1
|
Pezzotti G, Tsubota Y, Zhu W, Marin E, Masumura T, Kobayashi T, Nakazaki T. Raman Multi-Omic Snapshots of Koshihikari Rice Kernels Reveal Important Molecular Diversities with Potential Benefits in Healthcare. Foods 2023; 12:3771. [PMID: 37893662 PMCID: PMC10606906 DOI: 10.3390/foods12203771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
This study exploits quantitative algorithms of Raman spectroscopy to assess, at the molecular scale, the nutritional quality of individual kernels of the Japanese short-grain rice cultivar Koshihikari in terms of amylose-to-amylopectin ratio, fractions of phenylalanine and tryptophan aromatic amino acid residues, protein-to-carbohydrate ratio, and fractions of protein secondary structures. Statistical assessments on a large number of rice kernels reveal wide distributions of the above nutritional parameters over nominally homogeneous kernel batches. This demonstrates that genetic classifications cannot catch omic fluctuations, which are strongly influenced by a number of extrinsic factors, including the location of individual grass plants within the same rice field and the level of kernel maturation. The possibility of collecting nearly real-time Raman "multi-omic snapshots" of individual rice kernels allows for the automatic (low-cost) differentiation of groups of kernels with restricted nutritional characteristics that could be used in the formulation of functional foods for specific diseases and in positively modulating the intestinal microbiota for protection against bacterial infection and cancer prevention.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (Y.T.); (W.Z.)
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Yusuke Tsubota
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (Y.T.); (W.Z.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (Y.T.); (W.Z.)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (Y.T.); (W.Z.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Kyoto Prefectural University, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-8522, Japan;
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, 2-5-1 Shinmachi, Osaka Prefecture, Hirakata 573-1010, Japan;
| | - Tetsuya Nakazaki
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kizugawa 619-0218, Japan;
| |
Collapse
|
2
|
Min CW, Gupta R, Jung JY, Rakwal R, Kang JW, Cho JH, Jeon JS, Kim ST. Comparative Proteome-wide Characterization of Three Different Tissues of High-Protein Mutant and Wild Type Unravels Protein Accumulation Mechanisms in Rice Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12357-12367. [PMID: 37549031 DOI: 10.1021/acs.jafc.3c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Improving the proteins and amino acid contents of rice seeds is one of the prime objectives of plant breeders. We recently developed an EMS mutant/high-protein mutant (HPM) of rice that exhibits 14.8% of the total protein content as compared to its parent Dharial (wild-type), which shows only 9.3% protein content in their mature seeds. However, the mechanisms underlying the higher protein accumulation in these HPM seeds remain largely elusive. Here, we utilized high-throughput proteomics to examine the differences in the proteome profiles of the embryo, endosperm, and bran tissues of Dharial and HPM seeds. Utilizing a label-free quantitative proteomic and subsequent functional analyses of the identified proteins revealed that nitrogen compound biosynthesis, intracellular transport, protein/amino acid synthesis, and photosynthesis-related proteins were specifically enriched in the endosperm and bran of the high-protein mutant seed. Our data have uncovered proteome-wide changes highlighting various functions of metabolic pathways associated with protein accumulation in rice seeds.
Collapse
Affiliation(s)
- Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Ju-Young Jung
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Japan
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal
| | - Ju-Won Kang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea
| | - Jun-Hyeon Cho
- Sangju Substation, National Institute of Crop Science, Rural Development Administration (RDA), Sangju 37139, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
3
|
Siriwong S, Tanthanuch W, Srisamut D, Chantarakhon C, Kamkajon K, Thumanu K. Performance Evaluation of Focal Plane Array (FPA)-FTIR and Synchrotron Radiation (SR)-FTIR Microspectroscopy to Classify Rice Components. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-10. [PMID: 36062386 DOI: 10.1017/s1431927622012454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of biochemical analysis techniques to study heterogeneous biological samples is increasing. These techniques include synchrotron radiation Fourier transform infrared (SR-FTIR) microspectroscopy. This method has been applied to analyze biological tissue with multivariate statistical analysis to classify the components revealed by the spectral data. This study aims to compare the efficiencies of SR-FTIR microspectroscopy and focal plane array (FPA)-FTIR microspectroscopy when classifying rice tissue components. Spectral data were acquired for mapping the same sample areas from both techniques. Principal component analysis and cluster imaging were used to investigate the biochemical variations of the tissue types. The classification was based on the functional groups of pectin, protein, and polysaccharide. Four layers from SR-FTIR microspectroscopy including pericarp, aleurone layer, sub-aleurone layer, and endosperm were classified using cluster imaging, while FPA-FTIR microspectroscopy could classify only three layers of pericarp, aleurone layer, and endosperm. Moreover, SR-FTIR microspectroscopy increased the image contrast of the biochemical distribution in rice tissue more efficiently than FPA-FTIR microspectroscopy. We have demonstrated the capability of the high-resolution synchrotron technique and its ability to clarify small structures in rice tissue. The use of this technique might increase in future studies of tissue characterization.
Collapse
Affiliation(s)
- Supatcharee Siriwong
- Research Facility Department, Synchrotron Light Research Institute (Public Organization), Mueang District, Nakhon Ratchasima, 30000, Thailand
| | - Waraporn Tanthanuch
- Research Facility Department, Synchrotron Light Research Institute (Public Organization), Mueang District, Nakhon Ratchasima, 30000, Thailand
| | - Duangjai Srisamut
- Research Facility Department, Synchrotron Light Research Institute (Public Organization), Mueang District, Nakhon Ratchasima, 30000, Thailand
| | - Chulalak Chantarakhon
- Research Facility Department, Synchrotron Light Research Institute (Public Organization), Mueang District, Nakhon Ratchasima, 30000, Thailand
| | - Kanokwan Kamkajon
- Center of Calcium and Bone Research (COCAB), Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kanjana Thumanu
- Research Facility Department, Synchrotron Light Research Institute (Public Organization), Mueang District, Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
4
|
Kim H, Jeon J, Lee KK, Lee YH. Longitudinal transmission of bacterial and fungal communities from seed to seed in rice. Commun Biol 2022; 5:772. [PMID: 35915150 PMCID: PMC9343636 DOI: 10.1038/s42003-022-03726-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/14/2022] [Indexed: 12/22/2022] Open
Abstract
Vertical transmission of microbes is crucial for the persistence of host-associated microbial communities. Although vertical transmission of seed microbes has been reported from diverse plants, ecological mechanisms and dynamics of microbial communities from parent to progeny remain scarce. Here we reveal the veiled ecological mechanism governing transmission of bacterial and fungal communities in rice across two consecutive seasons. We identify 29 bacterial and 34 fungal members transmitted across generations. Abundance-based regression models allow to classify colonization types of the microbes. We find that they are late colonizers dominating each community at the ripening stage. Ecological models further show that the observed temporal colonization patterns are affected by niche change and neutrality. Source-sink modeling reveals that parental seeds and stem endosphere are major origins of progeny seed microbial communities. This study gives empirical evidence for ecological mechanism and dynamics of bacterial and fungal communities as an ecological continuum during seed-to-seed transmission.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, Republic of Korea.,Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kiseok Kieth Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, IL, 60637, USA
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea. .,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, Republic of Korea. .,Center for Plant Microbiome Research, Seoul National University, Seoul, 08826, Republic of Korea. .,Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Miraji KF, Linnemann AR, Fogliano V, Laswai HS, Capuano E. Dry-heat processing at different conditions impact the nutritional composition and in vitro starch and protein digestibility of immature rice-based products. Food Funct 2021; 12:7527-7545. [PMID: 34227637 DOI: 10.1039/d1fo01240a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immature grain represents a precious nutritional source in many rural Africa areas. To optimize processing of immature rice into pepeta (a traditional rice-flakes produced from immature rice grains), immature rice (TXD306 variety) harvested at 18 and 26 days after 50% heading were processed in the laboratory under different soaking (0 and 12 h) and roasting temperature (80, 100 and 120 °C) regimes. Riboflavin, nicotinic acid, nicotinamide and iron concentration increased with severity of roasting temperature, while thiamine has an opposite trend. Heating promoted the transformation of insoluble into soluble dietary fiber, increased lipid digestibility decreasing protein one, which showed the highest value when rice was roasted at 100 °C. Soaking before roasting significantly increased moisture and iron content while slightly increased riboflavin, nicotinic acid and nicotinamide when compared to unsoaked products. Among roasted products, starch digestibility increased with roasting temperature. Microstructure analysis indicated a complete loss of cell wall integrity in cooked rice, determining a complete starch and protein digestion while this is delayed in raw rice and roasted products. We concluded that roasting at 100 °C is the optimum temperature to produce pepeta of the highest protein digestibility and low starch digestibility. Soaking before roasting at 120 °C is best when retaining micronutrients is considered.
Collapse
Affiliation(s)
- Kulwa F Miraji
- Tanzania Agricultural Research Institute, Ifakara Centre, Ifakara, Tanzania
| | | | | | | | | |
Collapse
|
6
|
Ruan S, Xiao W, Qiu J, Hu W, Ying W, Chen H, Tong J, Ma H. Proteomic analysis of 2-chloroethanol extracts of rice ( Oryza sativa L.) seeds. FOOD CHEMISTRY. MOLECULAR SCIENCES 2020; 1:100002. [PMID: 35415619 PMCID: PMC8991595 DOI: 10.1016/j.fochms.2020.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/21/2020] [Accepted: 07/05/2020] [Indexed: 06/14/2023]
Abstract
Ethanol-soluble proteins, including prolamins, are one of the most important seed proteins in rice (Oryza sativa L.). However, little is known about the proteomic profile of ethanol-soluble protein fraction extracted from rice grain. In this work, the differential profile of ethanol-soluble proteins extracted by 2-chloroethanol and ethanol has been documented. Proteome analysis utilizing LC-MS/MS identified a total of 64 unique proteins in the 2-chloroethanol extract of rice seeds. The majority of these proteins had low molecular weight ranging from 10 to 25 kD and isoelectric point (pI) in mid-acidic (pH 5-pH 7) and mid-basic (pH 7-pH 9) ranges. Database searches combined with transmembrane domain (TMD) analysis revealed that >70% of identified proteins were hydrophobic, i.e., had at least one TMD. Gene ontology classification and enrichment analysis showed that the identified proteins were involved in13 types of biological processes, 5 types of cell components, and 17 types of molecular functions. These results were significant based on the hyper p-value of <0.05. The most frequent categories of biological processes, cell components, and molecular functions were, respectively, type I hypersensitivity, extracellular space and extracellular region, and serine-type endopeptidase inhibitor activity. Interestingly, in addition to seed storage proteins such as prolamins and glutelins, certain allergen proteins, protease inhibitors, and lipid transfer proteins were identified in the extracts. Together, the collected data provide novel insights into the protein profile of 2-chloroethanol extract of rice seeds.
Collapse
Affiliation(s)
- Songlin Ruan
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Wenfei Xiao
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Jieren Qiu
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Weimin Hu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | - Wu Ying
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Huizhe Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jianxin Tong
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Huasheng Ma
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| |
Collapse
|
7
|
Hu C, Rao J, Song Y, Chan SA, Tohge T, Cui B, Lin H, Fernie AR, Zhang D, Shi J. Dissection of flag leaf metabolic shifts and their relationship with those occurring simultaneously in developing seed by application of non-targeted metabolomics. PLoS One 2020; 15:e0227577. [PMID: 31978163 PMCID: PMC6980602 DOI: 10.1371/journal.pone.0227577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/20/2019] [Indexed: 11/24/2022] Open
Abstract
Rice flag leaves are major source organs providing more than half of the nutrition needed for rice seed development. The dynamic metabolic changes in rice flag leaves and the detailed metabolic relationship between source and sink organs in rice, however, remain largely unknown. In this study, the metabolic changes of flag leaves in two japonica and two indica rice cultivars were investigated using non-targeted metabolomics approach. Principal component analysis (PCA) revealed that flag leaf metabolomes varied significantly depending on both species and developmental stage. Only a few of the metabolites in flag leaves displayed the same change pattern across the four tested cultivars along the process of seed development. Further association analysis found that levels of 45 metabolites in seeds that are associated with human nutrition and health correlated significantly with their levels in flag leaves. Comparison of metabolomics of flag leaves and seeds revealed that some flavonoids were specific or much higher in flag leaves while some lipid metabolites such as phospholipids were much higher in seeds. This reflected not only the function of the tissue specific metabolism but also the different physiological properties and metabolic adaptive features of these two tissues.
Collapse
Affiliation(s)
- Chaoyang Hu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Rao
- Jiangxi Cancer Hospital, Nanchang, China
| | - Yue Song
- Agilent Technologies Incorporated Company, Shanghai, China
| | - Shen-An Chan
- Agilent Technologies Incorporated Company, Shanghai, China
| | - Takayuki Tohge
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Bo Cui
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Alisdair R. Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Ajadi AA, Tong X, Wang H, Zhao J, Tang L, Li Z, Liu X, Shu Y, Li S, Wang S, Liu W, Tajo SM, Zhang J, Wang Y. Cyclin-Dependent Kinase Inhibitors KRP1 and KRP2 Are Involved in Grain Filling and Seed Germination in Rice ( Oryza sativa L.). Int J Mol Sci 2019; 21:ijms21010245. [PMID: 31905829 PMCID: PMC6981537 DOI: 10.3390/ijms21010245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cyclin-dependent kinase inhibitors known as KRPs (kip-related proteins) control the progression of plant cell cycles and modulate various plant developmental processes. However, the function of KRPs in rice remains largely unknown. In this study, two rice KRPs members, KRP1 and KRP2, were found to be predominantly expressed in developing seeds and were significantly induced by exogenous abscisic acid (ABA) and Brassinosteroid (BR) applications. Sub-cellular localization experiments showed that KRP1 was mainly localized in the nucleus of rice protoplasts. KRP1 overexpression transgenic lines (OxKRP1), krp2 single mutant (crkrp2), and krp1/krp2 double mutant (crkrp1/krp2) all exhibited significantly smaller seed width, seed length, and reduced grain weight, with impaired seed germination and retarded early seedling growth, suggesting that disturbing the normal steady state of KRP1 or KRP2 blocks seed development partly through inhibiting cell proliferation and enlargement during grain filling and seed germination. Furthermore, two cyclin-dependent protein kinases, CDKC;2 and CDKF;3, could interact with KRP1 in a yeast-two-hybrid system, indicating that KRP1 might regulate the mitosis cell cycle and endoreduplication through the two targets. In a word, this study shed novel insights into the regulatory roles of KRPs in rice seed maturation and germination.
Collapse
Affiliation(s)
- Abolore Adijat Ajadi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- Biotechnology Unit, National Cereals Research Institute, Badeggi, Bida 912101, Nigeria
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Huimei Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Juan Zhao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Liqun Tang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Xixi Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Yazhou Shu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Shufan Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Shuang Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Wanning Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Sani Muhammad Tajo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- Correspondence: (J.Z.); (Y.W.); Tel./Fax: +86-571-6337-0277 (J.Z.); +86-571-6337-0206 (Y.W.)
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- Correspondence: (J.Z.); (Y.W.); Tel./Fax: +86-571-6337-0277 (J.Z.); +86-571-6337-0206 (Y.W.)
| |
Collapse
|
9
|
Yu X, Jin H, Fu X, Yang Q, Yuan F. Quantitative proteomic analyses of two soybean low phytic acid mutants to identify the genes associated with seed field emergence. BMC PLANT BIOLOGY 2019; 19:569. [PMID: 31856712 PMCID: PMC6921446 DOI: 10.1186/s12870-019-2201-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 12/12/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Seed germination is essential to crop growth and development, and ultimately affects its harvest. It is difficult to breed soybeans low in phytic acid with a higher seed field emergence. Although additional management and selection could overcome the phytate reduction, the mechanisms of seed germination remain unknown. RESULTS A comparative proteomic analysis was conducted between two low phytic acid (LPA) soybean mutants (TW-1-M and TW-1), both of which had a deletion of 2 bp in the GmMIPS1 gene. However, the TW-1 seeds showed a significantly lower field emergence compared to the TW-1-M. There were 282 differentially accumulated proteins (DAPs) identified between two mutants at the three stages. Among these DAPs, 80 were down-accumulated and 202 were up-accumulated. Bioinformatic analysis showed that the identified proteins were related to functional categories of oxidation reduction, response to stimulus and stress, dormancy and germination processes and catalytic activity. KEGG analysis showed that these DAPs were mainly involved in energy metabolism and anti-stress pathways. Based upon the conjoint analysis of DAPs with the differentially expressed genes (DEGs) previously published among three germination stages in two LPA mutants, 30 shared DAPs/DEGs were identified with different patterns, including plant seed protein, beta-amylase, protein disulfide-isomerase, disease resistance protein, pyrophosphate-fructose 6-phosphate 1-phosphotransferase, cysteine proteinase inhibitor, non-specific lipid-transfer protein, phosphoenolpyruvate carboxylase and acyl-coenzyme A oxidase. CONCLUSIONS Seed germination is a very complex process in LPA soybean mutants. The TW-1-M and TW-1 showed many DAPs involved in seed germination. The differential accumulation of these proteins could result in the difference of seed field emergence between the two mutants. The high germination rate in the TW-1-M might be strongly attributed to reactive oxygen species-related and plant hormone-related genes. All these findings would help us further explore the germination mechanisms in LPA crops.
Collapse
Affiliation(s)
- Xiaomin Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hangxia Jin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xujun Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qinghua Yang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fengjie Yuan
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
10
|
Guo ZH, Haslam RP, Michaelson LV, Yeung EC, Lung SC, Napier JA, Chye ML. The overexpression of rice ACYL-CoA-BINDING PROTEIN2 increases grain size and bran oil content in transgenic rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1132-1147. [PMID: 31437323 DOI: 10.1111/tpj.14503] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 05/18/2023]
Abstract
As Oryza sativa (rice) seeds represent food for over three billion people worldwide, the identification of genes that enhance grain size and composition is much desired. Past reports have indicated that Arabidopsis thaliana acyl-CoA-binding proteins (ACBPs) are important in seed development but did not affect seed size. Herein, rice OsACBP2 was demonstrated not only to play a role in seed development and germination, but also to influence grain size. OsACBP2 mRNA accumulated in embryos and endosperm of germinating seeds in qRT-PCR analysis, while β-glucuronidase (GUS) assays on OsACBP2pro::GUS rice transformants showed GUS expression in embryos, as well as the scutellum and aleurone layer of germinating seeds. Deletion analysis of the OsACBP2 5'-flanking region revealed five copies of the seed cis-element, Skn-I-like motif (-1486/-1482, -956/-952, -939/-935, -826/-822, and -766/-762), and the removal of any adversely affected expression in seeds, thereby providing a molecular basis for OsACBP2 expression in seeds. When OsACBP2 function was investigated using osacbp2 mutants and transgenic rice overexpressing OsACBP2 (OsACBP2-OE), osacbp2 was retarded in germination, while OsACBP2-OEs performed better than the wild-type and vector-transformed controls, in germination, seedling growth, grain size and grain weight. Transmission electron microscopy of OsACBP2-OE mature seeds revealed an accumulation of oil bodies in the scutellum cells, while confocal laser scanning microscopy indicated oil accumulation in OsACBP2-OE aleurone tissues. Correspondingly, OsACBP2-OE seeds showed gain in triacylglycerols and long-chain fatty acids over the vector-transformed control. As dietary rice bran contains beneficial bioactive components, OsACBP2 appears to be a promising candidate for enriching seed nutritional value.
Collapse
Affiliation(s)
- Ze-Hua Guo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Richard P Haslam
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Louise V Michaelson
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Edward C Yeung
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4,, Canada
| | - Shiu-Cheung Lung
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Johnathan A Napier
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Mee-Len Chye
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
11
|
Dhatt BK, Abshire N, Paul P, Hasanthika K, Sandhu J, Zhang Q, Obata T, Walia H. Metabolic Dynamics of Developing Rice Seeds Under High Night-Time Temperature Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1443. [PMID: 31781147 PMCID: PMC6857699 DOI: 10.3389/fpls.2019.01443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/17/2019] [Indexed: 05/03/2023]
Abstract
High temperature stress during rice reproductive development results in yield losses. Reduced grain yield and grain quality has been associated with high temperature stress, and specifically with high night-time temperatures (HNT). Characterizing the impact of HNT on the phenotypic and metabolic status of developing rice seeds can provide insights into the mechanisms involved in yield and quality decline. Here, we examined the impact of warmer nights on the morphology and metabolome during early seed development in six diverse rice accessions. Seed size was sensitive to HNT in four of the six genotypes, while seed fertility and seed weight were unaffected. We observed genotypic differences for negative impact of HNT on grain quality. This was evident from the chalky grain appearance due to impaired packaging of starch granules. Metabolite profiles during early seed development (3 and 4 days after fertilization; DAF) were distinct from the early grain filling stages (7 and 10 DAF) under optimal conditions. We observed that accumulation of sugars (sucrose, fructose, and glucose) peaked at 7 DAF suggesting a major flux of carbon into glycolysis, tricarboxylic acid cycle, and starch biosynthesis during grain filling. Next, we determined hyper (HNT > control) and hypo (HNT < control) abundant metabolites and found 19 of the 57 metabolites to differ significantly between HNT and control treatments. The most prominent changes were exhibited by differential abundance of sugar and sugar alcohols under HNT, which could be linked to a protective mechanism against the HNT damage. Overall, our results indicate that combining metabolic profiles of developing grains with yield and quality parameters under high night temperature stress could provide insight for exploration of natural variation for HNT tolerance in the rice germplasm.
Collapse
Affiliation(s)
- Balpreet K. Dhatt
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nathan Abshire
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Puneet Paul
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Kalani Hasanthika
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jaspreet Sandhu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Qi Zhang
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Toshihiro Obata
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
12
|
Apriana A, Sisharmini A, Aswidinnoor H, Trijatmiko KR, Sudarsono S. Promoter deletion analysis reveals root-specific expression of the alkenal reductase gene (OsAER1) in Oryza sativa. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:376-391. [PMID: 32172746 DOI: 10.1071/fp18237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/12/2019] [Indexed: 06/10/2023]
Abstract
Root-specific promoters are useful in plant genetic engineering, primarily to improve water and nutrient absorption. The aim of this study was to clone and characterise the promoter of the Oryza sativa L. alkenal reductase (OsAER1) gene encoding 2-alkenal reductase, an NADPH-dependent oxidoreductase. Expression analysis using quantitative real-time PCR confirmed the root-specific expression of the OsAER1 gene. Subsequently, a 3082-bp fragment of the OsAER1 promoter was isolated from a local Indonesian rice cultivar, Awan Kuning. Sequencing and further nucleotide sequence analysis of the 3082-bp promoter fragment (PA-5) revealed the presence of at least 10 root-specific cis-regulatory elements putatively responsible for OsAER1 root-specific expression. Using the 3082-bp promoter fragment to drive the expression of the GUS reporter transgene confirmed that the OsAER1 promoter is root-specific. Further, the analysis indicated that OsAER1 promoter activity was absent in leaves, petioles and shoots during sprouting, vegetative, booting and generative stages of rice development. In contrast, the promoter activity was present in anthers and aleurone layers of immature seeds 7-20 days after anthesis. Moreover, there was no promoter activity observed in the aleurone layers of mature seeds. The OsAER1 promoter activity is induced by Al-toxicity, NaCl and submergence stresses, indicating the OsAER1 promoter activity is induced by those stresses. Exogenous treatments of transgenic plants carrying the PA-5 promoter construct with abscisic acid and indoleacetic acid also induced expression of the GUS reporter transgene, indicating the role of plant growth regulators in controlling OsAER1 promoter activity. Promoter deletion analysis was conducted to identify the cis-acting elements of the promoter responsible for controlling root-specific expression. The GUS reporter gene was fused with various deletion fragments of the OsAER1 promoter and the resulting constructs were transformed in rice plants to generate transgenic plants. The results of this analysis indicated that cis-acting elements controlling root-specific expression are located between -1562 to -1026bp of the OsAER1 CDS. Here we discusses the results of the conducted analyses, the possible role of OsAER1 in rice growth and development, possible contributions and the potential usage of these findings in future plant research.
Collapse
Affiliation(s)
- Aniversari Apriana
- PMB Lab, Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University, Jalan Raya Ciampea, Bogor, Indonesia; and Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jalan Tentara Pelajar 3A, Bogor, Indonesia
| | - Atmitri Sisharmini
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jalan Tentara Pelajar 3A, Bogor, Indonesia
| | - Hajrial Aswidinnoor
- PMB Lab, Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University, Jalan Raya Ciampea, Bogor, Indonesia
| | - Kurniawan R Trijatmiko
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jalan Tentara Pelajar 3A, Bogor, Indonesia; and Corresponding authors. Emails: ;
| | - Sudarsono Sudarsono
- PMB Lab, Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University, Jalan Raya Ciampea, Bogor, Indonesia; and Corresponding authors. Emails: ;
| |
Collapse
|
13
|
Kumar A, Pathak RK, Gayen A, Gupta S, Singh M, Lata C, Sharma H, Roy JK, Gupta SM. Systems biology of seeds: decoding the secret of biochemical seed factories for nutritional security. 3 Biotech 2018; 8:460. [PMID: 30370201 PMCID: PMC6200710 DOI: 10.1007/s13205-018-1483-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/16/2018] [Indexed: 11/28/2022] Open
Abstract
Seeds serve as biochemical factories of nutrition, processing, bio-energy and storage related important bio-molecules and act as a delivery system to transmit the genetic information to the next generation. The research pertaining towards delineating the complex system of regulation of genes and pathways related to seed biology and nutrient partitioning is still under infancy. To understand these, it is important to know the genes and pathway(s) involved in the homeostasis of bio-molecules. In recent past with the advent and advancement of modern tools of genomics and genetic engineering, multi-layered 'omics' approaches and high-throughput platforms are being used to discern the genes and proteins involved in various metabolic, and signaling pathways and their regulations for understanding the molecular genetics of biosynthesis and homeostasis of bio-molecules. This can be possible by exploring systems biology approaches via the integration of omics data for understanding the intricacy of seed development and nutrient partitioning. These information can be exploited for the improvement of biologically important chemicals for large-scale production of nutrients and nutraceuticals through pathway engineering and biotechnology. This review article thus describes different omics tools and other branches that are merged to build the most attractive area of research towards establishing the seeds as biochemical factories for human health and nutrition.
Collapse
Affiliation(s)
- Anil Kumar
- Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh 284003 India
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Rajesh Kumar Pathak
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
- Department of Biotechnology, G. B. Pant Institute of Engineering and Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Aranyadip Gayen
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Supriya Gupta
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Manoj Singh
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Charu Lata
- Council of Scientific and Industrial Research-National Botanical Research Institute, Lucknow, India
| | - Himanshu Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Joy Kumar Roy
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Sanjay Mohan Gupta
- Molecular Biology and Genetic Engineering Laboratory, Defence Institute of Bio-Energy Research (DIBER), DRDO, Haldwani, 263139 India
| |
Collapse
|
14
|
Wang W, Zhou XM, Xiong HX, Mao WY, Zhao P, Sun MX. Papain-like and legumain-like proteases in rice: genome-wide identification, comprehensive gene feature characterization and expression analysis. BMC PLANT BIOLOGY 2018; 18:87. [PMID: 29764367 PMCID: PMC5952849 DOI: 10.1186/s12870-018-1298-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/26/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Papain-like and legumain-like proteases are proteolytic enzymes which play key roles in plant development, senescence and defense. The activities of proteases in both families could be inhibited by a group of small proteins called cystatin. Cystatin family genes have been well characterized both in tobacco and rice, suggesting their potential roles in seed development. However, their potential targets, papain-like and legumain-like proteases, have not been well characterized in plants, especially in rice, a model plant for cereal biology. RESULTS Here, 33 papain-like and 5 legumain-like proteases have been identified in rice genome, respectively. Gene structure, distribution in rice chromosome, and evolutionary relationship to their counterparts in other plants have been well characterized. Comprehensive expression profile analysis revealed that two family genes display divergent expression pattern, which are regulated temporally and spatially during the process of seed development and germination. Our experiments also revealed that the expression of most genes in these two families is sensitively responsive to plant hormones and different abiotic stresses. CONCLUSIONS Genome-wide identification and comprehensive gene expression pattern analysis of papain-like and legumain-like proteases in rice suggests their multiple and cooperative roles in seed development and response to environmental variations, which provides several useful cues for further in-depth study.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xue-Mei Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Han-Xian Xiong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wan-Ying Mao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
15
|
Wang Y, Lin H, Tong X, Hou Y, Chang Y, Zhang J. DNA demethylation activates genes in seed maternal integument development in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:169-178. [PMID: 29031162 DOI: 10.1016/j.plaphy.2017.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/11/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
DNA methylation is an important epigenetic modification that regulates various plant developmental processes. Rice seed integument determines the seed size. However, the role of DNA methylation in its development remains largely unknown. Here, we report the first dynamic DNA methylomic profiling of rice maternal integument before and after pollination by using a whole-genome bisulfite deep sequencing approach. Analysis of DNA methylation patterns identified 4238 differentially methylated regions underpin 4112 differentially methylated genes, including GW2, DEP1, RGB1 and numerous other regulators participated in maternal integument development. Bisulfite sanger sequencing and qRT-PCR of six differentially methylated genes revealed extensive occurrence of DNA hypomethylation triggered by double fertilization at IAP compared with IBP, suggesting that DNA demethylation might be a key mechanism to activate numerous maternal controlling genes. These results presented here not only greatly expanded the rice methylome dataset, but also shed novel insight into the regulatory roles of DNA methylation in rice seed maternal integument development.
Collapse
Affiliation(s)
- Yifeng Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Haiyan Lin
- Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yuxuan Hou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yuxiao Chang
- Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
16
|
Zhang L, Dong Y, Wang Q, Du C, Xiong W, Li X, Zhu S, Li Y. iTRAQ-Based Proteomics Analysis and Network Integration for Kernel Tissue Development in Maize. Int J Mol Sci 2017; 18:E1840. [PMID: 28837076 PMCID: PMC5618489 DOI: 10.3390/ijms18091840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 02/07/2023] Open
Abstract
Grain weight is one of the most important yield components and a developmentally complex structure comprised of two major compartments (endosperm and pericarp) in maize (Zea mays L.), however, very little is known concerning the coordinated accumulation of the numerous proteins involved. Herein, we used isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic method to analyze the characteristics of dynamic proteomics for endosperm and pericarp during grain development. Totally, 9539 proteins were identified for both components at four development stages, among which 1401 proteins were non-redundant, 232 proteins were specific in pericarp and 153 proteins were specific in endosperm. A functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the tissue development. Three and 76 proteins involved in 49 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were integrated for the specific endosperm and pericarp proteins, respectively, reflecting their complex metabolic interactions. In addition, four proteins with important functions and different expression levels were chosen for gene cloning and expression analysis. Different concordance between mRNA level and the protein abundance was observed across different proteins, stages, and tissues as in previous research. These results could provide useful message for understanding the developmental mechanisms in grain development in maize.
Collapse
Affiliation(s)
- Long Zhang
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Yongbin Dong
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Qilei Wang
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Chunguang Du
- Deptment of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA.
| | - Wenwei Xiong
- Deptment of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA.
| | - Xinyu Li
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Sailan Zhu
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Yuling Li
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| |
Collapse
|
17
|
A Quantitative Acetylomic Analysis of Early Seed Development in Rice (Oryza sativa L.). Int J Mol Sci 2017; 18:ijms18071376. [PMID: 28654018 PMCID: PMC5535869 DOI: 10.3390/ijms18071376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 11/20/2022] Open
Abstract
PKA (protein lysine acetylation) is a critical post-translational modification that regulates various developmental processes, including seed development. However, the acetylation events and dynamics on a proteomic scale in this process remain largely unknown, especially in rice early seed development. We report the first quantitative acetylproteomic study focused on rice early seed development by employing a mass spectral-based (MS-based), label-free approach. A total of 1817 acetylsites on 1688 acetylpeptides from 972 acetylproteins were identified in pistils and seeds at three and seven days after pollination, including 268 acetyproteins differentially acetylated among the three stages. Motif-X analysis revealed that six significantly enriched motifs, such as (DxkK), (kH) and (kY) around the acetylsites of the identified rice seed acetylproteins. Differentially acetylated proteins among the three stages, including adenosine diphosphate (ADP) -glucose pyrophosphorylases (AGPs), PDIL1-1 (protein disulfide isomerase like 1-1), hexokinases, pyruvate dehydrogenase complex (PDC) and numerous other regulators that are extensively involved in the starch and sucrose metabolism, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle and photosynthesis pathways during early seed development. This study greatly expanded the rice acetylome dataset, and shed novel insight into the regulatory roles of PKA in rice early seed development.
Collapse
|
18
|
Tan BC, Lim YS, Lau SE. Proteomics in commercial crops: An overview. J Proteomics 2017; 169:176-188. [PMID: 28546092 DOI: 10.1016/j.jprot.2017.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
Proteomics is a rapidly growing area of biological research that is positively affecting plant science. Recent advances in proteomic technology, such as mass spectrometry, can now identify a broad range of proteins and monitor their modulation during plant growth and development, as well as during responses to abiotic and biotic stresses. In this review, we highlight recent proteomic studies of commercial crops and discuss the advances in understanding of the proteomes of these crops. We anticipate that proteomic-based research will continue to expand and contribute to crop improvement. SIGNIFICANCE Plant proteomics study is a rapidly growing area of biological research that is positively impacting plant science. With the recent advances in new technologies, proteomics not only allows us to comprehensively analyses crop proteins, but also help us to understand the functions of the genes. In this review, we highlighted recent proteomic studies in commercial crops and updated the advances in our understanding of the proteomes of these crops. We believe that proteomic-based research will continue to grow and contribute to the improvement of crops.
Collapse
Affiliation(s)
- Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | - Yin Sze Lim
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Wang M, Lu X, Xu G, Yin X, Cui Y, Huang L, Rocha PSCF, Xia X. OsSGL, a novel pleiotropic stress-related gene enhances grain length and yield in rice. Sci Rep 2016; 6:38157. [PMID: 27917884 PMCID: PMC5137154 DOI: 10.1038/srep38157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/04/2016] [Indexed: 11/19/2022] Open
Abstract
Abiotic stress seriously affects the yield of rice (Oryza sativa L.). Grain yield in rice is multiplicatively determined by the number of panicles, number of grains per panicle, and grain weight. Here, we describe the molecular and functional characterization of STRESS_tolerance and GRAIN_LENGTH (OsSGL), a rice gene strongly up-regulated by a wide spectrum of abiotic stresses. OsSGL encodes a putative member of the DUF1645 protein family of unknown function. Overexpression of OsSGL significantly altered certain development processes greatly and positively affecting an array of traits in transgenic rice plants, including increased grain length, grain weight and grain number per panicle, resulting in a significant increase in yield. Microscopical analysis showed that the enhanced OsSGL expression promoted cell division and grain filling. Microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that a large number of genes involved in stress-response, cell cycle and cytokinin signaling processes were induced or suppressed in OsSGL-overexpressing plants. Together, our results suggest that OsSGL may regulate stress-tolerance and cell growth by acting via a cytokinin signaling pathway. This study not only contributes to our understanding of the underlying mechanism regulating rice stress-tolerance and grain length, but also provides a strategy for tailor-made crop yield improvement.
Collapse
Affiliation(s)
- Manling Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xuedan Lu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Guoyun Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xuming Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Yanchun Cui
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Lifang Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Pedro S C F Rocha
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xinjie Xia
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| |
Collapse
|
20
|
Parreira J, Bouraada J, Fitzpatrick M, Silvestre S, Bernardes da Silva A, Marques da Silva J, Almeida A, Fevereiro P, Altelaar A, Araújo S. Differential proteomics reveals the hallmarks of seed development in common bean ( Phaseolus vulgaris L.). J Proteomics 2016; 143:188-198. [DOI: 10.1016/j.jprot.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022]
|
21
|
Hu C, Tohge T, Chan SA, Song Y, Rao J, Cui B, Lin H, Wang L, Fernie AR, Zhang D, Shi J. Identification of Conserved and Diverse Metabolic Shifts during Rice Grain Development. Sci Rep 2016; 6:20942. [PMID: 26860358 PMCID: PMC4748235 DOI: 10.1038/srep20942] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/14/2016] [Indexed: 11/26/2022] Open
Abstract
Seed development dedicates to reserve synthesis and accumulation and uncovering its genetic and biochemical mechanisms has been a major research focus. Although proteomic and transcriptomic analyses revealed dynamic changes of genes and enzymes involved, the information regarding concomitant metabolic changes is missing. Here we investigated the dynamic metabolic changes along the rice grain development of two japonica and two indica cultivars using non-targeted metabolomics approach, in which we successfully identified 214 metabolites. Statistical analyses revealed both cultivar and developmental stage dependent metabolic changes in rice grains. Generally, the stage specific metabolic kinetics corresponded well to the physiological status of the developing grains, and metabolic changes in developing rice grain are similar to those of dicot Arabidopsis and tomato at reserve accumulation stage but are different from those of dicots at seed desiccation stage. The remarkable difference in metabolite abundances between japonica and indica rice grain was observed at the reserve accumulation stage. Metabolite-metabolite correlation analysis uncovered potential new pathways for several metabolites. Taken together, this study uncovered both conserved and diverse development associated metabolic kinetics of rice grains, which facilitates further study to explore fundamental questions regarding the evolution of seed metabolic capabilities as well as their potential applications in crop improvement.
Collapse
Affiliation(s)
- Chaoyang Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghan District, Shanghai 200240, China
| | - Takayuki Tohge
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Yue Song
- Agilent Technology, Inc. Shanghai, China
| | - Jun Rao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghan District, Shanghai 200240, China
- Jiangxi Cancer Hospital, No. 519 East Beijing Road, Nanchang 330029, China
| | - Bo Cui
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghan District, Shanghai 200240, China
| | - Hong Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghan District, Shanghai 200240, China
| | - Lei Wang
- Agilent Technology, Inc. Beijing 100000, China
| | - Alisdair R. Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghan District, Shanghai 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghan District, Shanghai 200240, China
- Shanghai Ruifeng Agro-biotechnology Co., Ltd, Room 108, No 233 Rushan Rd., Shanghai 200120, China
| |
Collapse
|
22
|
Qiu J, Hou Y, Tong X, Wang Y, Lin H, Liu Q, Zhang W, Li Z, Nallamilli BR, Zhang J. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2016; 90:249-265. [PMID: 26613898 DOI: 10.1007/s11103-015-0410-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development.
Collapse
Affiliation(s)
- Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Yuxuan Hou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Haiyan Lin
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Qing Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Wen Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Babi R Nallamilli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China.
| |
Collapse
|
23
|
Chen T, Xu G, Wang Z, Zhang H, Yang J, Zhang J. Expression of proteins in superior and inferior spikelets of rice during grain filling under different irrigation regimes. Proteomics 2015; 16:102-21. [PMID: 26442785 DOI: 10.1002/pmic.201500070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022]
Abstract
Poor grain filling of later-flowering inferior spikelets is a serious problem in modern rice cultivars, but the reason and regulation remain unclear. This study investigated post-anthesis protein expression in relation with grain filling and the possibility to use irrigation methods to enhance grain filling through regulating protein expression. One japonica rice cultivar was field-grown under three irrigation treatments imposed during the grain filling period: alternate wetting and moderate soil-drying (WMD), alternate wetting and severe soil-drying (WSD), and conventional irrigation. High resolution 2DE, combined with MALDI/TOF, was used to compare differential protein expression between superior and inferior spikelets. Results showed that the expression of proteins that function in photosynthesis, carbohydrate and energy metabolism, amino acids metabolism and defense responses were largely down-regulated in inferior spikelets compared to those in superior spikelets. The WMD treatment enhanced grain filling rate and the expression of these proteins, whereas the WSD treatment decreased them. Similar results were observed for transcript levels of the genes encoding these proteins. These results suggest that down-regulated expression of the proteins associated with grain filling contribute to the poor grain filling of inferior spikelets, and post-anthesis WMD could improve grain filling through regulating protein expression in the spikelets.
Collapse
Affiliation(s)
- Tingting Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, P. R. China.,State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, P. R. China
| | - Genwen Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
24
|
Qian D, Tian L, Qu L. Proteomic analysis of endoplasmic reticulum stress responses in rice seeds. Sci Rep 2015; 5:14255. [PMID: 26395408 PMCID: PMC4585792 DOI: 10.1038/srep14255] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/21/2015] [Indexed: 01/15/2023] Open
Abstract
The defects in storage proteins secretion in the endosperm of transgenic rice seeds often leads to endoplasmic reticulum (ER) stress, which produces floury and shrunken seeds, but the mechanism of this response remains unclear. We used an iTRAQ-based proteomics analysis of ER-stressed rice seeds due to the endosperm-specific suppression of OsSar1 to identify changes in the protein levels in response to ER stress. ER stress changed the expression of 405 proteins in rice seed by >2.0- fold compared with the wild-type control. Of these proteins, 140 were upregulated and 265 were downregulated. The upregulated proteins were mainly involved in protein modification, transport and degradation, and the downregulated proteins were mainly involved in metabolism and stress/defense responses. A KOBAS analysis revealed that protein-processing in the ER and degradation-related proteasome were the predominant upregulated pathways in the rice endosperm in response to ER stress. Trans-Golgi protein transport was also involved in the ER stress response. Combined with bioinformatic and molecular biology analyses, our proteomic data will facilitate our understanding of the systemic responses to ER stress in rice seeds.
Collapse
Affiliation(s)
- Dandan Qian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Leqing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
25
|
Jorrín-Novo JV, Pascual J, Sánchez-Lucas R, Romero-Rodríguez MC, Rodríguez-Ortega MJ, Lenz C, Valledor L. Fourteen years of plant proteomics reflected in Proteomics: moving from model species and 2DE-based approaches to orphan species and gel-free platforms. Proteomics 2015; 15:1089-112. [PMID: 25487722 DOI: 10.1002/pmic.201400349] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/23/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022]
Abstract
In this article, the topic of plant proteomics is reviewed based on related papers published in the journal Proteomics since publication of the first issue in 2001. In total, around 300 original papers and 41 reviews published in Proteomics between 2000 and 2014 have been surveyed. Our main objective for this review is to help bridge the gap between plant biologists and proteomics technologists, two often very separate groups. Over the past years a number of reviews on plant proteomics have been published . To avoid repetition we have focused on more recent literature published after 2010, and have chosen to rather make continuous reference to older publications. The use of the latest proteomics techniques and their integration with other approaches in the "systems biology" direction are discussed more in detail. Finally we comment on the recent history, state of the art, and future directions of plant proteomics, using publications in Proteomics to illustrate the progress in the field. The review is organized into two major blocks, the first devoted to provide an overview of experimental systems (plants, plant organs, biological processes) and the second one to the methodology.
Collapse
Affiliation(s)
- Jesus V Jorrín-Novo
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Cordoba-CeiA3, Cordoba, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Wang WQ, Liu SJ, Song SQ, Møller IM. Proteomics of seed development, desiccation tolerance, germination and vigor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:1-15. [PMID: 25461695 DOI: 10.1016/j.plaphy.2014.11.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/03/2014] [Indexed: 05/19/2023]
Abstract
Proteomics, the large-scale study of the total complement of proteins in a given sample, has been applied to all aspects of seed biology mainly using model species such as Arabidopsis or important agricultural crops such as corn and rice. Proteins extracted from the sample have typically been separated and quantified by 2-dimensional polyacrylamide gel electrophoresis followed by liquid chromatography and mass spectrometry to identify the proteins in the gel spots. In this way, qualitative and quantitative changes in the proteome during seed development, desiccation tolerance, germination, dormancy release, vigor alteration and responses to environmental factors have all been studied. Many proteins or biological processes potentially important for each seed process have been highlighted by these studies, which greatly expands our knowledge of seed biology. Proteins that have been identified to be particularly important for at least two of the seed processes are involved in detoxification of reactive oxygen species, the cytoskeleton, glycolysis, protein biosynthesis, post-translational modifications, methionine metabolism, and late embryogenesis-abundant (LEA) proteins. It will be useful for molecular biologists and molecular plant breeders to identify and study genes encoding particularly interesting target proteins with the aim to improve the yield, stress tolerance or other critical properties of our crop species.
Collapse
Affiliation(s)
- Wei-Qing Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Song-Quan Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China.
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, DK-4200 Slagelse, Denmark.
| |
Collapse
|
27
|
Yang Y, Zhu K, Xia H, Chen L, Chen K. Comparative proteomic analysis of indica and japonica rice varieties. Genet Mol Biol 2014; 37:652-61. [PMID: 25505840 PMCID: PMC4261965 DOI: 10.1590/s1415-47572014005000015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/10/2014] [Indexed: 11/24/2022] Open
Abstract
Indica and japonica are two main subspecies of Asian cultivated rice (Oryza sativa L.) that differ clearly in morphological and agronomic traits, in physiological and biochemical characteristics and in their genomic structure. However, the proteins and genes responsible for these differences remain poorly characterized. In this study, proteomic tools, including two-dimensional electrophoresis and mass spectrometry, were used to globally identify proteins that differed between two sequenced rice varieties (93–11 and Nipponbare). In all, 47 proteins that differed significantly between 93–11 and Nipponbare were identified using mass spectrometry and database searches. Interestingly, seven proteins were expressed only in Nipponbare and one protein was expressed specifically in 93–11; these differences were confirmed by quantitative real-time PCR and proteomic analysis of other indica and japonica rice varieties. This is the first report to successfully demonstrate differences in the protein composition of indica and japonica rice varieties and to identify candidate proteins and genes for future investigation of their roles in the differentiation of indica and japonica rice.
Collapse
Affiliation(s)
- Yanhua Yang
- Institute of Life Sciences , Jiangsu University , Zhenjiang , PR China
| | - Keming Zhu
- Institute of Life Sciences , Jiangsu University , Zhenjiang , PR China
| | - Hengchuan Xia
- Institute of Life Sciences , Jiangsu University , Zhenjiang , PR China
| | - Liang Chen
- Institute of Life Sciences , Jiangsu University , Zhenjiang , PR China
| | - Keping Chen
- Institute of Life Sciences , Jiangsu University , Zhenjiang , PR China
| |
Collapse
|
28
|
Characterization of Amaranthus cruentus L. seed proteins by 2-DE and LC/MS–MS: Identification and cloning of a novel late embryogenesis-abundant protein. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Hu C, Shi J, Quan S, Cui B, Kleessen S, Nikoloski Z, Tohge T, Alexander D, Guo L, Lin H, Wang J, Cui X, Rao J, Luo Q, Zhao X, Fernie AR, Zhang D. Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Sci Rep 2014; 4:5067. [PMID: 24861081 PMCID: PMC5381408 DOI: 10.1038/srep05067] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 05/08/2014] [Indexed: 01/07/2023] Open
Abstract
Seed metabolites are critically important both for plant development and human nutrition; however, the natural variation in their levels remains poorly characterized. Here we profiled 121 metabolites in mature seeds of a wide panel Oryza sativa japonica and indica cultivars, revealing correlations between the metabolic phenotype and geographic origin of the rice seeds. Moreover, japonica and indica subspecies differed significantly not only in the relative abundances of metabolites but also in their corresponding metabolic association networks. These findings provide important insights into metabolic adaptation in rice subgroups, bridging the gap between genome and phenome, and facilitating the identification of genetic control of metabolic properties that can serve as a basis for the future improvement of rice quality via metabolic engineering.
Collapse
Affiliation(s)
- Chaoyang Hu
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- These authors contributed equally to this work
| | - Jianxin Shi
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- These authors contributed equally to this work
| | - Sheng Quan
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- These authors contributed equally to this work
| | - Bo Cui
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sabrina Kleessen
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Takayuki Tohge
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Lining Guo
- Metabolon Inc., Durham, North Carolina 27713, USA
| | - Hong Lin
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Wang
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao Cui
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Rao
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Luo
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangxiang Zhao
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Jiangsu, 223300, China
| | - Alisdair R. Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Dabing Zhang
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
30
|
Qin Y, Song W, Xiao S, Yin G, Zhu Y, Yan Y, Hu Y. Stress-related genes distinctly expressed in unfertilized wheat ovaries under both normal and water deficit conditions whereas differed in fertilized ovaries. J Proteomics 2014; 102:11-27. [PMID: 24607492 DOI: 10.1016/j.jprot.2014.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/16/2014] [Accepted: 02/21/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED In this study, a proteomic approach was utilized to identify differentially accumulated proteins in developing wheat ovaries before and after fertilization and in response to water deficit. Proteins were extracted, quantified, and resolved by 2-DE at pH4-7. Statistical analysis of spot intensity was performed by using principal component analysis and samples were clustered by using Euclidean distance. In total, 136 differentially accumulated protein spots representing 88 unique proteins were successfully identified by MALDI-TOF/TOF MS. Under normal conditions, stress-related proteins were abundant in unfertilized ovaries while proteins involved in the metabolism of energy and matter were enriched in fertilized ovaries just 48h after fertilization. Similar trends were observed in unfertilized and fertilized wheat ovaries under water deficit conditions, except for increased accumulation of stress-related proteins in fertilized ovaries. Some proteins required for normal development were not present in ovaries subjected to water deficit. Our comprehensive results provide new insights into the biochemical mechanisms involved in ovary development before and after fertilization and in tolerance to water deficit. BIOLOGICAL SIGNIFICANCE Fertilization initiates the most dramatic changes that occur in the life cycle of higher plants; research into differences in gene expression before and after ovary pollination can make a substantial contribution to understanding the physiological and biochemical processes associated with fertilization. To date, a small number of studies have examined changes in transcriptional activity of the developing plant embryo sac before and after fertilization. However, comparative proteomic analysis of wheat ovary development before and after fertilization, and in response to water deficit, has not yet been reported. Our comprehensive results provide new insights into the biochemical mechanisms involved in ovary development before and after fertilization and in tolerance to water deficit.
Collapse
Affiliation(s)
- Yajuan Qin
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Wanlu Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Shuyang Xiao
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Guangjun Yin
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yan Zhu
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yueming Yan
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yingkao Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
31
|
Silva-Sanchez C, Chen S, Li J, Chourey PS. A comparative glycoproteome study of developing endosperm in the hexose-deficient miniature1 (mn1) seed mutant and its wild type Mn1 in maize. FRONTIERS IN PLANT SCIENCE 2014; 5:63. [PMID: 24616729 PMCID: PMC3935489 DOI: 10.3389/fpls.2014.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 02/07/2014] [Indexed: 05/04/2023]
Abstract
In maize developing seeds, transfer cells are prominently located at the basal endosperm transfer layer (BETL). As the first filial cell layer, BETL is a gateway to sugars, nutrients and water from mother plant; and anchor of numerous functions such as sucrose turnover, auxin and cytokinin biosynthesis/accumulation, energy metabolism, defense response, and signaling between maternal and filial generations. Previous studies showed that basal developing endosperms of miniature1 (mn1) mutant seeds lacking the Mn1-encoded cell wall invertase II, are also deficient for hexose. Given the role of glucose as one of the key sugars in protein glycosylation and proper protein folding; we performed a comparative large scale glycoproteome profiling of total proteins of these two genotypes (mn1 mutant vs. Mn1 wild type) using 2D gel electrophoresis and glycosylation/total protein staining, followed by image analysis. Protein identification was done by LC-MS/MS. A total of 413 spots were detected; from which, 113 spots matched between the two genotypes. Of these, 45 showed >20% decrease/increase in glycosylation level and were selected for protein identification. A large number of identified proteins showed decreased glycosylation levels in mn1 developing endosperms as compared to the Mn1. Functional classification of proteins, showed mainly of post-translational modification, protein turnover, chaperone activities, carbohydrate and amino acid biosynthesis/transport, and cell wall biosynthesis. These proteins and activities were related to endoplasmic reticulum (ER) stress and unfolded protein response (UPR) as a result of the low glycolsylation levels of the mutant proteins. Overall, these results provide for the first time a global glycoproteome profile of maize BETL-enriched basal endosperm to better understand their role in seed development in maize.
Collapse
Affiliation(s)
- Cecilia Silva-Sanchez
- Proteomics, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| | - Sixue Chen
- Proteomics, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
- Department of Biology, UF Genetics Institute, University of FloridaGainesville, FL, USA
| | - Jinxi Li
- Proteomics, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| | - Prem S. Chourey
- United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural and Veterinary EntomologyGainesville, FL, USA
- Department of Agronomy, University of FloridaGainesville, FL, USA
- *Correspondence: Prem S. Chourey, United States Department of Agriculture, Agricultural Research Service, 1600 SW 23rd Drive, Gainesville, FL 32608, USA e-mail:
| |
Collapse
|