1
|
Ribeiro DG, Carvalho JDO, Sartori R, Monteiro PLJ, Fontes W, Castro MDS, de Sousa MV, Dode MAN, Mehta A. The presence of sexed sperm in bovine oviduct epithelial cells alters the protein profile related to stress and immune response. Res Vet Sci 2025; 184:105522. [PMID: 39740501 DOI: 10.1016/j.rvsc.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Although sperm sexing technology has progressed considerably in the last decade, there are still challenges to fully understand the reason for the low fertility of sexed sperm. Thus, we aimed to evaluate the effect of sexed and non-sexed sperm on the proteome of bovine oviduct epithelial cells (BOECs). Semen from six Nellore bulls was used and one ejaculate from each bull was collected and separated into three fractions: non-sexed, sexed for X-sperm and sexed for Y-sperm. Previously synchronized females were artificially inseminated with either a pool of non-sexed sperm from 6 sires (NS), or a pool of sexed X and Y sperm from 6 sires (XY) or saline solution (Control). After insemination, animals were slaughtered and oviducts were collected to obtain BOECs samples, which were used for proteomic analysis. The results revealed that the oviductal response on isthmus region to the presence of sperm is different when sexed and non-sexed sperm are used. Sexed sperm seemed to induced a more intense and imbalanced response to several processes, such as oxidative and heat stress, immune response and movement of the oviduct muscle.
Collapse
Affiliation(s)
- Daiane Gonzaga Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasilia, DF, Brazil; Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - José de Oliveira Carvalho
- Postgraduate Program in Veterinary Sciences, Federal University of Espirito Santo, Alegre, ES, Brazil
| | - Roberto Sartori
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil
| | - Pedro Leopoldo Jerônimo Monteiro
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil; Department of Large Animal Clinical Sciences, University of Florida, Gainesville, USA
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia, DF, Brazil
| | - Mariana de Souza Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia, DF, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia, DF, Brazil
| | - Margot Alves Nunes Dode
- Embrapa Recursos Genéticos e Biotecnologia, Brasilia, DF, Brazil; Programa de Pós-Graduação em Biologia Animal, Universidade de Brasília- UnB, Brazil.
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasilia, DF, Brazil.
| |
Collapse
|
2
|
Santos IR, Ribeiro DG, Mendes PDN, Fontes W, Luz IS, Silva LP, Mehta A. Biotechnological potential of silver nanoparticles synthesized by green method to control phytopathogenic bacteria: contributions from a proteomic analysis. Braz J Microbiol 2024; 55:3239-3250. [PMID: 39412601 PMCID: PMC11711604 DOI: 10.1007/s42770-024-01538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/30/2024] [Indexed: 01/11/2025] Open
Abstract
Silver nanoparticles (AgNPs) synthesized through green synthesis routes are widely used as antimicrobial agents due to their advantages such as biocompatibility, stability, sustainability, speed and cost-effectiveness. Although AgNPs appear to be more potent than silver ions, the mechanisms related to their antibacterial activity are not yet fully understood. The most common proposed mechanism of AgNPs' toxicity so far is the release of silver ions and/or specific functions of the particles. In this context, the present study aimed to investigate the mechanisms of action of AgNPs synthesized using noni fruit peels (Morinda citrifolia) against the phytopathogen Xanthomonas campestris pv. campestris (Xcc) through proteomics. Xcc was treated with AgNPs (32 µM), AgNO3 (32 µM), or received no treatment (Ctrl - control condition), and its proteomic response was comprehensively characterized to elucidate the antimicrobial mechanisms of AgNPs in the phytopathogenic microorganism. A total of 352 differentially abundant proteins were identified. Most proteins were regulated in the AgNPs × Ctrl and AgNPs × AgNO3 comparisons/conditions. When Xcc treated with 32 µM AgNPs were compared to controls, the results showed 134 differentially abundant proteins, including 107 increased and 27 decreased proteins. In contrast, when Xcc treated with 32 µM AgNO3 were compared to Ctrl, the results showed only 14 differentially abundant proteins, including 10 increased proteins and 4 decreased proteins. Finally, when Xcc treated with 32 µM AgNPs were compared to Xcc treated with 32 µM AgNO3, the results showed 204 differentially abundant proteins, including 75 increased proteins and 129 decreased proteins. Gene ontology enrichment analysis revealed that most of the increased proteins were involved in important biological processes such as metal ion homeostasis, detoxification, membrane organization, metabolic processes related to amino acids and carbohydrates, lipid metabolic processes, proteolysis, transmembrane transport, and others. The AgNPs used in this study demonstrated effective antimicrobial activity against the phytopathogenic bacteria Xcc. Furthermore, the obtained results contribute to a better understanding of the mechanisms of action of AgNPs in Xcc and may aid in the development of strategies to control Xcc in brassica.
Collapse
Affiliation(s)
- Ivonaldo Reis Santos
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, CEP 70770-917, DF, Brazil
- Programa de Pós-Graduação em Ciências Biológicas (Biologia Molecular), Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, CEP 70910-900, DF, Brazil
| | - Daiane Gonzaga Ribeiro
- Laboratório de Química e Bioquímica de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Pollyana da Nóbrega Mendes
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, CEP 70770-917, DF, Brazil
| | - Wagner Fontes
- Laboratório de Química e Bioquímica de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Isabelle Souza Luz
- Laboratório de Química e Bioquímica de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Luciano Paulino Silva
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, CEP 70770-917, DF, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas (Biologia Molecular), Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, CEP 70910-900, DF, Brazil.
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, CEP 70770-917, DF, Brazil.
| |
Collapse
|
3
|
da Camara N, Dubery IA, Piater LA. Proteome Analysis of Nicotiana tabacum Cells following Isonitrosoacetophenone Treatment Reveals Defence-Related Responses Associated with Priming. PLANTS (BASEL, SWITZERLAND) 2023; 12:1137. [PMID: 36903995 PMCID: PMC10005295 DOI: 10.3390/plants12051137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Proteins play an essential regulatory role in the innate immune response of host plants following elicitation by either biotic or abiotic stresses. Isonitrosoacetophenone (INAP), an unusual oxime-containing stress metabolite, has been investigated as a chemical inducer of plant defence responses. Both transcriptomic and metabolomic studies of various INAP-treated plant systems have provided substantial insight into this compound's defence-inducing and priming capabilities. To complement previous 'omics' work in this regard, a proteomic approach of time-dependent responses to INAP was followed. As such, Nicotiana tabacum (N. tabacum) cell suspensions were induced with INAP and changes monitored over a 24-h period. Protein isolation and proteome analysis at 0, 8, 16 and 24 h post-treatment were performed using two-dimensional electrophoresis followed by the gel-free eight-plex isobaric tags for relative and absolute quantitation (iTRAQ) based on liquid chromatography and mass spectrometry. Of the identified differentially abundant proteins, 125 were determined to be significant and further investigated. INAP treatment elicited changes to the proteome that affected proteins from a wide range of functional categories: defence, biosynthesis, transport, DNA and transcription, metabolism and energy, translation and signalling and response regulation. The possible roles of the differentially synthesised proteins in these functional classes are discussed. Results indicate up-regulated defence-related activity within the investigated time period, further highlighting a role for proteomic changes in priming as induced by INAP treatment.
Collapse
|
4
|
Grishina A, Sherstneva O, Grinberg M, Zdobnova T, Ageyeva M, Khlopkov A, Sukhov V, Brilkina A, Vodeneev V. Pre-Symptomatic Detection of Viral Infection in Tobacco Leaves Using PAM Fluorometry. PLANTS (BASEL, SWITZERLAND) 2021; 10:2782. [PMID: 34961253 PMCID: PMC8707847 DOI: 10.3390/plants10122782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Chlorophyll fluorescence imaging was used to study potato virus X (PVX) infection of Nicotiana benthamiana. Infection-induced changes in chlorophyll fluorescence parameters (quantum yield of photosystem II photochemistry (ΦPSII) and non-photochemical fluorescence quenching (NPQ)) in the non-inoculated leaf were recorded and compared with the spatial distribution of the virus detected by the fluorescence of GFP associated with the virus. We determined infection-related changes at different points of the light-induced chlorophyll fluorescence kinetics and at different days after inoculation. A slight change in the light-adapted steady-state values of ΦPSII and NPQ was observed in the infected area of the non-inoculated leaf. In contrast to the steady-state parameters, the dynamics of ΦPSII and NPQ caused by the dark-light transition in healthy and infected areas differed significantly starting from the second day after the detection of the virus in a non-inoculated leaf. The coefficients of correlation between chlorophyll fluorescence parameters and virus localization were 0.67 for ΦPSII and 0.76 for NPQ. In general, the results demonstrate the possibility of reliable pre-symptomatic detection of the spread of a viral infection using chlorophyll fluorescence imaging.
Collapse
Affiliation(s)
- Alyona Grishina
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (A.G.); (O.S.); (M.G.); (T.Z.); (A.K.); (V.S.)
| | - Oksana Sherstneva
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (A.G.); (O.S.); (M.G.); (T.Z.); (A.K.); (V.S.)
| | - Marina Grinberg
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (A.G.); (O.S.); (M.G.); (T.Z.); (A.K.); (V.S.)
| | - Tatiana Zdobnova
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (A.G.); (O.S.); (M.G.); (T.Z.); (A.K.); (V.S.)
| | - Maria Ageyeva
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (M.A.); (A.B.)
| | - Andrey Khlopkov
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (A.G.); (O.S.); (M.G.); (T.Z.); (A.K.); (V.S.)
| | - Vladimir Sukhov
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (A.G.); (O.S.); (M.G.); (T.Z.); (A.K.); (V.S.)
| | - Anna Brilkina
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (M.A.); (A.B.)
| | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (A.G.); (O.S.); (M.G.); (T.Z.); (A.K.); (V.S.)
| |
Collapse
|
5
|
Távora FTPK, Bevitori R, Mello RN, Cintra MMDF, Oliveira-Neto OB, Fontes W, Castro MS, Sousa MV, Franco OL, Mehta A. Shotgun proteomics coupled to transient-inducible gene silencing reveal rice susceptibility genes as new sources for blast disease resistance. J Proteomics 2021; 241:104223. [PMID: 33845181 DOI: 10.1016/j.jprot.2021.104223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 12/22/2022]
Abstract
A comparative proteomic analysis between two near-isogenic rice lines, displaying a resistant and susceptible phenotype upon infection with Magnaporthe oryzae was performed. We identified and validated factors associated with rice disease susceptibility, representing a flourishing source toward a more resolute rice-blast resistance. Proteome profiles were remarkably different during early infection (12 h post-inoculation), revealing several proteins with increased abundance in the compatible interaction. Potential players of rice susceptibility were selected and gene expression was evaluated by RT-qPCR. Gene Ontology analysis disclosed susceptibility gene-encoded proteins claimed to be involved in fungus sustenance and suppression of plant immunity, such as sucrose synthase 4-like, serpin-ZXA-like, nudix hydrolase15, and DjA2 chaperone protein. Two other candidate genes, picked from a previous transcriptome study, were added into our downstream analysis including pyrabactin resistant-like 5 (OsPYL5), and rice ethylene-responsive factor 104 (OsERF104). Further, we validated their role in susceptibility by Transient-Induced Gene Silencing (TIGS) using short antisense oligodeoxyribonucleotides that resulted in a remarkable reduction of foliar disease symptoms in the compatible interaction. Therefore, we successfully employed shotgun proteomics and antisense-based gene silencing to prospect and functionally validate rice potential susceptibility factors, which could be further explored to build rice-blast resistance. SIGNIFICANCE: R gene-mediated disease resistance is race-specific and often not durable in the field. More recently, advancements in new breeding techniques (NBTs) have made plant disease susceptibility genes (S-genes) a new target to build a broad spectrum and more durable resistance, hence an alternative source to R-genes in breeding programs. We successfully coupled shotgun proteomics and gene silencing tools to prospect and validate new rice-bast susceptibility genes that can be further exploited toward a more resolute blast disease resistance.
Collapse
Affiliation(s)
| | | | - Raquel N Mello
- Embrapa Arroz e Feijão, Santo Antônio de Goiás, GO, Brazil
| | | | | | | | | | | | - Octávio L Franco
- S-Inova Biotech/Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.
| |
Collapse
|
6
|
Characterization of Local and Systemic Impact of Whitefly ( Bemisia tabaci) Feeding and Whitefly-Transmitted Tomato Mottle Virus Infection on Tomato Leaves by Comprehensive Proteomics. Int J Mol Sci 2020; 21:ijms21197241. [PMID: 33008056 PMCID: PMC7583044 DOI: 10.3390/ijms21197241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 11/23/2022] Open
Abstract
Tomato mottle virus (ToMoV) is a single-stranded DNA (ssDNA) begomovirus transmitted to solanaceous crops by the whitefly species complex (Bemisia tabaci), causing stunted growth, leaf mottling, and reduced yield. Using a genetic repertoire of seven genes, ToMoV pathogenesis includes the manipulation of multiple plant biological processes to circumvent antiviral defenses. To further understand the effects of whitefly feeding and whitefly-transmitted ToMoV infection on tomato plants (Solanum lycopersicum ‘Florida Lanai’), we generated comprehensive protein profiles of leaves subjected to feeding by either viruliferous whiteflies harboring ToMoV, or non-viruliferous whiteflies, or a no-feeding control. The effects of whitefly feeding and ToMoV infection were measured both locally and systemically by sampling either a mature leaf directly from the site of clip-cage confined whitefly feeding, or from a newly formed leaf 10 days post feeding (dpf). At 3 dpf, tomato’s response to ToMoV included proteins associated with translation initiation and elongation as well as plasmodesmata dynamics. In contrast, systemic impacts of ToMoV on younger leaves 10 dpf were more pronounced and included a virus-specific change in plant proteins associated with mRNA maturation and export, RNA-dependent DNA methylation, and other antiviral plant processes. Our analysis supports previous findings and provides novel insight into tomato’s local and systemic response to whitefly feeding and ToMoV infection.
Collapse
|
7
|
Martins AC, Mehta A, Murad AM, Mota AP, Saraiva MA, Araújo AC, Miller RN, Brasileiro AC, Guimarães PM. Proteomics unravels new candidate genes for Meloidogyne resistance in wild Arachis. J Proteomics 2020; 217:103690. [DOI: 10.1016/j.jprot.2020.103690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
|
8
|
Távora FTPK, Santos C, Maximiano MR, Murad AM, Oliveira-Neto OB, Megias E, Reis Junior FB, Franco OL, Mehta A. Pan Proteome of Xanthomonas campestris pv. campestris Isolates Contrasting in Virulence. Proteomics 2019; 19:e1900082. [PMID: 31050381 DOI: 10.1002/pmic.201900082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/30/2019] [Indexed: 11/07/2022]
Abstract
Fully sequenced genomes of Xanthomonas campestris pv. campestris (Xcc) strains are reported. However, intra-pathovar differences are still intriguing and far from clear. In this work, the contrasting virulence between two isolates of Xcc - Xcc51 (more virulent) and XccY21 (less virulent) is evaluated by determining their pan proteome profiles. The bacteria are grown in NYG and XVM1 (optimal for induction of hrp regulon) broths and collected at the max-exponential growth phase. Shotgun proteomics reveals a total of 329 proteins when Xcc isolates are grown in XVM1. A comparison of both profiles reveals 47 proteins with significant abundance fluctuations, out of which, 39 show an increased abundance in Xcc51 and are mainly involved in virulence/adaptation mechanisms, genetic information processing, and membrane receptor/iron transport systems, such as BfeA, BtuB, Cap, Clp, Dcp, FyuA, GroEs, HpaG, Tig, and OmpP6. Several differential proteins are further analyzed by qRT-PCR, which reveals a similar expression pattern to the protein abundance. The data shed light on the complex Xcc pathogenicity mechanisms and point out a set of proteins related to the higher virulence of Xcc51. This information is essential for the development of more efficient strategies aiming at the control of black rot disease.
Collapse
Affiliation(s)
- Fabiano T P K Távora
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, CEP 70770-917, DF, Brazil.,Departamento de Genética e Biotecnologia, Instituto de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, MG, Brazil
| | - Cristiane Santos
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, CEP 70770-917, DF, Brazil.,Departamento de Genética e Biotecnologia, Instituto de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, MG, Brazil
| | - Mariana R Maximiano
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, CEP 70770-917, DF, Brazil.,Departamento de Genética e Biotecnologia, Instituto de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, MG, Brazil
| | - André M Murad
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, CEP 70770-917, DF, Brazil
| | - Osmundo Brilhante Oliveira-Neto
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, CEP 70770-917, DF, Brazil.,Departamento de Bioquímica e Biologia Molecular, Escola de Medicina, FACIPLAC, Brasília, CEP 72460-000, DF, Brazil
| | - Esaú Megias
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, CEP 70770-917, DF, Brazil
| | | | - Octávio L Franco
- Departamento de Genética e Biotecnologia, Instituto de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, MG, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, CEP 70790-160, DF, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, CEP 79117-900, MS, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, CEP 70770-917, DF, Brazil
| |
Collapse
|
9
|
You WJ, Feng YR, Shen YH, Chen YR, Chen TY, Fu SF. Silencing of NbCMT3s has Pleiotropic Effects on Development by Interfering with Autophagy-Related Genes in Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2019; 60:1120-1135. [PMID: 30785195 DOI: 10.1093/pcp/pcz034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/14/2019] [Indexed: 05/25/2023]
Abstract
DNA methylation is a chromatin mark that has a crucial role in regulating gene expression. The chromomethylase (CMT) protein family is a plant-specific DNA methyltransferase that mediates growth and development. However, the roles of CMT3 in autophagy remain to be elucidated. Here, we identified the potential targets of CMT3 in Nicotiana benthamiana (NbCMT3) during developmental programs. Virus-induced gene silencing of NbCMT3/3-2 in N. benthamiana had pleiotropic effects on plant morphology, which indicates its indispensible role in development. Genome-wide transcriptome analysis of NbCMT3/3-2-silenced plants revealed interference with genes related to autophagy and ubiquitination. The expression of NbBeclin 1 and NbHRD1B was higher in NbCMT3/3-2-silenced than control plants. The formation of autophagosomes and starch degradation was disrupted in NbCMT3/3-2-silenced plants, which implies a perturbed autophagic processes. We further generated transgenic N. benthamiana plants carrying a chimeric promoter-reporter construct linking the NbBeclin 1 promoter region and β-glucuronidase (GUS) reporter (pNbBeclin::GUS). NbBeclin 1 promoter activity was significantly enhanced in NbCMT3/3-2-silenced plants. Thus, NbCMT3/3-2 silencing had pleiotropic effects on development by interfering with NbBeclin 1 expression and autophagy-related processes.
Collapse
Affiliation(s)
- Wen-Jing You
- Department of Biology, National Changhua University of Education, No.1, Jin-De Road, Changhua, Taiwan
| | - Yun-Ru Feng
- Department of Biology, National Changhua University of Education, No.1, Jin-De Road, Changhua, Taiwan
| | - Ya-Han Shen
- Department of Biology, National Changhua University of Education, No.1, Jin-De Road, Changhua, Taiwan
| | - Yi-Ru Chen
- Department of Biology, National Changhua University of Education, No.1, Jin-De Road, Changhua, Taiwan
| | - Tzy-Yi Chen
- Department of Biology, National Changhua University of Education, No.1, Jin-De Road, Changhua, Taiwan
| | - Shih-Feng Fu
- Department of Biology, National Changhua University of Education, No.1, Jin-De Road, Changhua, Taiwan
| |
Collapse
|
10
|
Comparative proteomics and gene expression analysis in Arachis duranensis reveal stress response proteins associated to drought tolerance. J Proteomics 2019; 192:299-310. [DOI: 10.1016/j.jprot.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022]
|
11
|
Megias E, do Carmo LST, Nicolini C, Silva LP, Blawid R, Nagata T, Mehta A. Chloroplast Proteome of Nicotiana benthamiana Infected by Tomato Blistering Mosaic Virus. Protein J 2018; 37:290-299. [PMID: 29802510 DOI: 10.1007/s10930-018-9775-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Tymovirus is a genus of plant pathogenic viruses that infects several dicotyledonous plants worldwide, causing serious diseases in economically important crops. The known cytopathic effect on the host cell organelles involves chloroplast membrane deformation and the induction of vesicles in its periphery. These vesicles are known to be the location where tymoviral genomic RNA replication occurs. Tomato blistering mosaic virus (ToBMV) is a tymovirus recently identified in tomato plants in Brazil, which is able to infect several other plants, including tobacco. In this work, we investigated the chloroplast proteomic profile of ToBMV-infected N. benthamiana using bidimensional electrophoresis (2-DE) and mass spectrometry, aiming to study the virus-host interaction related to the virus replication and infection. A total of approximately 200 spots were resolved, out of which 36 were differentially abundant. Differential spots were identified by mass spectrometry including photosynthesis-related and defense proteins. We identified proteins that may be targets of a direct interaction with viral proteins, such as ATP synthase β subunit, RNA polymerase beta-subunit, 50S ribosomal protein L6 and Trigger factor-like protein. The identification of these candidate proteins gives support for future protein-protein interaction studies to confirm their roles in virus replication and disease development.
Collapse
Affiliation(s)
- Esau Megias
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte final, Brasília, DF, 70770-917, Brazil
| | | | | | - Luciano Paulino Silva
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte final, Brasília, DF, 70770-917, Brazil
| | - Rosana Blawid
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte final, Brasília, DF, 70770-917, Brazil.
| |
Collapse
|
12
|
Tu YC, Tsai WS, Wei JY, Chang KY, Tien CC, Hsiao HY, Fu SF. The C2 protein of tomato leaf curl Taiwan virus is a pathogenicity determinant that interferes with expression of host genes encoding chromomethylases. PHYSIOLOGIA PLANTARUM 2017; 161:515-531. [PMID: 28786123 DOI: 10.1111/ppl.12615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/22/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most important crops worldwide and is severely affected by geminiviruses. Tomato leaf curl Taiwan virus (ToLCTWV), belonging to the geminiviruses, was isolated in Taiwan and causes tremendous crop loss. The geminivirus-encoded C2 proteins are crucial for a successful interaction between the virus and host plants. However, the exact functions of the viral C2 protein of ToLCTWV have not been investigated. We analyzed the molecular function(s) of the C2 protein by transient or stable expression in tomato cv. Micro-Tom and Nicotiana benthamiana. Severe stunting of tomato and N. benthamiana plants infected with ToLCTWV was observed. Expression of ToLCTWV C2-green fluorescent protein (GFP) fusion protein was predominately located in the nucleus and contributed to activation of a coat protein promoter. Notably, the C2-GFP fluorescence was distributed in nuclear aggregates. Tomato and N. benthamiana plants inoculated with potato virus X (PVX)-C2 displayed chlorotic lesions and stunted growth. PVX-C2 elicited hypersensitive responses accompanied by production of reactive oxygen species in N. benthamiana plants, which suggests that the viral C2 was a potential recognition target to induce host-defense responses. In tomato and N. benthamiana, ToLCTWV C2 was found to interfere with expression of genes encoding chromomethylases. N. benthamiana plants with suppressed NbCMT3-2 expression were more susceptible to ToLCTWV infection. Transgenic N. benthamiana plants expressing the C2 protein showed decreased expression of the NbCMT3-2 gene and pNbCMT3-2::GUS (β-glucuronidase) promoter activity. C2 protein is an important pathogenicity determinant of ToLCTWV and interferes with host components involved in DNA methylation.
Collapse
Affiliation(s)
- Yu-Ching Tu
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Wen-Shi Tsai
- Department of Plant Medicine, National Chiayi University, Chiayi, Taiwan
| | - Jyuan-Yu Wei
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Kai-Ya Chang
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Chang-Ching Tien
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Hui-Yu Hsiao
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Shih-Feng Fu
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
13
|
Identification of proteins in susceptible and resistant Brassica oleracea responsive to Xanthomonas campestris pv. campestris infection. J Proteomics 2016; 143:278-285. [PMID: 26825537 DOI: 10.1016/j.jprot.2016.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/24/2015] [Accepted: 01/25/2016] [Indexed: 11/23/2022]
Abstract
UNLABELLED Cruciferous plants are important edible vegetables widely consumed around the world, including cabbage, cauli-flower and broccoli. The main disease that affects crucifer plants is black rot, caused by Xanthomonas campestris pv. campestris (Xcc). In order to better understand this specific plant-pathogen interaction, proteins responsive to Xcc infection in resistant (União) and susceptible (Kenzan) Brassica oleracea cultivars were investigated by 2-DE followed by mass spectrometry. A total of 47 variable spots were identified and revealed that in the susceptible interaction there is a clear reduction in the abundance of proteins involved in energetic metabolism and defense. It was interesting to observe that in the resistant interaction, these proteins showed an opposite behavior. Based on our results, we conclude that resistance is correlated with the ability of the plant to keep sufficient photosynthesis metabolism activity to provide energy supplies necessary for an active defense. As a follow-up study, qRT-PCR analysis of selected genes was performed and revealed that most genes showed an up-regulation trend from 5 to 15days after inoculation (DAI), showing highest transcript levels at 15DAI. These results revealed the gradual accumulation of transcripts providing a more detailed view of the changes occurring during different stages of the plant-pathogen interaction. BIOLOGICAL SIGNIFICANCE In this study we have compared cultivars of Brassica oleracea (cabbage), susceptible and resistant to black rot, by using the classical 2-DE approach. We have found that resistance is correlated with the ability of the plant to keep sufficient photosynthesis metabolism activity to provide energy supplies necessary for an active defense.
Collapse
|
14
|
Lin YT, Wei HM, Lu HY, Lee YI, Fu SF. Developmental- and Tissue-Specific Expression of NbCMT3-2 Encoding a Chromomethylase in Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2015; 56:1124-43. [PMID: 25745030 DOI: 10.1093/pcp/pcv036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 02/23/2015] [Indexed: 05/11/2023]
Abstract
The chromomethylase (CMT) protein family is unique to plants and controls non-CpG methylation. Here, we investigated the developmental expression of CMT3-2 in Nicotiana benthamiana (NbCMT3-2) and its significance by analyzing plants with silenced NbCMT3-2 and leaf tissues transiently expressing the N-terminal polypeptide. Alignment of the NbCMT3-2 amino acid sequence with that of other plant CMT3s showed a specific N-terminal extension required for nuclear localization. Transient expression of the N-terminal polypeptide in N. benthamiana resulted in chlorotic lesions. NbCMT3-2 was expressed mainly in proliferating tissues such as the shoot apex and developing leaves. We generated transgenic N. benthamiana harboring a fusion reporter construct linking the NbCMT3-2 promoter region and the β-glucuronidase (GUS) reporter (pNbCMT3-2::GUS) to analyze the tissue-specific expression of NbCMT3-2. NbCMT3-2 was expressed in the shoot and root apical meristem and leaf primordia in young seedlings and highly expressed in developing leaves and ovary as well as lateral buds in mature plants. Virus-induced gene silencing used to knock down the expression of NbCMT3 or NbCMT3-2 or both led to partial loss of genomic DNA methylation. Plants with suppressed NbCMT3 expression grew and developed normally, whereas leaves with NbCMT3-2 knockdown showed mild curling as compared with controls. Silencing NbCMT3/3-2 severely interfered with leaf development and directly or indirectly affected the expression of genes involved in jasmonate homeostasis. The differential roles of NbCMT3 and NbCMT3-2 were investigated and compared. We reveal the expression patterns of NbCMT3-2 in proliferating tissues. NbCMT3-2 may play an essential role in leaf development by modulating jasmonate pathways.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| | - Huei-Mei Wei
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| | - Hsueh-Yu Lu
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| | - Yung-I Lee
- Botany Department, National Museum of Natural Science, No. 1, Guancian Road, Taichung 404, Taiwan
| | - Shih-Feng Fu
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| |
Collapse
|
15
|
Villeth GRC, Carmo LST, Silva LP, Fontes W, Grynberg P, Saraiva M, Brasileiro ACM, Carneiro RMD, Oliveira JTA, Grossi-de-Sá MF, Mehta A. Cowpea-Meloidogyne incognita
interaction: Root proteomic analysis during early stages of nematode infection. Proteomics 2015; 15:1746-59. [DOI: 10.1002/pmic.201400561] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/13/2015] [Accepted: 02/26/2015] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia; Brasília DF Brazil
| |
Collapse
|
16
|
Wieczorek P, Obrępalska-Stęplowska A. Suppress to Survive-Implication of Plant Viruses in PTGS. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:335-346. [PMID: 25999662 PMCID: PMC4432016 DOI: 10.1007/s11105-014-0755-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In higher plants, evolutionarily conserved processes playing an essential role during gene expression rely on small noncoding RNA molecules (sRNA). Within a wide range of sRNA-dependent cellular events, there is posttranscriptional gene silencing, the process that is activated in response to the presence of double-stranded RNAs (dsRNAs) in planta. The sequence-specific mechanism of silencing is based on RNase-mediated trimming of dsRNAs into translationally inactive short molecules. Viruses invading and replicating in host are also a source of dsRNAs and are recognized as such by cellular posttranscriptional silencing machinery leading to degradation of the pathogenic RNA. However, viruses are not totally defenseless. In parallel with evolving plant defense strategies, viruses have managed a wide range of multifunctional proteins that efficiently impede the posttranscriptional gene silencing. These viral counteracting factors are known as suppressors of RNA silencing. The aim of this review is to summarize the role and the mode of action of several functionally characterized RNA silencing suppressors encoded by RNA viruses directly involved in plant-pathogen interactions. Additionally, we point out that the widely diverse functions, structures, and modes of action of viral suppressors can be performed by different proteins, even in related viruses. All those adaptations have been evolved to achieve the same goal: to maximize the rate of viral genetic material replication by interrupting the evolutionary conserved plant defense mechanism of posttranscriptional gene silencing.
Collapse
Affiliation(s)
- Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| |
Collapse
|
17
|
Binias C, Gonzalez P, Provost M, Lambert C, de Montaudouin X. Brown muscle disease: impact on Manila clam Venerupis (=Ruditapes) philippinarum biology. FISH & SHELLFISH IMMUNOLOGY 2014; 36:510-518. [PMID: 24378680 DOI: 10.1016/j.fsi.2013.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
This study assessed the effect of Brown Muscle Disease (BMD) on Manila clam Venerupis philippinarum fitness. BMD was discovered in 2005. It affects the posterior adductor muscle and leads to clam gaping and eventually death. Three statuses of clams were compared: buried individuals with no signs of BMD (BUR); clams at the surface of the sediment with no signs of BMD (SURF) and clams at the surface of the sediment exhibiting signs of brown muscle disease (BMD). Physiological (condition index), immune (hemocyte parameters) and molecular (gene expressions) parameters collected seasonally were analyzed and compared. Results demonstrated a seasonal pattern in condition index (CI) with peaks in spring/summer and decreases in autumn/winter. At each season, the highest CI was observed in BUR and the lowest CI was observed in BMD. In terms of immune response, phagocytosis rate and capacity were higher in clams with BMD whereas the health status of the clams did not influence the total hemocyte count. Genes involved in the immune system (comp, tnf, inter) were upregulated in clams with BMD. The molecular analysis of gill and posterior muscle showed higher mitochondrial metabolism (cox-1, 16S) in cells of infected clams, suggesting a stronger energetic demand by these cells. Finally, genes involved in oxidative stress response (cat, sod), detoxification (mt) and DNA repair (gadd45) were also overexpressed due to reactive oxygen species production. Most of the studied parameters underlined a cause-effect correlation between Manila clam health status (BUR, SUR, BMD) and physiological parameters. An important stress response was observed in BMD-infected clams at different scales, i.e. condition index, immune parameters and stress-related gene expression.
Collapse
Affiliation(s)
- Cindy Binias
- Université Bordeaux, EPOC, UMR 5805, 33120 Arcachon, France.
| | | | - Margot Provost
- Université Bordeaux, EPOC, UMR 5805, 33120 Arcachon, France
| | - Christophe Lambert
- LEMAR CNRS (UMR 6539), IUEM, Université de Bretagne occidentale, 29280 Plouzané, France
| | | |
Collapse
|
18
|
Briddon RW, Akbar F, Iqbal Z, Amrao L, Amin I, Saeed M, Mansoor S. Effects of genetic changes to the begomovirus/betasatellite complex causing cotton leaf curl disease in South Asia post-resistance breaking. Virus Res 2013; 186:114-9. [PMID: 24361351 DOI: 10.1016/j.virusres.2013.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 01/12/2023]
Abstract
Cotton leaf curl disease (CLCuD) has been a problem for cotton production across Pakistan and north-eastern India since the early 1990s. The appearance of the disease has been attributed to the introduction, and near monoculture of highly susceptible cotton varieties. During the intervening period the genetic make-up of the virus(es) causing the disease has changed dramatically. The most prominent of these changes has been in response to the introduction of CLCuD-resistant cotton varieties in the late 1990s, which provided a brief respite from the losses due to the disease. During the 1990s the disease was shown to be caused by multiple begomoviruses and a single, disease-specific betasatellite. Post-resistance breaking the complex encompassed only a single begomovirus, Cotton leaf curl Burewala virus (CLCuBuV), and a recombinant version of the betasatellite. Surprisingly CLCuBuV lacks an intact transcriptional-activator protein (TrAP) gene. The TrAP gene is found in all begomoviruses and encodes a product of ∼134 amino acids that is important in virus-host interactions; being a suppressor of post-transcriptional gene silencing (host defence) and a transcription factor that modulates host gene expression, including microRNA genes. Recent studies have highlighted the differences between CLCuBuV and the earlier viruses that are part of on-going efforts to define the molecular basis for resistance breaking in cotton.
Collapse
Affiliation(s)
- Rob W Briddon
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan.
| | - Fazal Akbar
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan.
| | - Zafar Iqbal
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan.
| | - Luqman Amrao
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan.
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan.
| | - Muhammad Saeed
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan.
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|