1
|
The influence of passive colostrum transfer on humoral immunity to selected antigens of Mannheimia haemolytica in calves. ACTA VET BRNO 2023. [DOI: 10.2754/avb202392010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the study was to evaluate the effectiveness of colostral immunity against aetiological agents of bovine respiratory disease complex (BRDC), to assess the suppressive effect of colostral antibodies against Mannheimia haemolytica on immunity, and to analyse acute phase proteins in calves. Holstein-Friesian and Simmental cows and calves were immunized with M. haemolytica leukotoxin (Lkt) and outer membrane proteins (OMPs) at 6 and 4 weeks before parturition. Sera and colostrum were collected from the cows directly after calving. Sera from calves were obtained before colostrum intake and 48 h after birth. Calves from vaccinated and unvaccinated cows were placed in the feedlot and immunized with Lkt or OMP on days 10 and 24. Calves were tested for serum antibodies against respiratory viruses. Trachea and lung samples were collected for bacteriological examination from all calves that had died with BRDC. The results indicated high colostrum values and IgG transfer in calves at 48 h (> 12.5 g/l) and a high concentration of anti-BVD antibodies in calves at 48 h (> 33–45 mg/ml). Similar values were observed for bovine herpes virus BHV-1 and bovine respiratory sycytil virus BRSV. Immunoglobulin concentrations were highest for antibodies specific to parainfluenza PI-3 and adenoviruses. The lowest antibody levels were detected against M. haemolytica antigens in all experimental groups of calves (< 50 mg/ml in calves of cows vaccinated with M. haemolytica antigens and < 25 mg/ml in calves of unvaccinated cows). The findings indicate the need for early immunization of calves, which is often precluded by stress associated with transport and adaptation to the new conditions in the feedlot.
Collapse
|
2
|
Sharma A, Yadav SP, Sarma D, Mukhopadhaya A. Modulation of host cellular responses by gram-negative bacterial porins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:35-77. [PMID: 35034723 DOI: 10.1016/bs.apcsb.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The outer membrane of a gram-negative bacteria encapsulates the plasma membrane thereby protecting it from the harsh external environment. This membrane acts as a sieving barrier due to the presence of special membrane-spanning proteins called "porins." These porins are β-barrel channel proteins that allow the passive transport of hydrophilic molecules and are impermeable to large and charged molecules. Many porins form trimers in the outer membrane. They are abundantly present on the bacterial surface and therefore play various significant roles in the host-bacteria interactions. These include the roles of porins in the adhesion and virulence mechanisms necessary for the pathogenesis, along with providing resistance to the bacteria against the antimicrobial substances. They also act as the receptors for phage and complement proteins and are involved in modulating the host cellular responses. In addition, the potential use of porins as adjuvants, vaccine candidates, therapeutic targets, and biomarkers is now being exploited. In this review, we focus briefly on the structure of the porins along with their important functions and roles in the host-bacteria interactions.
Collapse
Affiliation(s)
- Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Shashi Prakash Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Dwipjyoti Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
3
|
Dhingra H, Kaur K, Singh B. Engineering and characterization of human β-defensin-3 and its analogues and microcin J25 peptides against Mannheimia haemolytica and bovine neutrophils. Vet Res 2021; 52:83. [PMID: 34112244 PMCID: PMC8194028 DOI: 10.1186/s13567-021-00956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/03/2021] [Indexed: 11/10/2022] Open
Abstract
Mannheimia haemolytica-induced bovine respiratory disease causes loss of millions of dollars to Canadian cattle industry. Current antimicrobials are proving to be ineffective and leave residues in meat. Antimicrobial peptides (AMPs) may be effective against M. haemolytica while minimizing the risk of drug residues. Cationic AMPs can kill bacteria through interactions with the anionic bacterial membrane. Human β-Defensin 3 (HBD3) and microcin J25 (MccJ25) are AMPs with potent activity against many Gram-negative bacteria. We tested the microbicidal activity of wild-type HBD3, three HBD3 peptide analogues (28 amino acid, 20AA, and 10AA) derived from the sequence of natural HBD3, and MccJ25 in vitro against M. haemolytica. Three C-terminal analogues of HBD3 with all cysteines replaced with valines were manually synthesized using solid phase peptide synthesis. Since AMPs can act as chemoattractant we tested the chemotactic effect of HBD3, 28AA, 20AA, and 10AA peptides on bovine neutrophils in Boyden chamber. Minimum bactericidal concentration (MBC) assay showed that M. haemolytica was intermediately sensitive to HBD3, 28AA and 20AA analogues with an MBC of 50 µg/mL. The 10AA analogue had MBC 6.3 µg/mL which is likely a result of lower final inoculum size. MccJ25 didn't have significant bactericidal effect below an MBC < 100 µg/mL. Bovine neutrophils showed chemotaxis towards HBD3 and 20AA peptides (P < 0.05) but not towards 28AA analogue. Co-incubation of neutrophils with any of the peptides did not affect their chemotaxis towards N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP). The data show that these peptides are effective against M. haemolytica and are chemotactic for neutrophils in vitro.
Collapse
Affiliation(s)
- Harpreet Dhingra
- Department of Veterinary Biomedical Science, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA, 92618-1908, USA
| | - Baljit Singh
- Department of Veterinary Biomedical Science, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
4
|
Ayalew S, Murdock BK, Snider TA, Confer AW. Mannheimia haemolytica IgA-specific proteases. Vet Microbiol 2019; 239:108487. [PMID: 31767097 DOI: 10.1016/j.vetmic.2019.108487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 12/25/2022]
Abstract
Mannheimia haemolytica colonizes the nasopharynx of cattle and can cause severe fibrinous pleuropneumonia. IgA proteases are metalloendopeptidases released by bacteria that cleave IgA, enhancing colonization of mucosa. The objectives of these studies were to characterize M. haemolytica IgA1 and IgA2 proteases in vitro and in silico, to clone and sequence the genes for these proteases, and to demonstrate immunogenicity of components of the entire IgA protease molecule. Both IgA protease genes were cloned, expressed, and sequenced. Sequences were compared to other published sequences. Components were used to immunize mice to determine immunogenicity. Sera from healthy cattle and cattle that recovered from respiratory disease were examined for antibodies to IgA proteases. In order to assay the cleavage of bovine IgA with IgA1 protease, M. haemolytica culture supernatant was incubated with bovine IgA. Culture supernatant cleaved purified bovine IgA in the presence of ZnCl2. Both IgA proteases contain three domains, 1) IgA peptidase, 2) PL1_Passenger_AT and 3) autotransporter. IgA1 and IgA2 peptidases have molecular weights of 96.5 and 87 kDa, respectively. Convalescent bovine sera with naturally high anti-M. haemolytica antibody titers had high antibodies against all IgA1 & IgA2 protease components. Mouse immunizations indicated high antibodies to the IgA peptidases and autotransporters but not to PL1_Passenger_AT. These data indicate that M. haemolytica produces two IgA proteases that are immunogenic, can cleave bovine IgA, and are produced in vivo, as evidenced by antibodies in convalescent bovine sera. Further studies could focus on IgA protease importance in pathogenesis and immunity.
Collapse
Affiliation(s)
- Sahlu Ayalew
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078-2007, USA
| | - Betsy K Murdock
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078-2007, USA
| | - Timothy A Snider
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078-2007, USA
| | - Anthony W Confer
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078-2007, USA.
| |
Collapse
|
5
|
Mannheimia haemolytica in bovine respiratory disease: immunogens, potential immunogens, and vaccines. Anim Health Res Rev 2019; 19:79-99. [PMID: 30683173 DOI: 10.1017/s1466252318000142] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mannheimia haemolytica is the major cause of severe pneumonia in bovine respiratory disease (BRD). Early M. haemolytica bacterins were either ineffective or even enhanced disease in vaccinated cattle, which led to studies of the bacterium's virulence factors and potential immunogens to determine ways to improve vaccines. Studies have focused on the capsule, lipopolysaccharide, various adhesins, extracellular enzymes, outer membrane proteins, and leukotoxin (LKT) resulting in a strong database for understanding immune responses to the bacterium and production of more efficacious vaccines. The importance of immunity to LKT and to surface antigens in stimulating immunity led to studies of individual native or recombinant antigens, bacterial extracts, live-attenuated or mutant organisms, culture supernatants, combined bacterin-toxoids, outer membrane vesicles, and bacterial ghosts. Efficacy of several of these potential vaccines can be shown following experimental M. haemolytica challenge; however, efficacy in field trials is harder to determine due to the complexity of factors and etiologic agents involved in naturally occurring BRD. Studies of potential vaccines have led current commercial vaccines, which are composed primarily of culture supernatant, bacterin-toxoid, or live mutant bacteria. Several of those can be augmented experimentally by addition of recombinant LKT or outer membrane proteins.
Collapse
|
6
|
Ormsby MJ, Grahame E, Burchmore R, Davies RL. Comparative bioinformatic and proteomic approaches to evaluate the outer membrane proteome of the fish pathogen Yersinia ruckeri. J Proteomics 2019; 199:135-147. [PMID: 30831250 PMCID: PMC6447952 DOI: 10.1016/j.jprot.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 01/14/2023]
Abstract
Yersinia ruckeri is the aetiological agent of enteric redmouth (ERM) disease and is responsible for significant economic losses in farmed salmonids. Enteric redmouth disease is associated primarily with rainbow trout (Oncorhynchus mykiss, Walbaum) but its incidence in Atlantic salmon (Salmo salar) is increasing. Outer membrane proteins (OMPs) of Gram-negative bacteria are located at the host-pathogen interface and play important roles in virulence. The outer membrane of Y. ruckeri is poorly characterised and little is known about its composition and the roles of individual OMPs in virulence. Here, we employed a bioinformatic pipeline to first predict the OMP composition of Y. ruckeri. Comparative proteomic approaches were subsequently used to identify those proteins expressed in vitro in eight representative isolates recovered from Atlantic salmon and rainbow trout. One hundred and forty-one OMPs were predicted from four Y. ruckeri genomes and 77 of these were identified in three or more genomes and were considered as "core" proteins. Gel-free and gel-based proteomic approaches together identified 65 OMPs in a single reference isolate and subsequent gel-free analysis identified 64 OMPs in the eight Atlantic salmon and rainbow trout isolates. Together, our gel-free and gel-based proteomic analyses identified 84 unique OMPs in Y. ruckeri. SIGNIFICANCE: Yersinia ruckeri is an important pathogen of Atlantic salmon and rainbow trout and is of major economic significance to the aquaculture industry worldwide. Disease outbreaks are becoming more problematic in Atlantic salmon and there is an urgent need to investigate in further detail the cell-surface (outer membrane) composition of strains infecting each of these host species. Currently, the outer membrane of Y. ruckeri is poorly characterised and very little is known about the OMP composition of strains infecting each of these salmonid species. This study represents the most comprehensive comparative outer membrane proteomic analysis of Y. ruckeri to date, encompassing isolates of different biotypes, serotypes, OMP-types and hosts of origin and provides insights into the potential roles of these diverse proteins in host-pathogen interactions. The study has identified key OMPs likely to be involved in disease pathogenesis and makes a significant contribution to furthering our understanding of the cell-surface composition of this important fish pathogen that will be relevant to the development of improved vaccines and therapeutics.
Collapse
Affiliation(s)
- Michael J Ormsby
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Edward Grahame
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK; Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, TCRC, University of Glasgow, Glasgow G12 1QH, UK
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
7
|
Klima CL, Zaheer R, Cook SR, Rasmussen J, Alexander TW, Potter A, Hendrick S, McAllister TA. In silico identification and high throughput screening of antigenic proteins as candidates for a Mannheimia haemolytica vaccine. Vet Immunol Immunopathol 2017; 195:19-24. [PMID: 29249313 DOI: 10.1016/j.vetimm.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 01/06/2023]
Abstract
This study examined the use of comparative genomic analysis for vaccine design against Mannheimia haemolytica, a respiratory pathogen of ruminants. A total of 2,341genes were identified in at least half of the 23 genomes. Of these, a total of 240 were identified to code for N-terminal signal peptides with diverse sub-cellular localizations (78 periplasmic, 52 outer membrane, 15 extracellular, 13 cytoplasmic membrane and 82 unknown) and were examined in an ELISA assay using a coupled-cell free transcription/translation system for protein expressionwith antisera from cattle challenged with serovars 1, 2 or 6 of M. haemolytica. In total, 186 proteins were immunoreactive to at least one sera type and of these, 105 were immunoreactive to all sera screened. The top ten antigens based on immunoreactivity were serine protease Ssa-1 (AC570_10970), an ABC dipeptid transporter substrate-binding protein (AC570_04010), a ribonucleotide reductase (AC570_10780), competence protein ComE (AC570_11510), a filamentous hemagglutinin (AC570_01600), a molybdenum ABC transporter solute-binding protein (AC570_10275), a conserved hypothetical protein (AC570_07570), a porin protein (AC569_05045), an outer membrane assembly protein YeaT (AC570_03060), and an ABC transporter maltose binding protein MalE (AC570_00140). The framework generated from this research can be further applied towards rapid vaccine design against other pathogens involved in complex respiratory infections in cattle.
Collapse
Affiliation(s)
- Cassidy L Klima
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Shaun R Cook
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Jay Rasmussen
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Trevor W Alexander
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Andrew Potter
- Vaccine and Infectious Disease Organization, Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Steve Hendrick
- Department of Large Animal Clinical Science, Western College of Veterinary Medicine, University of Saskatoon, Saskatoon, SK, S7N 5B4, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB, T1J 4B1, Canada.
| |
Collapse
|
8
|
Oppermann T, Busse N, Czermak P. Mannheimia haemolytica growth and leukotoxin production for vaccine manufacturing — A bioprocess review. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
9
|
Ayalew S, Confer AW, Hartson SD, Canaan PJ, Payton M, Couger B. Proteomic and bioinformatic analyses of putative Mannheimia haemolytica secretome by liquid chromatography and tandem mass spectrometry. Vet Microbiol 2017; 203:73-80. [DOI: 10.1016/j.vetmic.2017.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/17/2017] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
|
10
|
Immunization of bighorn sheep against Mannheimia haemolytica with a bovine herpesvirus 1-vectored vaccine. Vaccine 2017; 35:1630-1636. [DOI: 10.1016/j.vaccine.2017.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 11/18/2022]
|
11
|
The relationship between capsular type and OmpA of Pasteurella multocida is associated with the outcome of disease. Microb Pathog 2016; 101:68-75. [PMID: 27838388 DOI: 10.1016/j.micpath.2016.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 02/05/2023]
Abstract
The genes encoding OmpA of Pasteurella multocida recovered from diseased and apparently healthy animals have been characterized. The nucleotide sequence revealed ORFs of 1047-1077 bp encoding proteins of 349-360 amino acids. Domain analysis of OmpA showed signal peptide, N-terminal ompA domain and C-terminal ligand binding domain. The transmembrane topology of OmpA showed short turns at the periplasmic end and longer irregular loops at the extracellular end. The phylogenetic analysis based on OmpA showed affiliation of isolates to 7 groups representing different alleles. The identical segments in OmpA also suggested assortative recombination within classes IV, V and VI of distinct lineages. Principal component analysis separated isolates into groups based on capsular type and PmompA alleles. The alleles belonging to class VI exclusively associated with capsular type A, whereas class I-IV were associated with capsular type B. PmompA alleles in class V were recorded in both serogroups. PmompA6.1, 6.4 were distributed among strains with capsular type A, and PmompA6.2 and 6.3 among capsular type B. Despite internal OmpA variabilty, restrictive and well defined distribution was seen amongst P. multocida. A definitive association of "OmpA-capsular type" was observed with clinical status of animals. A cohort of pasteurellae comprising of OmpA(I-IV)-capB was recovered from diseased animals and OmpA(VI)-capA from healthy subjects. This study concludes that P. multocida with serogroup A and B from healthy and diseased animals represent distinct clusters also differentiated based on their OmpA-types and OmpA-capsular type relationship possibly determine the virulence and disease outcome.
Collapse
|
12
|
Tucci P, Estevez V, Becco L, Cabrera-Cabrera F, Grotiuz G, Reolon E, Marín M. Identification of Leukotoxin and other vaccine candidate proteins in a Mannheimia haemolytica commercial antigen. Heliyon 2016; 2:e00158. [PMID: 27699279 PMCID: PMC5035357 DOI: 10.1016/j.heliyon.2016.e00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/07/2016] [Indexed: 12/25/2022] Open
Abstract
Bovine Respiratory Disease is the most costly disease that affects beef and dairy cattle industry. Its etiology is multifactorial, arising from predisposing environmental stress conditions as well as the action of several different respiratory pathogens. This situation has hindered the development of effective control strategies. Although different type of vaccines are available, many currently marketed vaccines are based on inactivated cultures of the main viral and bacterial agents involved in this pathology. The molecular composition of commercial veterinary vaccines is a critical issue. The present work aims to define at the proteomic level the most relevant valence of a line of commercial respiratory vaccines widely used in Central and South America. Since Mannheimia haemolytica is responsible for most of the disease associated morbid-mortality, we focused on the main proteins secreted by this pathogen, in particular Leukotoxin A, its main virulence factor. By Western blot analysis and mass spectrometry, Leukotoxin A was identified as a major component of M. haemolytica culture supernatants. We also identified other ten M. haemolytica proteins, including outer membrane proteins, periplasmic transmembrane solute transporters and iron binding proteins, which are relevant to achieve protective immunity against the pathogen. This work allowed a detailed molecular characterization of this vaccine component, providing evidence of its quality and efficacy. Furthermore, our results contributed to the identification of several proteins of interest as subunit vaccine candidates.
Collapse
Affiliation(s)
- Paula Tucci
- Biotechnology Division, Laboratorios Celsius, S.A. Avenida Italia 6201, Montevideo, Uruguay; Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, Montevideo, Uruguay
| | - Verónica Estevez
- Biotechnology Division, Laboratorios Celsius, S.A. Avenida Italia 6201, Montevideo, Uruguay
| | - Lorena Becco
- Biotechnology Division, Laboratorios Celsius, S.A. Avenida Italia 6201, Montevideo, Uruguay
| | - Florencia Cabrera-Cabrera
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, Montevideo, Uruguay
| | - Germán Grotiuz
- Virbac Uruguay, S.A. Avda. Millán 4175, Montevideo, Uruguay
| | - Eduardo Reolon
- Virbac Uruguay, S.A. Avda. Millán 4175, Montevideo, Uruguay
| | - Mónica Marín
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, Montevideo, Uruguay
| |
Collapse
|
13
|
Katsafadou A, Tsangaris G, Billinis C, Fthenakis G. Use of proteomics in the study of microbial diseases of small ruminants. Vet Microbiol 2015; 181:27-33. [DOI: 10.1016/j.vetmic.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Moumène A, Marcelino I, Ventosa M, Gros O, Lefrançois T, Vachiéry N, Meyer DF, Coelho AV. Proteomic profiling of the outer membrane fraction of the obligate intracellular bacterial pathogen Ehrlichia ruminantium. PLoS One 2015; 10:e0116758. [PMID: 25710494 PMCID: PMC4339577 DOI: 10.1371/journal.pone.0116758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/13/2014] [Indexed: 01/27/2023] Open
Abstract
The outer membrane proteins (OMPs) of Gram-negative bacteria play a crucial role in virulence and pathogenesis. Identification of these proteins represents an important goal for bacterial proteomics, because it aids in vaccine development. Here, we have developed such an approach for Ehrlichia ruminantium, the obligate intracellular bacterium that causes heartwater. A preliminary whole proteome analysis of elementary bodies, the extracellular infectious form of the bacterium, had been performed previously, but information is limited about OMPs in this organism and about their role in the protective immune response. Identification of OMPs is also essential for understanding Ehrlichia's OM architecture, and how the bacterium interacts with the host cell environment. First, we developed an OMP extraction method using the ionic detergent sarkosyl, which enriched the OM fraction. Second, proteins were separated via one-dimensional electrophoresis, and digested peptides were analyzed via nano-liquid chromatographic separation coupled with mass spectrometry (LC-MALDI-TOF/TOF). Of 46 unique proteins identified in the OM fraction, 18 (39%) were OMPs, including 8 proteins involved in cell structure and biogenesis, 4 in transport/virulence, 1 porin, and 5 proteins of unknown function. These experimental data were compared to the predicted subcellular localization of the entire E. ruminantium proteome, using three different algorithms. This work represents the most complete proteome characterization of the OM fraction in Ehrlichia spp. The study indicates that suitable subcellular fractionation experiments combined with straightforward computational analysis approaches are powerful for determining the predominant subcellular localization of the experimentally observed proteins. We identified proteins potentially involved in E. ruminantium pathogenesis, which are good novel targets for candidate vaccines. Thus, combining bioinformatics and proteomics, we discovered new OMPs for E. ruminantium that are valuable data for those investigating new vaccines against this organism. In summary, we provide both pioneering data and novel insights into the pathogenesis of this obligate intracellular bacterium.
Collapse
Affiliation(s)
- Amal Moumène
- CIRAD, UMR CMAEE, Site de Duclos, Prise d’eau, F-97170, Petit-Bourg, Guadeloupe, France
- INRA, UMR1309 CMAEE, F-34398, Montpellier, France
- Université des Antilles et de la Guyane, 97159, Pointe-à-Pitre cedex, Guadeloupe, France
| | - Isabel Marcelino
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Miguel Ventosa
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Olivier Gros
- Université des Antilles et de la Guyane, Institut de Biologie Paris Seine, UMR7138 UPMC-CNRS, Equipe Biologie de la Mangrove, UFR des Sciences Exactes et Naturelles, Département de Biologie, BP 592, 97159, Pointe-à-Pitre cedex, Guadeloupe, France
| | | | - Nathalie Vachiéry
- CIRAD, UMR CMAEE, Site de Duclos, Prise d’eau, F-97170, Petit-Bourg, Guadeloupe, France
- INRA, UMR1309 CMAEE, F-34398, Montpellier, France
| | - Damien F. Meyer
- CIRAD, UMR CMAEE, Site de Duclos, Prise d’eau, F-97170, Petit-Bourg, Guadeloupe, France
- INRA, UMR1309 CMAEE, F-34398, Montpellier, France
- * E-mail:
| | - Ana V. Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
15
|
Cai SH, Lu YS, Jian JC, Wang B, Huang YC, Tang JF, Ding Y, Wu ZH. Protection against Vibrio alginolyticus in crimson snapper Lutjanus erythropterus immunized with a DNA vaccine containing the ompW gene. DISEASES OF AQUATIC ORGANISMS 2013; 106:39-47. [PMID: 24062551 DOI: 10.3354/dao02617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The outer membrane proteins of Vibrio alginolyticus play an important role in the virulence of the bacterium and are potential candidates for vaccine development. In the present study, the ompW gene was cloned, expressed and purified. A DNA vaccine was constructed by inserting the ompW gene into a pcDNA plasmid. Crimson snapper Lutjanus erythropterus (Bloch) were injected intramuscularly with the recombinant plasmid pcDNA-ompW. The expression of the DNA vaccine was detected in gill, head kidney, heart, liver, spleen and injection site muscle of crimson snapper by RT-PCR 7 and 28 d post-vaccination. The ELISA results demonstrated that the DNA vaccine produced an observable antibody response in all sera of the vaccinated fish. In addition, crimson snapper immunized with the DNA vaccine showed a relative percentage survival (RPS) of 92.53%, indicating effective protection against V. alginolyticus infection.
Collapse
Affiliation(s)
- Shuang-Hu Cai
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Confer AW, Ayalew S. The OmpA family of proteins: Roles in bacterial pathogenesis and immunity. Vet Microbiol 2013; 163:207-22. [DOI: 10.1016/j.vetmic.2012.08.019] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
|
17
|
Identification of a nonstructural DNA-binding protein (DBP) as an antigen with diagnostic potential for human adenovirus. PLoS One 2013; 8:e56708. [PMID: 23516396 PMCID: PMC3596362 DOI: 10.1371/journal.pone.0056708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/14/2013] [Indexed: 12/23/2022] Open
Abstract
Background Human adenoviruses (HAdVs) have been implicated as important agents in a wide range of human illnesses. To date, 58 distinct HAdV serotypes have been identified and can be grouped into six species. For the immunological diagnosis of adenoviruses, the hexon protein, a structural protein, has been used. The potential of other HAdV proteins has not been fully addressed. Methodology/Principal Findings In this study, a nonstructural antigenic protein, the DNA binding protein (DBP) of human adenovirus 5 and 35 (Ad5, Ad35) - was identified using immunoproteomic technology. The expression of Ad5 and Ad35 DBP in insect cells could be detected by rhesus monkey serum antibodies and healthy adult human serum positive for Ad5 and Ad35. Recombinant DBPs elicited high titer antibodies in mice. Their conserved domain displayed immunological cross-reactions with heterologous DBP antibodies in Western blot assays. DBP-IgM ELISA showed higher sensitivity adenovirus IgM detection than the commercial Adenovirus IgM Human ELISA Kit. A Western blot method developed based on Ad5 DBP was highly consistent with (χ2 = 44.9, P<0.01) the Western blot assay for the hexon protein in the detection of IgG, but proved even more sensitive. Conclusions/Significance The HAdV nonstructural protein DBP is an antigenic protein that could serve as an alternative common antigen for adenovirus diagnosis.
Collapse
|
18
|
Immunoproteomic analysis of the protective response obtained with subunit and commercial vaccines against Glässer's disease in pigs. Vet Immunol Immunopathol 2013; 151:235-47. [DOI: 10.1016/j.vetimm.2012.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/19/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|
19
|
Braga PAC, Tata A, Gonçalves dos Santos V, Barreiro JR, Schwab NV, Veiga dos Santos M, Eberlin MN, Ferreira CR. Bacterial identification: from the agar plate to the mass spectrometer. RSC Adv 2013. [DOI: 10.1039/c2ra22063f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Proteomic analysis and immunogenicity of Mannheimia haemolytica vesicles. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 20:191-6. [PMID: 23239798 DOI: 10.1128/cvi.00622-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mannheimia haemolytica, a major causative agent in bovine respiratory disease, inflicts extensive losses each year on cattle producers. Commercially available vaccines are only partially efficacious. Immunity to M. haemolytica requires antibodies to secreted toxins and outer membrane proteins (OMPs) of the bacterium. Gram-negative bacteria produce membrane blebs or vesicles, the membrane components of which are primarily derived from OMPs. Accordingly, vesicles have been used as immunogens with various degrees of success. This study characterized components of M. haemolytica vesicles and determined their immunogenicity in mice and cattle. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of vesicles from this bacterium identified 226 proteins, of which 58 (25.6%) were OMPs and periplasmic and one (0.44%) was extracellular. Vesicles were used to vaccinate dairy calves and BALB/c mice. Analyses of sera from calves and mice by enzyme-linked immunosorbent assay (ELISA) showed that circulating antibodies against M. haemolytica whole cells and leukotoxin were significantly higher on days 21 and 28 (P < 0.05) than on day 0. For control calves and mice, there were no significant differences in serum anti-whole-cell and leukotoxin antibody levels from days 0 and 21 or 28, respectively. Lesion scores of lungs from vaccinated calves (15.95%) were significantly (P < 0.05) lower than those from nonvaccinated calves (42.65%). Sera from mice on day 28 and calves on day 21 showed 100% serum bactericidal activity. Sera from vesicle-vaccinated mice neutralized leukotoxin.
Collapse
|
21
|
Gesslbauer B, Poljak A, Handwerker C, Schüler W, Schwendenwein D, Weber C, Lundberg U, Meinke A, Kungl AJ. Comparative membrane proteome analysis of three Borrelia species. Proteomics 2012; 12:845-58. [PMID: 22539435 DOI: 10.1002/pmic.201100211] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The versatility of the surface of Borrelia, the causative agent of Lyme borreliosis, is very important in host-pathogen interactions allowing bacteria to survive in ticks and to persist in a mammalian environment. To identify the surface proteome of Borrelia, we have performed a large comparative proteomic analysis on the three most important pathogenic Borrelia species, namely B. burgdorferi (strain B31), B. afzelii (strain K78), and B. garinii (strain PBi). Isolation of membrane proteins was performed by using three different approaches: (i) a detergent-based fractionation of outer membrane proteins; (ii) a trypsin-based partial shedding of outer cell surface proteins; (iii) biotinylation of membrane proteins and preparation of the biotin-labelled fraction using streptavidin. Proteins derived from the detergent-based fractionation were further sub-fractionated by heparin affinity chromatography since heparin-like molecules play an important role for microbial entry into human cells. All isolated proteins were analysed using either a gel-based liquid chromatography (LC)-MS/MS technique or by two-dimensional (2D)-LC-MS/MS resulting in the identification of 286 unique proteins. Ninety seven of these were found in all three Borrelia species, representing potential targets for a broad coverage vaccine for the prevention of Lyme borreliosis caused by the different Borrelia species.
Collapse
|
22
|
Guzmán-Brambila C, Quintero-Fabián S, González-Castillo C, de Obeso-Fernández del Valle Á, Flores-Samaniego B, de la Mora G, Rojas-Mayorquín AE, Ortuño-Sahagún D. LKTA and PlpE small fragments fusion protein protect against Mannheimia haemolytica challenge. Res Vet Sci 2012; 93:1293-300. [PMID: 22840333 DOI: 10.1016/j.rvsc.2012.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 06/10/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
Abstract
Bovine respiratory disease (BRD) complex is a major cause of economic losses for the cattle backgrounding and feedlot industries. Mannheimia haemolytica is considered the most important pathogen associated with this disease. Vaccines against M. haemolytica have been prepared and used for many decades, but traditional bacterins have failed to demonstrate effective protection and their use has often exacerbated disease in vaccinated animals. Thus, the BRD complex continues to exert a strong adverse effect on the health and wellbeing of stocker and feeder cattle. Therefore, generation of recombinant proteins has been helpful in formulating enhanced vaccines against M. haemolytica, which could confer better protection against BRD. In the present study, we formulated a vaccine preparation enriched with recombinant small fragments of leukotoxin A (LKTA) and outer-membrane lipoprotein (PlpE) proteins, and demonstrated its ability to generate high antibody titers in rabbits and sheep, which protected against M. haemolytica bacterial challenge in mice.
Collapse
Affiliation(s)
- Carolina Guzmán-Brambila
- Laboratorio de Desarrollo y Regeneración Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, camino Ing. R. Padilla Sánchez, 2100, Las Agujas, Zapopan 44600, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hu Q, Ding C, Tu J, Wang X, Han X, Duan Y, Yu S. Immunoproteomics analysis of whole cell bacterial proteins of Riemerella anatipestifer. Vet Microbiol 2012; 157:428-38. [PMID: 22317978 DOI: 10.1016/j.vetmic.2012.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/02/2011] [Accepted: 01/10/2012] [Indexed: 11/20/2022]
Affiliation(s)
- Qinghai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Naveed H, Xu Y, Jackups R, Liang J. Predicting three-dimensional structures of transmembrane domains of β-barrel membrane proteins. J Am Chem Soc 2012; 134:1775-81. [PMID: 22148174 DOI: 10.1021/ja209895m] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
β-Barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. They are important for pore formation, membrane anchoring, and enzyme activity. These proteins are also often responsible for bacterial virulence. Due to difficulties in experimental structure determination, they are sparsely represented in the protein structure databank. We have developed a computational method for predicting structures of the transmembrane (TM) domains of β-barrel membrane proteins. Based on physical principles, our method can predict structures of the TM domain of β-barrel membrane proteins of novel topology, including those from eukaryotic mitochondria. Our method is based on a model of physical interactions, a discrete conformational state space, an empirical potential function, as well as a model to account for interstrand loop entropy. We are able to construct three-dimensional atomic structure of the TM domains from sequences for a set of 23 nonhomologous proteins (resolution 1.8-3.0 Å). The median rmsd of TM domains containing 75-222 residues between predicted and measured structures is 3.9 Å for main chain atoms. In addition, stability determinants and protein-protein interaction sites can be predicted. Such predictions on eukaryotic mitochondria outer membrane protein Tom40 and VDAC are confirmed by independent mutagenesis and chemical cross-linking studies. These results suggest that our model captures key components of the organization principles of β-barrel membrane protein assembly.
Collapse
Affiliation(s)
- Hammad Naveed
- Department of Bioengineering, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
25
|
Cao Y, Johnson HM, Bazemore-Walker CR. Improved enrichment and proteomic identification of outer membrane proteins from a Gram-negative bacterium: focus on Caulobacter crescentus. Proteomics 2012; 12:251-262. [PMID: 22106052 DOI: 10.1002/pmic.201100288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 10/16/2011] [Accepted: 11/02/2011] [Indexed: 01/04/2025]
Abstract
Efforts to characterize proteins found in the outer membrane (OM) of Gram-negative bacteria have been steadily increasing due to the promise of expanding our understanding of fundamental bacterial processes such as cell adhesion or cell wall biogenesis as well as the promise of finding potential vaccine- or drug-targets for virulent bacteria. We have developed a mass spectrometry-compatible experimental strategy that resulted in increased coverage of the OM proteome of a model organism, Caulobacter crescentus. The specificity of the OM enrichment step was improved by using detergent solubilization of the protein pellet, low-density cell culture conditions, and a surface-layer deficient cell line. Additionally, efficient gel-assisted digestion, high-resolution RP/RP-MS/MS, and rigorous bioinformatic analysis led to the identification of 234 proteins using strict identification criteria (≥ two unique peptides per protein; peptide false discovery rate <2%). Eighty-four of the detected proteins were predicted to localize to the OM or extracellular space. These results represent ~70% coverage of the predicted OM/extracellular proteome of C. crescentus. This analytical approach, which considers important experimental variables not previously explored in published OM protein studies, can be applied to other OM proteomic endeavors "as is" or with slight modification and should improve the large-scale study of this especially challenging subproteome.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
26
|
Hounsome JDA, Baillie S, Noofeli M, Riboldi-Tunnicliffe A, Burchmore RJS, Isaacs NW, Davies RL. Outer membrane protein A of bovine and ovine isolates of Mannheimia haemolytica is surface exposed and contains host species-specific epitopes. Infect Immun 2011; 79:4332-41. [PMID: 21896777 PMCID: PMC3257919 DOI: 10.1128/iai.05469-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/23/2011] [Accepted: 08/08/2011] [Indexed: 01/21/2023] Open
Abstract
Mannheimia haemolytica is the etiological agent of pneumonic pasteurellosis of cattle and sheep; two different OmpA subclasses, OmpA1 and OmpA2, are associated with bovine and ovine isolates, respectively. These proteins differ at the distal ends of four external loops, are involved in adherence, and are likely to play important roles in host adaptation. M. haemolytica is surrounded by a polysaccharide capsule, and the degree of OmpA surface exposure is unknown. To investigate surface exposure and immune specificity of OmpA among bovine and ovine M. haemolytica isolates, recombinant proteins representing the transmembrane domain of OmpA from a bovine serotype A1 isolate (rOmpA1) and an ovine serotype A2 isolate (rOmpA2) were overexpressed, purified, and used to generate anti-rOmpA1 and anti-rOmpA2 antibodies, respectively. Immunogold electron microscopy and immunofluorescence techniques demonstrated that OmpA1 and OmpA2 are surface exposed, and are not masked by the polysaccharide capsule, in a selection of M. haemolytica isolates of various serotypes and grown under different growth conditions. To explore epitope specificity, anti-rOmpA1 and anti-rOmpA2 antibodies were cross-absorbed with the heterologous isolate to remove cross-reacting antibodies. These cross-absorbed antibodies were highly specific and recognized only the OmpA protein of the homologous isolate in Western blot assays. A wider examination of the binding specificities of these antibodies for M. haemolytica isolates representing different OmpA subclasses revealed that cross-absorbed anti-rOmpA1 antibodies recognized OmpA1-type proteins but not OmpA2-type proteins; conversely, cross-absorbed anti-rOmpA2 antibodies recognized OmpA2-type proteins but not OmpA1-type proteins. Our results demonstrate that OmpA1 and OmpA2 are surface exposed and could potentially bind to different receptors in cattle and sheep.
Collapse
Affiliation(s)
- Jonathan D. A. Hounsome
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Susan Baillie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mojtaba Noofeli
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alan Riboldi-Tunnicliffe
- School of Chemistry, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Richard J. S. Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Neil W. Isaacs
- School of Chemistry, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Robert L. Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
27
|
Immunogenicity of Mannheimia haemolytica recombinant outer membrane proteins serotype 1-specific antigen, OmpA, OmpP2, and OmpD15. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:2067-74. [PMID: 21976226 DOI: 10.1128/cvi.05332-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously identified Mannheimia haemolytica outer membrane proteins (OMPs) that may be important immunogens by using immunoproteomic analyses. Genes for serotype 1-specific antigen (SSA-1), OmpA, OmpP2, and OmpD15 were cloned and expressed, and recombinant proteins were purified. Objective 1 of this study was to demonstrate immunogenicity of the four recombinant OMPs in mice and cattle. Objective 2 was to determine if the addition of individual recombinant OMPs or combinations of them would modify immune responsiveness of mice to the recombinant chimeric protein SAC89, containing the main epitope from M. haemolytica outer membrane lipoprotein PlpE and the neutralizing epitope of M. haemolytica leukotoxin. Mice vaccinated with recombinant OmpA (rOmpA), rSSA-1, rOmpD15, and rOmpP2 developed significant antibody responses to M. haemolytica outer membranes and to the homologous recombinant OMP. Cattle vaccinated with rOmpA and rSSA-1 developed significant antibodies to M. haemolytica outer membranes by day 28, whereas cattle vaccinated with rOmpD15 and rOmpP2 developed only minimal responses. Sera from cattle vaccinated with each of the recombinant proteins stimulated complement-mediated killing of the bacterium. Concurrent vaccination with SAC89 plus any of the four rOMPs singly resulted in increased endpoint anti-SAC89 titers, and for the SAC89/rSSA-1 vaccinees, the response was increased significantly. In contrast, the SAC89/P2/SSA-1 and SAC89/OmpA/P2/D15/SSA-1 combination vaccines resulted in significant decreases in anti-SAC89 antibodies compared to SAC89 vaccination alone. In conclusion, under the conditions of these experiments, vaccination of mice and cattle with rOmpA and rSSA-1 stimulated high antibody responses and may have protective vaccine potential.
Collapse
|
28
|
Ayalew S, Shrestha B, Montelongo M, Wilson AE, Confer AW. Identification and immunogenicity of Mannheimia haemolytica S1 outer membrane lipoprotein PlpF. Vaccine 2011; 29:8712-8. [PMID: 21875637 DOI: 10.1016/j.vaccine.2011.08.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/19/2011] [Accepted: 08/15/2011] [Indexed: 11/29/2022]
Abstract
Immunity against Mannheimia haemolytica requires antibodies against leukotoxin (LKT) and bacterial cell surface antigens, most likely immunogenic outer membrane proteins (OMPs). Five immunogenic outer membrane lipoproteins identified and characterized in M. haemolytica were designated Pasteurella lipoproteins (Plp) A, -B, -C, -D and -E. Using immunoproteomics, we identified a heretofore-uncharacterized M. haemolytica immunogenic outer membrane lipoprotein that we designated PlpF, which was previously designated in the published sequence as a conserved hypothetical protein. We cloned and expressed rPlpF from two M. haemolytica serotype 1 strains (SAC159 and SAC160) and demonstrated a variable number of perfect (KKTEED) or imperfect (KKaEEa) repeats between residues 41 and 76 on the N-terminus. Antigenicity plots predicted the N-terminus repeat region to be highly antigenic. The plpF gene in multiple M. haemolytica S1, S2, and S6 isolates varied in the number of repeats from three to seven. C-terminal region was highly conserved. Immunization of mice with SAC159 or SAC160 demonstrated immunogenicity in a dose-response manner. Immunization of calves demonstrated an increase in antibodies to PlpF, and rPlpF antibodies stimulated complement-mediated killing of M. haemolytica. Because calves had pre-existing anti-M. haemolytica antibodies due to prior natural exposure, functionality of the anti-PlpF antibody responses were demonstrated by marked reduction of complement-mediated killing by blocking of anti-PlpF antibodies with rPlpF In conclusion, PlpF might have vaccination potential against M. haemolytica infection in cattle.
Collapse
Affiliation(s)
- Sahlu Ayalew
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | |
Collapse
|
29
|
Immunoproteomic analysis of human serological antibody responses to vaccination with whole-cell pertussis vaccine (WCV). PLoS One 2010; 5:e13915. [PMID: 21170113 PMCID: PMC2976700 DOI: 10.1371/journal.pone.0013915] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 10/18/2010] [Indexed: 11/29/2022] Open
Abstract
Background Pertussis (whooping cough) caused by Bordetella pertussis
(B.p), continues to be a serious public health threat.
Vaccination is the most economical and effective strategy for preventing and
controlling pertussis. However, few systematic investigations of actual
human immune responses to pertussis vaccines have been performed. Therefore,
we utilized a combination of two-dimensional electrophoresis (2-DE),
immunoblotting, and mass spectrometry to reveal the entire antigenic
proteome of whole-cell pertussis vaccine (WCV) targeted by the human immune
system as a first step toward evaluating the repertoire of human humoral
immune responses against WCV. Methodology/Principal Findings Immunoproteomic profiling of total membrane enriched proteins and
extracellular proteins of Chinese WCV strain 58003 identified a total of 30
immunoreactive proteins. Seven are known pertussis antigens including
Pertactin, Serum resistance protein, chaperonin GroEL and two OMP porins.
Sixteen have been documented to be immunogenic in other pathogens but not in
B.p, and the immunogenicity of the last seven proteins
was found for the first time. Furthermore, by comparison of the human and
murine immunoproteomes of B.p, with the exception of four
human immunoreactive proteins that were also reactive with mouse immune
sera, a unique group of antigens including more than 20 novel immunoreactive
proteins that uniquely reacted with human immune serum was confirmed. Conclusions/Significance This study is the first time that the repertoire of human serum antibody
responses against WCV was comprehensively investigated, and a small number
of previously unidentified antigens of WCV were also found by means of the
classic immunoproteomic strategy. Further research on these newly identified
predominant antigens of B.p exclusively against humans will
not only remarkably accelerate the development of diagnostic biomarkers and
subunit vaccines but also provide detailed insight into human immunity
mechanisms against WCV. In particular, this work highlights the
heterogeneity of the B.p immunoreactivity patterns of the
mouse model and the human host.
Collapse
|