1
|
De Vijlder T, Valkenborg D, Dewaele D, Remmerie N, Laukens K, Witters E. A generic approach for "shotgun" analysis of the soluble proteome of plant cell suspension cultures. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 974:48-56. [PMID: 25463197 DOI: 10.1016/j.jchromb.2014.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 12/21/2022]
Abstract
Cell suspension cultures from different plant species act as important model systems for studying cellular processes in plant biology and are often used as "green factories" for the production of valuable secondary metabolites and recombinant proteins. While mass spectrometry based proteome analysis techniques are ideally suited to study plant cell metabolism and other fundamental cellular processes from a birds eye perspective, they remain underused in plant studies. We describe a comprehensive sample preparation and multidimensional 'shotgun' proteomics strategy that can be generically applied to plant cell suspension cultures. This strategy was optimized and tested on an Arabidopsis thaliana ecotype Landsberg erecta culture. Furthermore, the implementation of strong cation exchange chromatography as a peptide fractionation step is elaborately tested. Its utility in mass spectrometry based proteome analysis is discussed. Using the presented analytical platform, over 13,000 unique peptides and 2640 proteins could be identified from a single plant cell suspension sample. Finally, the experimental setup is validated using Nicotiana tabacum cv. "Bright Yellow-2" (BY-2) plant cell suspension cultures, thereby demonstrating that the presented analytical platform can also be valuable tool in proteome analysis of non-genomic model systems.
Collapse
Affiliation(s)
- Thomas De Vijlder
- Center for Proteomics (CFP), Groenenborgerlaan 171, B-2020 Antwerp, Belgium; Laboratory of Plant Growth and Development, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, Belgium.
| | - Dirk Valkenborg
- Center for Proteomics (CFP), Groenenborgerlaan 171, B-2020 Antwerp, Belgium; Vlaamse Instelling voor Technologisch Onderzoek (VITO), Boeretang 200, B-2400 Mol, Belgium; Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan 1, B-3590 Diepenbeek, Belgium
| | - Debbie Dewaele
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Noor Remmerie
- Center for Proteomics (CFP), Groenenborgerlaan 171, B-2020 Antwerp, Belgium; Laboratory of Plant Growth and Development, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, Belgium
| | - Kris Laukens
- Biomedical Informatics Research Center Antwerp (Biomina), University of Antwerp/Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium; Advanced Database Research and Modelling, Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020 Antwerp, Belgium
| | - Erwin Witters
- Center for Proteomics (CFP), Groenenborgerlaan 171, B-2020 Antwerp, Belgium; Vlaamse Instelling voor Technologisch Onderzoek (VITO), Boeretang 200, B-2400 Mol, Belgium; Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
2
|
Garcia de la Garma J, Fernandez-Garcia N, Bardisi E, Pallol B, Asensio-Rubio JS, Bru R, Olmos E. New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. THE NEW PHYTOLOGIST 2015; 205:216-39. [PMID: 25187269 DOI: 10.1111/nph.12997] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/14/2014] [Indexed: 05/19/2023]
Abstract
In this study, we investigated the cellular and molecular mechanisms that regulate salt acclimation. The main objective was to obtain new insights into the molecular mechanisms that control salt acclimation. Therefore, we carried out a multidisciplinary study using proteomic, transcriptomic, subcellular and physiological techniques. We obtained a Nicotiana tabacum BY-2 cell line acclimated to be grown at 258 mM NaCl as a model for this study. The proteomic and transcriptomic data indicate that the molecular response to stress (chaperones, defence proteins, etc.) is highly induced in these salt-acclimated cells. The subcellular results show that salt induces sodium compartmentalization in the cell vacuoles and seems to be mediated by vesicle trafficking in tobacco salt-acclimated cells. Our results demonstrate that abscisic acid (ABA) and proline metabolism are crucial in the cellular signalling of salt acclimation, probably regulating reactive oxygen species (ROS) production in the mitochondria. ROS may act as a retrograde signal, regulating the cell response. The network of endoplasmic reticulum and Golgi apparatus is highly altered in salt-acclimated cells. The molecular and subcellular analysis suggests that the unfolded protein response is induced in salt-acclimated cells. Finally, we propose that this mechanism may mediate cell death in salt-acclimated cells.
Collapse
|
3
|
Jacquet N, Navarre C, Desmecht D, Boutry M. Hydrophobin fusion of an influenza virus hemagglutinin allows high transient expression in Nicotiana benthamiana, easy purification and immune response with neutralizing activity. PLoS One 2014; 9:e115944. [PMID: 25541987 PMCID: PMC4277400 DOI: 10.1371/journal.pone.0115944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/30/2014] [Indexed: 12/02/2022] Open
Abstract
The expression of recombinant hemagglutinin in plants is a promising alternative to the current egg-based production system for the influenza vaccines. Protein-stabilizing fusion partners have been developed to overcome the low production yields and the high downstream process costs associated with the plant expression system. In this context, we tested the fusion of hydrophobin I to the hemagglutinin ectodomain of the influenza A (H1N1)pdm09 virus controlled by the hybrid En2PMA4 transcriptional promoter to rapidly produce high levels of recombinant antigen by transient expression in agro-infiltrated Nicotiana benthamiana leaves. The fusion increased the expression level by a factor of ∼ 2.5 compared to the unfused protein allowing a high accumulation level of 8.6% of the total soluble proteins. Hemagglutinin was located in ER-derived protein bodies and was successfully purified by combining an aqueous-two phase partition system and a salting out step. Hydrophobin interactions allowed the formation of high molecular weight hemagglutinin structures, while unfused proteins were produced as monomers. Purified protein was shown to be biologically active and to induce neutralizing antibodies after mice immunization. Hydrophobin fusion to influenza hemagglutinin might therefore be a promising approach for rapid, easy, and low cost production of seasonal or pandemic influenza vaccines in plants.
Collapse
Affiliation(s)
- Nicolas Jacquet
- Institute of Life Sciences, University of Louvain, Louvain-la-Neuve, Belgium
| | - Catherine Navarre
- Institute of Life Sciences, University of Louvain, Louvain-la-Neuve, Belgium
| | - Daniel Desmecht
- Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Marc Boutry
- Institute of Life Sciences, University of Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system. Nat Commun 2014; 5:3615. [PMID: 24710389 PMCID: PMC4066177 DOI: 10.1038/ncomms4615] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/11/2014] [Indexed: 02/02/2023] Open
Abstract
Racemases catalyze the inversion of stereochemistry in biological molecules, giving the organism the ability to use both isomers. Among them, lactate racemase remains unexplored due to its intrinsic instability and lack of molecular characterization. Here we determine the genetic basis of lactate racemization in Lactobacillus plantarum. We show that, unexpectedly, the racemase is a nickel-dependent enzyme with a novel α/β fold. In addition, we decipher the process leading to an active enzyme, which involves the activation of the apo-enzyme by a single nickel-containing maturation protein that requires preactivation by two other accessory proteins. Genomic investigations reveal the wide distribution of the lactate racemase system among prokaryotes, showing the high significance of both lactate enantiomers in carbon metabolism. The even broader distribution of the nickel-based maturation system suggests a function beyond activation of the lactate racemase and possibly linked with other undiscovered nickel-dependent enzymes.
Collapse
|
5
|
Kaldis A, Ahmad A, Reid A, McGarvey B, Brandle J, Ma S, Jevnikar A, Kohalmi SE, Menassa R. High-level production of human interleukin-10 fusions in tobacco cell suspension cultures. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:535-45. [PMID: 23297698 PMCID: PMC3712471 DOI: 10.1111/pbi.12041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/20/2012] [Accepted: 11/28/2012] [Indexed: 05/18/2023]
Abstract
The production of pharmaceutical proteins in plants has made much progress in recent years with the development of transient expression systems, transplastomic technology and humanizing glycosylation patterns in plants. However, the first therapeutic proteins approved for administration to humans and animals were made in plant cell suspensions for reasons of containment, rapid scale-up and lack of toxic contaminants. In this study, we have investigated the production of human interleukin-10 (IL-10) in tobacco BY-2 cell suspension and evaluated the effect of an elastin-like polypeptide tag (ELP) and a green fluorescent protein (GFP) tag on IL-10 accumulation. We report the highest accumulation levels of hIL-10 obtained with any stable plant expression system using the ELP fusion strategy. Although IL-10-ELP has cytokine activity, its activity is reduced compared to unfused IL-10, likely caused by interference of ELP with folding of IL-10. Green fluorescent protein has no effect on IL-10 accumulation, but examining the trafficking of IL-10-GFP over the cell culture cycle revealed fluorescence in the vacuole during the stationary phase of the culture growth cycle. Analysis of isolated vacuoles indicated that GFP alone is found in vacuoles, while the full-size fusion remains in the whole-cell extract. This indicates that GFP is cleaved off prior to its trafficking to the vacuole. On the other hand, IL-10-GFP-ELP remains mostly in the ER and accumulates to high levels. Protein bodies were observed at the end of the culture cycle and are thought to arise as a consequence of high levels of accumulation in the ER.
Collapse
Affiliation(s)
- Angelo Kaldis
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| | - Adil Ahmad
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, Western UniversityLondon, ON, Canada
| | - Alexandra Reid
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| | - Brian McGarvey
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| | - Jim Brandle
- Vineland Research and Innovation CentreVineland Station, ON, Canada
| | - Shengwu Ma
- Department of Biology, Western UniversityLondon, ON, Canada
- Transplantation Immunology Group, Lawson Health Research InstituteLondon, ON, Canada
- Plantigen Inc.London, ON, Canada
| | - Anthony Jevnikar
- Transplantation Immunology Group, Lawson Health Research InstituteLondon, ON, Canada
- Plantigen Inc.London, ON, Canada
| | | | - Rima Menassa
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, Western UniversityLondon, ON, Canada
| |
Collapse
|
6
|
Crouzet J, Roland J, Peeters E, Trombik T, Ducos E, Nader J, Boutry M. NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum, is involved in diterpene transport. PLANT MOLECULAR BIOLOGY 2013; 82:181-92. [PMID: 23564360 DOI: 10.1007/s11103-013-0053-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 03/26/2013] [Indexed: 05/20/2023]
Abstract
ATP-binding cassette transporters are involved in the active transport of a wide variety of metabolites in prokaryotes and eukaryotes. One subfamily, the Pleiotropic Drug Resistance (PDR) transporters, or full-size ABCG transporters, are found only in fungi and plants. NtPDR1 was originally identified in Nicotiana tabacum suspension cells (BY2), in which its expression was induced by microbial elicitors. To obtain information on its expression in plants, we generated NtPDR1-specific antibodies and, using Western blotting, found that this transporter is localized in roots, leaves, and flowers and this was confirmed in transgenic plants expressing the ß-glucuronidase reporter gene fused to the NtPDR1 promoter region. Expression was seen in the lateral roots and in the long glandular trichomes of the leaves, stem, and flowers. Western blot analysis and in situ immunolocalization showed NtPDR1 to be localized in the plasma membrane. Induction of NtPDR1 expression by various compounds was tested in N. tabacum BY2 cells. Induction of expression was observed with the hormones methyl jasmonate and naphthalene acetic acid and diterpenes. Constitutive ectopic expression of NtPDR1 in N. tabacum BY2 cells resulted in increased resistance to several diterpenes. Transport tests directly demonstrated the ability of NtPDR1 to transport diterpenes. These data suggest that NtPDR1 is involved in plant defense through diterpene transport.
Collapse
Affiliation(s)
- Jérôme Crouzet
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud, 4-5, Box L7-04-14, 1348, Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | |
Collapse
|
7
|
Correia S, Vinhas R, Manadas B, Lourenço AS, Veríssimo P, Canhoto JM. Comparative Proteomic Analysis of Auxin-Induced Embryogenic and Nonembryogenic Tissues of the Solanaceous Tree Cyphomandra betacea (Tamarillo). J Proteome Res 2012; 11:1666-75. [DOI: 10.1021/pr200856w] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandra Correia
- Center of Functional Ecology,
Department of Life Sciences, University of Coimbra, Ap. 3046, 3001-401 Coimbra, Portugal
| | - Raquel Vinhas
- Center for Neuroscience and
Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- Proteomics Unit, Center for Neuroscience
and Cell Biology, University of Coimbra, Coimbra, Portugal
- Cell
Biology Unit, Biocant, Cantanhede, Portugal
| | | | - Paula Veríssimo
- Center for Neuroscience and
Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Jorge M. Canhoto
- Center of Functional Ecology,
Department of Life Sciences, University of Coimbra, Ap. 3046, 3001-401 Coimbra, Portugal
| |
Collapse
|
8
|
Van Cutsem E, Simonart G, Degand H, Faber AM, Morsomme P, Boutry M. Gel-based and gel-free proteomic analysis of Nicotiana tabacum trichomes identifies proteins involved in secondary metabolism and in the (a)biotic stress response. Proteomics 2011; 11:440-54. [PMID: 21268273 DOI: 10.1002/pmic.201000356] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 11/09/2010] [Accepted: 11/17/2010] [Indexed: 12/22/2022]
Abstract
Nicotiana tabacum leaves are covered by trichomes involved in the secretion of large amounts of secondary metabolites, some of which play a major role in plant defense. However, little is known about the metabolic pathways that operate in these structures. We undertook a proteomic analysis of N. tabacum trichomes in order to identify their protein complement. Efficient trichome isolation was obtained by abrading frozen leaves. After homogenization, soluble proteins and a microsomal fraction were prepared by centrifugation. Gel-based and gel-free proteomic analyses were then performed. 2-DE analysis of soluble proteins led to the identification of 1373 protein spots, which were digested and analyzed by MS/MS, leading to 680 unique identifications. Both soluble proteins and microsomal fraction were analyzed by LC MALDI-MS/MS after trypsin digestion, leading to 858 identifications, many of which had not been identified after 2-DE, indicating that the two methods complement each other. Many enzymes putatively involved in secondary metabolism were identified, including enzymes involved in the synthesis of terpenoid precursors and in acyl sugar production. Several transporters were also identified, some of which might be involved in secondary metabolite transport. Various (a)biotic stress response proteins were also detected, supporting the role of trichomes in plant defense.
Collapse
Affiliation(s)
- Emmanuel Van Cutsem
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|