1
|
Sui Z, Song X, Wu Y, Hou R, Liu J, Zhao B, Liang Z, Chen J, Zhang L, Zhang Y. The cytotoxicity of PM 2.5 and its effect on the secretome of normal human bronchial epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75966-75977. [PMID: 35665889 DOI: 10.1007/s11356-022-20726-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Exposure to airborne fine particulate matter (PM2.5) induced various adverse health effects, such as metabolic syndrome, systemic inflammation, and respiratory disease. Many works have studied the effects of PM2.5 exposure on cells through intracellular proteomics analyses. However, changes of the extracellular proteome under PM2.5 exposure and its correlation with PM2.5-induced cytotoxicity still remain unclear. Herein, the cytotoxicity of PM2.5 on normal human bronchial epithelia cells (BEAS-2B cells) was evaluated, and the secretome profile of BEAS-2B cells before and after PM2.5 exposure was investigated. A total of 83 proteins (58 upregulated and 25 downregulated) were differentially expressed in extracellular space after PM2.5 treatment. Notably, we found that PM2.5 promoted the release of several pro-apoptotic factors and induced dysregulated secretion of extracellular matrix (ECM) constituents, showing that the abnormal extracellular environment attributed to PM2.5-induced cell damage. This study provided a secretome data for the deep understanding of the molecular mechanism underlying PM2.5-caused human bronchial epithelia cell damage.
Collapse
Affiliation(s)
- Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaoyao Song
- Environmental Assessment and Analysis Group, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yujie Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rui Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Jianhui Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Jiping Chen
- Environmental Assessment and Analysis Group, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China.
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
2
|
Li N, Lewandowski RP, Sidhu D, Holz C, Jackson-Humbles D, Eiguren-Fernandez A, Akbari P, Cho AK, Harkema JR, Froines JR, Wagner JG. Combined adjuvant effects of ambient vapor-phase organic components and particulate matter potently promote allergic sensitization and Th2-skewing cytokine and chemokine milieux in mice: The importance of mechanistic multi-pollutant research. Toxicol Lett 2021; 356:21-32. [PMID: 34863859 DOI: 10.1016/j.toxlet.2021.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
Although exposure to ambient particulate matter (PM) is linked to asthma, the health effects of co-existing vapor-phase organic pollutants (vapor) and their combined effects with PM on this disease are poorly understood. We used a murine asthma model to test the hypothesis that exposure to vapor would enhance allergic sensitization and this effect would be further strengthened by co-existing PM. We found that vapor and PM each individually exerted adjuvant effects on OVA sensitization. Co-exposure to vapor and PM during sensitization further enhanced allergic lung inflammation and OVA-specific antibody production which was accompanied by pulmonary cytokine/chemokine milieu that favored T-helper 2 immunity (i.e. increased IL-4, downregulation of Il12a and Ifng, and upregulation of Ccl11 and Ccl8). TNFα, IL-6, Ccl12, Cxcl1 and detoxification/antioxidant enzyme responses in the lung were pollutant-dependent. Inhibition of lipopolysaccharide-induced IL-12 secretion from primary antigen-presenting dendritic cells correlated positively with vapor's oxidant potential. In conclusion, concurrent exposure to vapor and PM led to significantly exaggerated adjuvant effects on allergic lung inflammation which were more potent than that of each pollutant type alone. These findings suggest that the effects of multi-component air pollution on asthma may be significantly underestimated if research only focuses on a single air pollutant (e.g., PM).
Collapse
Affiliation(s)
- Ning Li
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA.
| | - Ryan P Lewandowski
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Damansher Sidhu
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Carine Holz
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Daven Jackson-Humbles
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Arantzazu Eiguren-Fernandez
- Department of Environmental Health Sciences, School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Peyman Akbari
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Arthur K Cho
- Department of Environmental Health Sciences, School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - John R Froines
- Department of Environmental Health Sciences, School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - James G Wagner
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Qin W, Wang T, Liu G, Sun L, Han W, Gao Y. Dynamic Urinary Proteome Changes in Ovalbumin-Induced Asthma Mouse Model Using Data-Independent Acquisition Proteomics. J Asthma Allergy 2021; 14:1355-1366. [PMID: 34785909 PMCID: PMC8590963 DOI: 10.2147/jaa.s330054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/30/2021] [Indexed: 01/09/2023] Open
Abstract
Background In this work, we aim to investigate dynamic urinary proteome changes during asthma development and to identify potential urinary protein biomarkers for the diagnosis of asthma. Methods An ovalbumin (OVA)-induced mouse model was used to mimic asthma. The urinary proteome from asthma and control mice was determined using data-independent acquisition combined with high-resolution tandem mass spectrometry. Results Overall, 331 proteins were identified, among which 53 were differentially expressed (26, 24, 14 and 20 on days 2, 8, 15 and 18, respectively; 1.5-fold change, adjust P<0.05). Gene Ontology annotation of the differential proteins showed that the acute-phase response, innate immune response, B cell receptor signaling pathway, and complement activation were significantly enriched. Protein–protein interaction network revealed that these differential proteins were partially biologically connected in OVA-induced asthma, as a group. On days 2 and 8, after two episodes of OVA sensitization, six differential proteins (CRAMP, ECP, HP, F2, AGP1, and CFB) were also reported to be closely associated with asthma. These proteins may hold the potential for the early screening of asthma. On days 15 and 18, after challenged with 1% OVA by inhalation, seven differential proteins (VDBP, HP, CTSE, PIGR, AAT, TRFE, and HPX) were also reported to be closely associated with asthma. Thus, these proteins hold the potential to be biomarkers for the diagnosis of asthma attack. Conclusion Our results indicate that the urinary proteome could reflect dynamic pathophysiological changes in asthma progression.
Collapse
Affiliation(s)
- Weiwei Qin
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, People's Republic of China.,Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Ting Wang
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Lixin Sun
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Wei Han
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, People's Republic of China
| |
Collapse
|
4
|
Ma Y, Wang M, Wang S, Wang Y, Feng L, Wu K. Air pollutant emission characteristics and HYSPLIT model analysis during heating period in Shenyang, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 193:9. [PMID: 33319343 DOI: 10.1007/s10661-020-08767-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
To find out the characteristics and sources of atmospheric pollutants during heating period in Shenyang, the study investigated the temporal and spatial distribution of pollutants, using data of six typical atmospheric pollutants (SO2, NO2, PM10, PM2.5, O3, and CO) from November 2017 to March 2018 in 11 monitoring stations in Shenyang. These features were combined with the HYSPLIT model for backward trajectory simulation of heavily polluted weather. PM10 and PM2.5 are the main pollutants during heating period in Shenyang, with average concentrations of 90.26 μg/m3 and 56.92 μg/m3, respectively. The concentrations of various types of contaminants at the Taiyuan Street station were relatively high. PM10 and PM2.5 were relatively high in the southwestern area of Shenyang, gradually decreasing to the northeast. Only one heavy pollution event occurred during heating period in 2018. The results of the backward trajectory analysis of this heavy pollution event using HYSPLIT show that air masses from inland areas such as the southwest and northwest brought some particulate matter and atmospheric pollutants, which exacerbated Shenyang Air pollution in the city.
Collapse
Affiliation(s)
- Yunfeng Ma
- Shenyang Aerospace University, Shenyang, 110136, China.
| | - Maibo Wang
- Shenyang Aerospace University, Shenyang, 110136, China
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shuai Wang
- Shenyang Environmental Monitoring Center, Shenyang, 110000, China
| | - Yue Wang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lei Feng
- Shenyang Aerospace University, Shenyang, 110136, China
| | - Kaiyu Wu
- Shenyang Neusoft System Integration Technology Co., Ltd., Shenyang, 110179, China
| |
Collapse
|
5
|
Li X, Zhang X, Zhang Z, Han L, Gong D, Li J, Wang T, Wang Y, Gao S, Duan H, Kong F. Air pollution exposure and immunological and systemic inflammatory alterations among schoolchildren in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1304-1310. [PMID: 30677897 DOI: 10.1016/j.scitotenv.2018.12.153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 05/22/2023]
Abstract
Exposure to air pollution is associated with an increased risk of respiratory infection, to which children are more susceptible than adults. However, epidemiological evidence regarding the association of chronic exposure to air pollution with the immune and systemic inflammatory function of children is scarce, especially in the context of higher exposure levels. In this study, we included 163 chronically exposed schoolchildren from a polluted area and 110 schoolchildren from a control area in Licheng district, Jinan, China. Immune biomarkers, including the absolute counts of lymphocyte subsets and the levels of immunoglobulins G, A, and M, C3, and C4 were determined. To explore the related biological process of altered immune biomarkers, 2 systemic inflammatory biomarkers, including C-reactive protein and the neutrophil-to-lymphocyte ratio, were also determined. After adjusting for confounders, the decreased B lymphocyte count (p = 0.021) and C3 and C4 levels (both p < 0.001) and the increased monocyte count (p = 0.009) and CD8+ T lymphocyte proportion (p = 0.054) were associated with living in the polluted area. Significant differences in the C4 and C3 levels between the areas were only seen in male schoolchildren and in schoolchildren without passive smoking exposure (Pinteraction = 0.036 and 0.042, respectively). The alterations in immune biomarkers suggested that air pollution-induced immunotoxic effects and relevant adaptive responses were simultaneously present in schoolchildren exposed to a higher level of air pollution. Future studies investigating the temporal patterns of these biomarkers among children are warranted.
Collapse
Affiliation(s)
- Xinwei Li
- Jinan Municipal Center for Disease Control and Prevention, Jinan, China
| | - Xiao Zhang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | | | - Lianyu Han
- Licheng District Center for Disease Control and Prevention, Jinan, China
| | - Deping Gong
- Huaiyin District Health and Family Planning Supervision, Jinan, China
| | - Jie Li
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ting Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanhua Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sheng Gao
- Inner Mongolia Center for Disease Control and Prevention, Hohhot, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Fanling Kong
- Shandong Center for Disease Control and Prevention, Jinan, China.
| |
Collapse
|
6
|
Pałczyński C, Kupryś-Lipinska I, Wittczak T, Jassem E, Breborowicz A, Kuna P. The position paper of the Polish Society of Allergology on climate changes, natural disasters and allergy and asthma. Postepy Dermatol Alergol 2018; 35:552-562. [PMID: 30618521 PMCID: PMC6320485 DOI: 10.5114/ada.2017.71273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/18/2017] [Indexed: 12/25/2022] Open
Abstract
The observed global climate change is an indisputable cause of the increased frequency of extreme weather events and related natural disasters. This phenomenon is observed all over the world including Poland. Moreover, Polish citizens as tourists are also exposed to climate phenomena that do not occur in our climate zone. Extreme weather events and related disasters can have a significant impact on people with allergic diseases, including asthma. These effects may be associated with the exposure to air pollution, allergens, and specific microclimate conditions. Under the auspices of the Polish Society of Allergology, experts in the field of environmental allergy prepared a statement on climate changes, natural disasters and allergy and asthma to reduce the risk of adverse health events provoked by climate and weather factors. The guidelines contain the description of the factors related to climate changes and natural disasters affecting the course of allergic diseases, the specific microclimate conditions and the recommendations of the Polish Society of Allergology for vulnerable population, patients suffering from asthma and allergy diseases, allergologists and authorities in the event of climate and weather hazards.
Collapse
Affiliation(s)
- Cezary Pałczyński
- Department of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
| | - Izabela Kupryś-Lipinska
- Department of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
| | | | - Ewa Jassem
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Breborowicz
- Department of Pediatric Pneumonolgy, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Fröhlich-Nowoisky J, Shiraiwa M, Lakey PSJ, Lai S, Liu F, Kunert AT, Ziegler K, Shen F, Sgarbanti R, Weber B, Bellinghausen I, Saloga J, Weller MG, Duschl A, Schuppan D, Pöschl U. Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4119-4141. [PMID: 28326768 PMCID: PMC5453620 DOI: 10.1021/acs.est.6b04908] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 05/13/2023]
Abstract
Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.
Collapse
Affiliation(s)
| | - Christopher J. Kampf
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Institute
of Inorganic and Analytical Chemistry, Johannes
Gutenberg University, Mainz, 55128, Germany
| | - Kurt Lucas
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Naama Lang-Yona
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | | | - Manabu Shiraiwa
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Pascale S. J. Lakey
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Senchao Lai
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- South
China University of Technology, School of
Environment and Energy, Guangzhou, 510006, China
| | - Fobang Liu
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Anna T. Kunert
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Kira Ziegler
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Fangxia Shen
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Rossella Sgarbanti
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Bettina Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Iris Bellinghausen
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Joachim Saloga
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Michael G. Weller
- Division
1.5 Protein Analysis, Federal Institute
for Materials Research and Testing (BAM), Berlin, 12489, Germany
| | - Albert Duschl
- Department
of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Detlef Schuppan
- Institute
of Translational Immunology and Research Center for Immunotherapy,
Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, 55131 Germany
- Division
of Gastroenterology, Beth Israel Deaconess
Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| |
Collapse
|
8
|
Huang KL, Lee YH, Chen HI, Liao HS, Chiang BL, Cheng TJ. Zinc oxide nanoparticles induce eosinophilic airway inflammation in mice. JOURNAL OF HAZARDOUS MATERIALS 2015; 297:304-312. [PMID: 26010476 DOI: 10.1016/j.jhazmat.2015.05.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have been widely used in industry. The metal composition of PM2.5 might contribute to the higher prevalence of asthma. To investigate the effects of ZnO NPs on allergic airway inflammation, mice were first exposed to different concentrations of ZnO NPs (0.1 mg/kg, 0.5 mg/kg) or to a combination of ZnO NPs and chicken egg ovalbumin (OVA) by oropharyngeal aspiration on day 0 and day 7 and then were sacrificed 5 days later. The subsequent time course of airway inflammation in the mice after ZnO NPs exposure was evaluated on days 1, 7, and 14. To further determine the role of zinc ions, ZnCl2 was also administered. The inflammatory cell count, cytokine levels in the bronchoalveolar lavage fluid (BALF), and lung histopathology were examined. We found significant neutrophilia after exposure to high-dose ZnO NPs on day 1 and significant eosinophilia in the BALF at 7 days. However, the expression levels of the T helper 2 (Th2) cytokines IL-4, IL-5, and IL-13 increased significantly after 24h of exposure to only ZnO NPs and then decreased gradually. These results suggested that ZnO NPs could cause eosinophilic airway inflammation in the absence of allergens.
Collapse
Affiliation(s)
- Kuo-Liang Huang
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan; Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yi-Hsin Lee
- Department of Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Hau-Inh Chen
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Huang-Shen Liao
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan
| | - Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Chumsae C, Hossler P, Raharimampionona H, Zhou Y, McDermott S, Racicot C, Radziejewski C, Zhou ZS. When Good Intentions Go Awry: Modification of a Recombinant Monoclonal Antibody in Chemically Defined Cell Culture by Xylosone, an Oxidative Product of Ascorbic Acid. Anal Chem 2015; 87:7529-34. [DOI: 10.1021/acs.analchem.5b00801] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chris Chumsae
- Protein
Analytics, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Patrick Hossler
- Cell
Culture, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Haly Raharimampionona
- Protein
Analytics, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Yu Zhou
- Protein
Analytics, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Sean McDermott
- Cell
Culture, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Chris Racicot
- Cell
Culture, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Czeslaw Radziejewski
- Protein
Analytics, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Zhaohui Sunny Zhou
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Karisola P, Lehto M, Kinaret P, Ahonen N, Haapakoski R, Anthoni M, Taniguchi M, Wolff H, Puustinen A, Alenius H. Invariant Natural Killer T Cells Play a Role in Chemotaxis, Complement Activation and Mucus Production in a Mouse Model of Airway Hyperreactivity and Inflammation. PLoS One 2015; 10:e0129446. [PMID: 26067998 PMCID: PMC4466557 DOI: 10.1371/journal.pone.0129446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/08/2015] [Indexed: 12/31/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells play a critical role in the induction of airway hyperreactivity (AHR). After intranasal alpha-galactosylceramide (α-GalCer) administration, bronchoalveolar lavage fluid (BALF) proteins from mouse lung were resolved by two-dimensional differential gel electrophoresis (2D-DIGE), and identified by tandem mass spectroscopy. A lack of iNKT cells prevented the development of airway responses including AHR, neutrophilia and the production of the proinflammatory cytokines in lungs. Differentially abundant proteins in the BALF proteome of α-GalCer-treated wild type mice included lungkine (CXCL15), pulmonary surfactant-associated protein D (SFTPD), calcium-activated chloride channel regulator 1 (CLCA1), fragments of complement 3, chitinase 3-like proteins 1 (CH3LI) and 3 (CH3L3) and neutrophil gelatinase-associated lipocalin (NGAL). These proteins may contribute to iNKT regulated AHR via several mechanisms: altering leukocyte chemotaxis, increasing airway mucus production and possibly via complement activation.
Collapse
Affiliation(s)
- Piia Karisola
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
- * E-mail:
| | - Maili Lehto
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Pia Kinaret
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Niina Ahonen
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Rita Haapakoski
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Minna Anthoni
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Masaru Taniguchi
- RIKEN Center for Integrative Medical Sciences, Laboratory for Immune Regulation, RCAI Kanagawa, Japan
| | - Henrik Wolff
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Anne Puustinen
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Harri Alenius
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| |
Collapse
|
11
|
Xia M, Viera-Hutchins L, Garcia-Lloret M, Noval Rivas M, Wise P, McGhee SA, Chatila ZK, Daher N, Sioutas C, Chatila TA. Vehicular exhaust particles promote allergic airway inflammation through an aryl hydrocarbon receptor-notch signaling cascade. J Allergy Clin Immunol 2015; 136:441-53. [PMID: 25825216 DOI: 10.1016/j.jaci.2015.02.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/11/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND Traffic-related particulate matter (PM) has been linked to a heightened incidence of asthma and allergic diseases. However, the molecular mechanisms by which PM exposure promotes allergic diseases remain elusive. OBJECTIVE We sought to determine the expression, function, and regulation of pathways involved in promotion of allergic airway inflammation by PM. METHODS We used gene expression transcriptional profiling, in vitro culture assays, and in vivo murine models of allergic airway inflammation. RESULTS We identified components of the Notch pathway, most notably Jagged 1 (Jag1), as targets of PM induction in human monocytes and murine dendritic cells. PM, especially ultrafine particles, upregulated TH cytokine levels, IgE production, and allergic airway inflammation in mice in a Jag1- and Notch-dependent manner, especially in the context of the proasthmatic IL-4 receptor allele Il4raR576. PM-induced Jag1 expression was mediated by the aryl hydrocarbon receptor (AhR), which bound to and activated AhR response elements in the Jag1 promoter. Pharmacologic antagonism of AhR or its lineage-specific deletion in CD11c(+) cells abrogated the augmentation of airway inflammation by PM. CONCLUSION PM activates an AhR-Jag1-Notch cascade to promote allergic airway inflammation in concert with proasthmatic alleles.
Collapse
Affiliation(s)
- Mingcan Xia
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Loida Viera-Hutchins
- Division of Immunology, Allergy and Rheumatology, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, Calif
| | - Maria Garcia-Lloret
- Division of Immunology, Allergy and Rheumatology, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, Calif
| | - Magali Noval Rivas
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Petra Wise
- Department of Hematology/Oncology and Bone Marrow Transplant, Children's Hospital Los Angeles, Los Angeles, Calif
| | - Sean A McGhee
- Division of Immunology & Allergy, Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif
| | - Zena K Chatila
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Nancy Daher
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, Calif
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, Calif
| | - Talal A Chatila
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
12
|
Kwon JY, Koedrith P, Seo YR. Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations. Int J Nanomedicine 2014; 9 Suppl 2:271-86. [PMID: 25565845 PMCID: PMC4279763 DOI: 10.2147/ijn.s57918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Engineered nanoparticles (NPs) are widely used in many sectors, such as food, medicine, military, and sport, but their unique characteristics may cause deleterious health effects. Close attention is being paid to metal NP genotoxicity; however, NP genotoxic/carcinogenic effects and the underlying mechanisms remain to be elucidated. In this review, we address some metal and metal oxide NPs of interest and current genotoxicity tests in vitro and in vivo. Metal NPs can cause DNA damage such as chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. We also discuss several parameters that may affect genotoxic response, including physicochemical properties, widely used assays/end point tests, and experimental conditions. Although potential biomarkers of nanogenotoxicity or carcinogenicity are suggested, inconsistent findings in the literature render results inconclusive due to a variety of factors. Advantages and limitations related to different methods for investigating genotoxicity are described, and future directions and recommendations for better understanding genotoxic potential are addressed.
Collapse
Affiliation(s)
- Jee Young Kwon
- Department of Life Science, Institute of Environmental Medicine, Dongguk University, Seoul, Republic of Korea
| | - Preeyaporn Koedrith
- Faculty of Environment and Resource Studies, Mahidol University, Phuttamonthon District, NakhonPathom, Thailand
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Li R, Ji Z, Qin H, Kang X, Sun B, Wang M, Chang CH, Wang X, Zhang H, Zou H, Nel AE, Xia T. Interference in autophagosome fusion by rare earth nanoparticles disrupts autophagic flux and regulation of an interleukin-1β producing inflammasome. ACS NANO 2014; 8:10280-92. [PMID: 25251502 PMCID: PMC4213039 DOI: 10.1021/nn505002w] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/24/2014] [Indexed: 05/18/2023]
Abstract
Engineered nanomaterials (ENMs) including multiwall carbon nanotubes (MWCNTs) and rare earth oxide (REO) nanoparticles, which are capable of activating the NLRP3 inflammasome and inducing IL-1β production, have the potential to cause chronic lung toxicity. Although it is known that lysosome damage is an upstream trigger in initiating this pro-inflammatory response, the same organelle is also an important homeostatic regulator of activated NLRP3 inflammasome complexes, which are engulfed by autophagosomes and then destroyed in lysosomes after fusion. Although a number of ENMs have been shown to induce autophagy, no definitive research has been done on the homeostatic regulation of the NLRP3 inflammasome during autophagic flux. We used a myeloid cell line (THP-1) and bone marrow derived macrophages (BMDM) to compare the role of autophagy in regulating inflammasome activation and IL-1β production by MWCNTs and REO nanoparticles. THP-1 cells express a constitutively active autophagy pathway and are also known to mimic NLRP3 activation in pulmonary macrophages. We demonstrate that, while activated NLRP3 complexes could be effectively removed by autophagosome fusion in cells exposed to MWCNTs, REO nanoparticles interfered in autophagosome fusion with lysosomes. This leads to the accumulation of the REO-activated inflammasomes, resulting in robust and sustained IL-1β production. The mechanism of REO nanoparticle interference in autophagic flux was clarified by showing that they disrupt lysosomal phosphoprotein function and interfere in the acidification that is necessary for lysosome fusion with autophagosomes. Binding of LaPO4 to the REO nanoparticle surfaces leads to urchin-shaped nanoparticles collecting in the lysosomes. All considered, these data demonstrate that in contradistinction to autophagy induction by some ENMs, specific materials such as REOs interfere in autophagic flux, thereby disrupting homeostatic regulation of activated NLRP3 complexes.
Collapse
Affiliation(s)
- Ruibin Li
- Division of NanoMedicine, Department of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Zhaoxia Ji
- California NanoSystems Institute, University of California, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Xuedong Kang
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, United States
| | - Bingbing Sun
- Division of NanoMedicine, Department of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Meiying Wang
- Division of NanoMedicine, Department of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Xiang Wang
- California NanoSystems Institute, University of California, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Haiyuan Zhang
- California NanoSystems Institute, University of California, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Hanfa Zou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Andre E. Nel
- Division of NanoMedicine, Department of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Address correspondence to ,
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Address correspondence to ,
| |
Collapse
|
14
|
Schaumann F, Frömke C, Dijkstra D, Alessandrini F, Windt H, Karg E, Müller M, Winkler C, Braun A, Koch A, Hohlfeld JM, Behrendt H, Schmid O, Koch W, Schulz H, Krug N. Effects of ultrafine particles on the allergic inflammation in the lung of asthmatics: results of a double-blinded randomized cross-over clinical pilot study. Part Fibre Toxicol 2014; 11:39. [PMID: 25204642 PMCID: PMC4354282 DOI: 10.1186/s12989-014-0039-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 08/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemiological and experimental studies suggest that exposure to ultrafine particles (UFP) might aggravate the allergic inflammation of the lung in asthmatics. METHODS We exposed 12 allergic asthmatics in two subgroups in a double-blinded randomized cross-over design, first to freshly generated ultrafine carbon particles (64 μg/m³; 6.1 ± 0.4 × 10⁵ particles/cm³ for 2 h) and then to filtered air or vice versa with a 28-day recovery period in-between. Eighteen hours after each exposure, grass pollen was instilled into a lung lobe via bronchoscopy. Another 24 hours later, inflammatory cells were collected by means of bronchoalveolar lavage (BAL). ( TRIAL REGISTRATION NCT00527462) RESULTS: For the entire study group, inhalation of UFP by itself had no significant effect on the allergen induced inflammatory response measured with total cell count as compared to exposure with filtered air (p = 0.188). However, the subgroup of subjects, which inhaled UFP during the first exposure, exhibited a significant increase in total BAL cells (p = 0.021), eosinophils (p = 0.031) and monocytes (p = 0.013) after filtered air exposure and subsequent allergen challenge 28 days later. Additionally, the potential of BAL cells to generate oxidant radicals was significantly elevated at that time point. The subgroup that was exposed first to filtered air and 28 days later to UFP did not reveal differences between sessions. CONCLUSIONS Our data demonstrate that pre-allergen exposure to UFP had no acute effect on the allergic inflammation. However, the subgroup analysis lead to the speculation that inhaled UFP particles might have a long-term effect on the inflammatory course in asthmatic patients. This should be reconfirmed in further studies with an appropriate study design and sufficient number of subjects.
Collapse
Affiliation(s)
- Frank Schaumann
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1a, 30625, Hannover, Germany.
| | | | - Dorothea Dijkstra
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1a, 30625, Hannover, Germany. .,Hannover Medical School, Hannover, Germany.
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Zentrum München, Member of the German Center for Lung research (DZL), Munich, Germany, Munich, Germany.
| | - Horst Windt
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1a, 30625, Hannover, Germany.
| | - Erwin Karg
- Cooperationgroup Comprehensive Molecular Analytics (CMA), Joint Mass Spectrometry Centre (JMSC), Helmholtz Zentrum München, Munich, Germany.
| | - Meike Müller
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1a, 30625, Hannover, Germany.
| | - Carla Winkler
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1a, 30625, Hannover, Germany. .,Hannover Medical School, Hannover, Germany.
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1a, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany.
| | - Armin Koch
- Hannover Medical School, Hannover, Germany.
| | - Jens Michael Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1a, 30625, Hannover, Germany. .,Hannover Medical School, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany.
| | - Heidrun Behrendt
- Center of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Zentrum München, Member of the German Center for Lung research (DZL), Munich, Germany, Munich, Germany.
| | - Otmar Schmid
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany.
| | - Wolfgang Koch
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1a, 30625, Hannover, Germany.
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz Zentrum München, Munich, Germany.
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1a, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany.
| |
Collapse
|
15
|
Ogino K, Takahashi N, Kubo M, Takeuchi A, Nakagiri M, Fujikura Y. Inflammatory airway responses by nasal inoculation of suspended particulate matter in NC/Nga mice. ENVIRONMENTAL TOXICOLOGY 2014; 29:642-654. [PMID: 22778050 DOI: 10.1002/tox.21791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 06/04/2012] [Accepted: 06/10/2012] [Indexed: 06/01/2023]
Abstract
To evaluate the allergic effect of airborne particulate matter (PM) on the airway, separated soluble supernatant (Sup) and insoluble precipitate (Pre) in suspended PM were inoculated into NC/Nga mice with a high sensitivity for mite allergens. Sup, Pre, or both Sup and Pre with or without pronase treatment were inoculated via the nasal route five times for sensitization and a challenge inoculation on the 11th day in NC/Nga mice. On the 14th day, mice were examined for airway hyperresponsiveness (AHR), bronchoalveolar lavage fluid (BALF) cell count, mRNA expression of Th1 and Th2 cytokines in the lung tissue, and histopathology. Synergistic effects of Sup and Pre were observed as increases in AHR and a histopathological change of Periodic acid-Schiff (PAS) staining. Increases in neutrophils, macrophages, and lymphocytes of BALF cells were dependent on Pre. The expression of IL-4 mRNA was increased by Sup, and those of IL-5 mRNA and Il-13 mRNA was increased by Sup and Pre. Augmented AHR, mRNA expression of IL-4, peribronchial inflammation, and PAS staining by Sup plus Pre were attenuated by treatment of Sup with pronase to digest proteins. These results suggest that some proteins of ambient PM may be important environmental factors for AHR and airway inflammation with the aid of insoluble particulates, although some soluble factors such as endotoxins cannot be ruled out.
Collapse
Affiliation(s)
- Keiki Ogino
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Su CL, Chen TT, Chang CC, Chuang KJ, Wu CK, Liu WT, Ho KF, Lee KY, Ho SC, Tseng HE, Chuang HC, Cheng TJ. Comparative proteomics of inhaled silver nanoparticles in healthy and allergen provoked mice. Int J Nanomedicine 2013; 8:2783-99. [PMID: 23946650 PMCID: PMC3742529 DOI: 10.2147/ijn.s46997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Silver nanoparticles (AgNPs) have been associated with the exacerbation of asthma; however, the immunological basis for the adjuvant effects of AgNPs is not well understood. Objective The aim of the study reported here was to investigate the allergic effects of AgNP inhalation using proteomic approaches. Methods Allergen provoked mice were exposed to 33 nm AgNPs at 3.3 mg/m3. Following this, bronchoalveolar lavage fluid (BALF) and plasma were collected to determine protein profiles. Results In total, 106 and 79 AgNP-unique proteins were identified in the BALF of control and allergic mice, respectively. Additionally, 40 and 26 AgNP-unique proteins were found in the plasma of control and allergic mice, respectively. The BALF and plasma protein profiles suggested that metabolic, cellular, and immune system processes were associated with pulmonary exposure to AgNPs. In addition, we observed 18 proteins associated with systemic lupus erythematosus that were commonly expressed in both control and allergic mice after AgNP exposure. Significant allergy responses were observed after AgNP exposure in control and allergic mice, as determined by ovalbumin-specific immunoglobulin E. Conclusion Inhaled AgNPs may regulate immune responses in the lungs of both control and allergic mice. Our results suggest that immunology is a vital response to AgNPs.
Collapse
Affiliation(s)
- Chien-Ling Su
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, School of Respiratory Therapy, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang T, Garcia JG, Zhang W. Epigenetic Regulation in Particulate Matter-Mediated Cardiopulmonary Toxicities: A Systems Biology Perspective. ACTA ACUST UNITED AC 2012. [PMID: 23185213 DOI: 10.2174/187569212803901792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Particulate matter (PM) air pollution exerts significant adverse health effects in global populations, particularly in developing countries with extensive air pollution. Understanding of the mechanisms of PM-induced health effects including the risk for cardiovascular diseases remains limited. In addition to the direct cellular physiological responses such as mitochondrial dysfunction and oxidative stress, PM mediates remarkable dysregulation of gene expression, especially in cardiovascular tissues. The PM-mediated gene dysregulation is likely to be a complex mechanism affected by various genetic and non-genetic factors. Notably, PM is known to alter epigenetic markers (e.g., DNA methylation and histone modifications), which may contribute to air pollution-mediated health consequences including the risk for cardiovascular diseases. Notably, epigenetic changes induced by ambient PM exposure have emerged to play a critical role in gene regulation. Though the underlying mechanism(s) are not completely clear, the available evidence suggests that the modulated activities of DNA methyltransferase (DNMT), histone acetylase (HAT) and histone deacetylase (HDAC) may contribute to the epigenetic changes induced by PM or PM-related chemicals. By employing genome-wide epigenomic and systems biology approaches, PM toxicogenomics could conceivably progress greatly with the potential identification of individual epigenetic loci associated with dysregulated gene expression after PM exposure, as well the interactions between epigenetic pathways and PM. Furthermore, novel therapeutic targets based on epigenetic markers could be identified through future epigenomic studies on PM-mediated cardiopulmonary toxicities. These considerations collectively inform the future population health applications of genomics in developing countries while benefiting global personalized medicine at the same time.
Collapse
Affiliation(s)
- Ting Wang
- Section of Pulmonary, Critical Care, Allergy & Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA ; Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
18
|
Shannahan JH, Kodavanti UP, Brown JM. Manufactured and airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhal Toxicol 2012; 24:320-39. [PMID: 22486349 DOI: 10.3109/08958378.2012.668229] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human inhalation exposures to manufactured nanoparticles (NP) and airborne ultrafine particles (UFP) continues to increase in both occupational and environmental settings. UFP exposures have been associated with increased cardiovascular mortality and morbidity, while ongoing research supports adverse systemic and cardiovascular health effects after NP exposures. Adverse cardiovascular health effects include alterations in heart rate variability, hypertension, thrombosis, arrhythmias, increased myocardial infarction, and atherosclerosis. Exactly how UFP and NP cause these negative cardiovascular effects is poorly understood, however a variety of mediators and mechanisms have been proposed. UFP and NP, as well as their soluble components, are known to systemically translocate from the lung. Translocated particles could mediate cardiovascular toxicity through direct interactions with the vasculature, blood, and heart. Recent study suggests that sensory nerve stimulation within the lung may also contribute to UFP- and NP-induced acute cardiovascular alterations. Activation of sensory nerves, such as C-fibers, within the lung may result in altered cardiac rhythm and function. Lastly, release of pulmonary-derived mediators into systemic circulation has been proposed to facilitate cardiovascular effects. In general, these proposed pulmonary-derived mediators include proinflammatory cytokines, oxidatively modified macromolecules, vasoactive proteins, and prothrombotic factors. These pulmonary-derived mediators have been postulated to contribute to the subsequent prothrombotic, atherogenic, and inflammatory effects after exposure. This review will evaluate the potential contribution of individual mediators and mechanisms in facilitating cardiopulmonary toxicity following inhalation of UFP and NP. Lastly, we will appraise the literature and propose a hypothesis regarding the possible role of mast cells in contributing to these systemic effects.
Collapse
Affiliation(s)
- Jonathan H Shannahan
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | | |
Collapse
|
19
|
Kendall M, Ding P, Mackay RM, Deb R, McKenzie Z, Kendall K, Madsen J, Clark H. Surfactant protein D (SP-D) alters cellular uptake of particles and nanoparticles. Nanotoxicology 2012; 7:963-73. [PMID: 22551051 DOI: 10.3109/17435390.2012.689880] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Surfactant protein D (SP-D) is primarily expressed in the lungs and modulates pro- and anti-inflammatory processes to toxic challenge, maintaining lung homeostasis. We investigated the interaction between NPs and SP-D and subsequent uptake by cells involved in lung immunity. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) measured NP aggregation, particle size and charge in native human SP-D (NhSP-D) and recombinant fragment SP-D (rfhSP-D). SP-D aggregated NPs, especially following the addition of calcium. Immunohistochemical analysis of A549 epithelial cells investigated the co-localization of NPs and rfhSP-D. rfhSP-D enhanced the co-localisation of NPs to epithelial A549 cells in vitro. NP uptake by alveolar macrophages (AMs) and lung dendritic cells (LDCs) from C57BL/6 and SP-D knock-out mice were compared. AMs and LDCs showed decreased uptake of NPs in SP-D deficient mice compared to wild-type mice. These data confirmed an interaction between SP-D and NPs, and subsequent enhanced NP uptake.
Collapse
Affiliation(s)
- Michaela Kendall
- European Centre of Environment and Human Health, Peninsula College of Medicine and Dentistry, University of Exeter , Truro, Cornwall, TR1 3HD , UK.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shannahan JH, Alzate O, Winnik WM, Andrews D, Schladweiler MC, Ghio AJ, Gavett SH, Kodavanti UP. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure. Toxicol Appl Pharmacol 2012; 260:105-14. [PMID: 22366155 DOI: 10.1016/j.taap.2012.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/10/2012] [Accepted: 02/12/2012] [Indexed: 12/14/2022]
Abstract
Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA.
Collapse
Affiliation(s)
- Jonathan H Shannahan
- Curriculum in Toxicology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Feasibility of biomarker studies for engineered nanoparticles: what can be learned from air pollution research. J Occup Environ Med 2011; 53:S74-9. [PMID: 21654422 DOI: 10.1097/jom.0b013e31821b1bf2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Occupational exposure to engineered nanoparticles (NP) may pose health risks to the workers. This article is to discuss the feasibility of identifying biomarkers that are associated with NP exposure. METHODS Scientific literature on the adverse health effects of ambient ultrafine particles (UFP) and NP was reviewed to discuss the feasibility of conducting biomarker studies to identify NP-induced early biological changes. RESULTS Various approaches for biomarker studies have been identified, including potential injury pathways that need to be considered and the methodologies that may be used for such studies. CONCLUSIONS Although NP may have novel mechanisms of injury, much can be learned from our experience in studying UFP. Oxidative stress-related pathways can be an important consideration for identifying NP-associated biomarkers, and one of the most effective approaches for such studies may be proteome profiling. CLINICAL SIGNIFICANCE Biomarker studies will provide valuable information to identify early biological events associated with the adverse health effects of engineered nanomaterials before the manifestation of clinical outcomes. This is particularly important for the health surveillance of workers who may be at higher risk due to their occupational settings.
Collapse
|
22
|
Li N, Harkema JR, Lewandowski RP, Wang M, Bramble LA, Gookin GR, Ning Z, Kleinman MT, Sioutas C, Nel AE. Ambient ultrafine particles provide a strong adjuvant effect in the secondary immune response: implication for traffic-related asthma flares. Am J Physiol Lung Cell Mol Physiol 2010; 299:L374-83. [PMID: 20562226 PMCID: PMC2951067 DOI: 10.1152/ajplung.00115.2010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 06/17/2010] [Indexed: 01/17/2023] Open
Abstract
We have previously demonstrated that intranasal administration of ambient ultrafine particles (UFP) acts as an adjuvant for primary allergic sensitization to ovalbumin (OVA) in Balb/c mice. It is important to find out whether inhaled UFP exert the same effect on the secondary immune response as a way of explaining asthma flares in already-sensitized individuals due to traffic exposure near a freeway. The objective of this study is to determine whether inhalation exposure to ambient UFP near an urban freeway could enhance the secondary immune response to OVA in already-sensitized mice. Prior OVA-sensitized animals were exposed to concentrated ambient UFP at the time of secondary OVA challenge in our mobile animal laboratory in Los Angeles. OVA-specific antibody production, airway morphometry, allergic airway inflammation, cytokine gene expression, and oxidative stress marker were assessed. As few as five ambient UFP exposures were sufficient to promote the OVA recall immune response, including generating allergic airway inflammation in smaller and more distal airways compared with the adjuvant effect of intranasally instilled UFP on the primary immune response. The secondary immune response was characterized by the T helper 2 and IL-17 cytokine gene expression in the lung. In summary, our results demonstrated that inhalation of prooxidative ambient UFP could effectively boost the secondary immune response to an experimental allergen, indicating that vehicular traffic exposure could exacerbate allergic inflammation in already-sensitized subjects.
Collapse
Affiliation(s)
- Ning Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Van Hee VC, Kaufman JD, Budinger GRS, Mutlu GM. Update in environmental and occupational medicine 2009. Am J Respir Crit Care Med 2010; 181:1174-80. [PMID: 20516491 DOI: 10.1164/rccm.201002-0183up] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Victor C Van Hee
- Occupational and Environmental Medicine Program, Department of Medicine and Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | | | | | | |
Collapse
|