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 2011; 77:1276-83. [PMID: 21183643 PMCID: PMC3067249 DOI: 10.1128/aem.01750-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 12/13/2010] [Indexed: 11/20/2022] Open
Abstract
The psychrophilic model bacterium Pseudoalteromonas haloplanktis is characterized by remarkably fast growth rates under low-temperature conditions in a range from 5°C to 20°C. In this study the proteome of cellular compartments, the cytoplasm and periplasm, of P. haloplanktis strain TAC125 was analyzed under exponential growth conditions at a permissive temperature of 16°C. By means of two-dimensional protein gel electrophoresis and mass spectrometry, a first inventory of the most abundant cytoplasmic and periplasmic proteins expressed in a peptone-supplemented minimal medium was established. By this approach major enzymes of the amino acid catabolism of this marine bacterium could be functionally deduced. The cytoplasmic proteome showed a predominance of amino acid degradation pathways and tricarboxylic acid (TCA) cycle enzymes but also the protein synthesis machinery. Furthermore, high levels of cold acclimation and oxidative stress proteins could be detected at this moderate growth temperature. The periplasmic proteome was characterized by a significant abundance of transporters, especially of highly expressed putative TonB-dependent receptors. This high capacity for protein synthesis, efficient amino acid utilization, and substrate transport may contribute to the fast growth rates of the copiotrophic bacterium P. haloplanktis in its natural environments.
Collapse
Affiliation(s)
- Boris Wilmes
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Holger Kock
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Susanne Glagla
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Dirk Albrecht
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Birgit Voigt
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Stephanie Markert
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Antje Gardebrecht
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Rüdiger Bode
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Antoine Danchin
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Georges Feller
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Michael Hecker
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Thomas Schweder
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| |
Collapse
|
20
|
Wecker P, Klockow C, Schüler M, Dabin J, Michel G, Glöckner FO. Life cycle analysis of the model organism Rhodopirellula baltica SH 1(T) by transcriptome studies. Microb Biotechnol 2010; 3:583-94. [PMID: 21255355 PMCID: PMC3815771 DOI: 10.1111/j.1751-7915.2010.00183.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The marine organism Rhodopirellula baltica is a representative of the globally distributed phylum Planctomycetes whose members exhibit an intriguing lifestyle and cell morphology. The analysis of R. baltica's genome has revealed many biotechnologically promising features including a set of unique sulfatases and C1‐metabolism genes. Salt resistance and the potential for adhesion in the adult phase of the cell cycle were observed during cultivation. To promote the understanding of this model organism and to specify the functions of potentially useful genes, gene expression throughout a growth curve was monitored using a whole genome microarray approach. Transcriptional profiling suggests that a large number of hypothetical proteins are active within the cell cycle and in the formation of the different cell morphologies. Numerous genes with potential biotechnological applications were found to be differentially regulated, revealing further characteristics of their functions and regulation mechanisms. More specifically, the experiments shed light on the expression patterns of genes belonging to the organism's general stress response, those involved in the reorganization of its genome and those effecting morphological changes. These transcriptomic results contribute to a better understanding of thus far unknown molecular elements of cell biology. Further, they pave the way for the biotechnological exploitation of R. baltica's distinctive metabolic features as a step towards sourcing the phylum Planctomycetes at large.
Collapse
Affiliation(s)
- Patricia Wecker
- Max Planck Institute for Marine Microbiology, Microbial Genomics Group, Celsiusstr. 1, 28359 Bremen, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Wecker P, Klockow C, Ellrott A, Quast C, Langhammer P, Harder J, Glöckner FO. Transcriptional response of the model planctomycete Rhodopirellula baltica SH1(T) to changing environmental conditions. BMC Genomics 2009; 10:410. [PMID: 19725962 PMCID: PMC2754498 DOI: 10.1186/1471-2164-10-410] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 09/02/2009] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The marine model organism Rhodopirellula baltica SH1(T) was the first Planctomycete to have its genome completely sequenced. The genome analysis predicted a complex lifestyle and a variety of genetic opportunities to adapt to the marine environment. Its adaptation to environmental stressors was studied by transcriptional profiling using a whole genome microarray. RESULTS Stress responses to salinity and temperature shifts were monitored in time series experiments. Chemostat cultures grown in mineral medium at 28 degrees C were compared to cultures that were shifted to either elevated (37 degrees C) or reduced (6 degrees C) temperatures as well as high salinity (59.5 per thousand) and observed over 300 min. Heat shock showed the induction of several known chaperone genes. Cold shock altered the expression of genes in lipid metabolism and stress proteins. High salinity resulted in the modulation of genes coding for compatible solutes, ion transporters and morphology. In summary, over 3000 of the 7325 genes were affected by temperature and/or salinity changes. CONCLUSION Transcriptional profiling confirmed that R. baltica is highly responsive to its environment. The distinct responses identified here have provided new insights into the complex adaptation machinery of this environmentally relevant marine bacterium. Our transcriptome study and previous proteome data suggest a set of genes of unknown functions that are most probably involved in the global stress response. This work lays the foundation for further bioinformatic and genetic studies which will lead to a comprehensive understanding of the biology of a marine Planctomycete.
Collapse
Affiliation(s)
- Patricia Wecker
- Microbial Genomics Group, Max Planck Institute for Marine Microbiology, Microbial Genomics Group, Celsiusstr. 1, 28359 Bremen, Germany
- Jacobs University Bremen gGmbH, Campusring 1, 28759 Bremen, Germany
| | - Christine Klockow
- Microbial Genomics Group, Max Planck Institute for Marine Microbiology, Microbial Genomics Group, Celsiusstr. 1, 28359 Bremen, Germany
- Jacobs University Bremen gGmbH, Campusring 1, 28759 Bremen, Germany
| | - Andreas Ellrott
- Microbial Genomics Group, Max Planck Institute for Marine Microbiology, Microbial Genomics Group, Celsiusstr. 1, 28359 Bremen, Germany
| | - Christian Quast
- Microbial Genomics Group, Max Planck Institute for Marine Microbiology, Microbial Genomics Group, Celsiusstr. 1, 28359 Bremen, Germany
| | - Philipp Langhammer
- Department of Microbiology, Max Planck Institute for Marine Microbiology, Microbiology, Celsiusstr. 1, 28359 Bremen, Germany
| | - Jens Harder
- Department of Microbiology, Max Planck Institute for Marine Microbiology, Microbiology, Celsiusstr. 1, 28359 Bremen, Germany
| | - Frank Oliver Glöckner
- Microbial Genomics Group, Max Planck Institute for Marine Microbiology, Microbial Genomics Group, Celsiusstr. 1, 28359 Bremen, Germany
- Jacobs University Bremen gGmbH, Campusring 1, 28759 Bremen, Germany
| |
Collapse
|
22
|
Hecker M, Antelmann H, Büttner K, Bernhardt J. Gel-based proteomics of Gram-positive bacteria: A powerful tool to address physiological questions. Proteomics 2008; 8:4958-75. [DOI: 10.1002/pmic.200800278] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
|