1
|
Strohm AO, Oldfield S, Hernady E, Johnston CJ, Marples B, O'Banion MK, Majewska AK. Biological sex, microglial signaling pathways, and radiation exposure shape cortical proteomic profiles and behavior in mice. Brain Behav Immun Health 2025; 43:100911. [PMID: 39677060 PMCID: PMC11634995 DOI: 10.1016/j.bbih.2024.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/17/2024] Open
Abstract
Patients receiving cranial radiation therapy experience tissue damage and cognitive deficits that severely decrease their quality of life. Experiments in rodent models show that these adverse neurological effects are in part due to functional changes in microglia, the resident immune cells of the central nervous system. Increasing evidence suggests that experimental manipulation of microglial signaling can regulate radiation-induced changes in the brain and behavior. Furthermore, many studies show sex-dependent neurological effects of radiation exposure. Despite this, few studies have used both males and females to explore how sex and microglial function interact to influence radiation effects on the brain. Here, we used a system levels approach to examine how deficiencies in purinergic and fractalkine signaling, two important microglial signaling pathways, impact brain proteomic and behavioral profiles in irradiated and control male and female mice. We performed a comprehensive analysis of the cortical proteomes from irradiated and control C57BL/6J, P2Y12-/-, and CX3CR1-/- mice of both sexes using multiple bioinformatics methods. We identified distinct proteins and biological processes, as well as behavioral profiles, regulated by sex, genotype, radiation exposure, and their interactions. Disrupting microglial signaling, had the greatest impact on proteomic expression, with CX3CR1-/- mice showing the most distinct proteomic profile characterized by upregulation of CX3CL1. Surprisingly, radiation exposure caused relatively smaller proteomic changes in glial and synaptic proteins, including Rgs10, Crybb1, C1qa, and Hexb. While we observed some radiation effects on locomotor behavior, biological sex as well as loss of P2Y12 and CX3CR1 signaling had a stronger influence on locomotor outcomes in our model. Lastly, loss of P2Y12 and CX3CR1 strongly regulated exploratory behaviors. Overall, our findings provide novel insights into the molecular pathways and proteins that are linked to P2Y12 and CX3CR1 signaling, biological sex, radiation exposure, and their interactions.
Collapse
Affiliation(s)
- Alexandra O. Strohm
- Departments of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Sadie Oldfield
- Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Eric Hernady
- Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Carl J. Johnston
- Pediatrics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brian Marples
- Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - M. Kerry O'Banion
- Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ania K. Majewska
- Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Visual Science, University of Rochester Medical Center, Rochester, NY, 14642, USA
| |
Collapse
|
2
|
Leszczynski D. Wireless radiation and health: making the case for proteomics research of individual sensitivity. Front Public Health 2025; 12:1543818. [PMID: 39866356 PMCID: PMC11758280 DOI: 10.3389/fpubh.2024.1543818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
|
3
|
Ytterbrink C, Shubbar E, Parris TZ, Langen B, Druid M, Schüler E, Strand SE, Åkerström B, Gram M, Helou K, Forssell-Aronsson E. Effects of Recombinant α 1-Microglobulin on Early Proteomic Response in Risk Organs after Exposure to 177Lu-Octreotate. Int J Mol Sci 2024; 25:7480. [PMID: 39000587 PMCID: PMC11242497 DOI: 10.3390/ijms25137480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Recombinant α1-microglobulin (A1M) is proposed as a protector during 177Lu-octreotate treatment of neuroendocrine tumors, which is currently limited by bone marrow and renal toxicity. Co-administration of 177Lu-octreotate and A1M could result in a more effective treatment by protecting healthy tissue, but the radioprotective action of A1M is not fully understood. The aim of this study was to examine the proteomic response of kidneys and bone marrow early after 177Lu-octreotate and/or A1M administration. Mice were injected with 177Lu-octreotate and/or A1M, while control mice received saline or A1M vehicle solution. Bone marrow, kidney medulla, and kidney cortex were sampled after 24 h or 7 d. The differential protein expression was analyzed with tandem mass spectrometry. The dosimetric estimation was based on 177Lu activity in the kidney. PHLDA3 was the most prominent radiation-responsive protein in kidney tissue. In general, no statistically significant difference in the expression of radiation-related proteins was observed between the irradiated groups. Most canonical pathways were identified in bone marrow from the 177Lu-octreotate+A1M group. Altogether, a tissue-dependent proteomic response followed exposure to 177Lu-octreotate alone or together with A1M. Combining 177Lu-octreotate with A1M did not inhibit the radiation-induced protein expression early after exposure, and late effects should be further studied.
Collapse
Affiliation(s)
- Charlotte Ytterbrink
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden; (C.Y.); (E.S.); (M.D.)
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
| | - Emman Shubbar
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden; (C.Y.); (E.S.); (M.D.)
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
| | - Toshima Z. Parris
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Britta Langen
- Section of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Malin Druid
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden; (C.Y.); (E.S.); (M.D.)
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sven-Erik Strand
- Department of Clinical Sciences Lund, Oncology, Lund University, 221 00 Lund, Sweden;
| | - Bo Åkerström
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, 221 00 Lund, Sweden;
| | - Magnus Gram
- Department of Clinical Sciences Lund, Pediatrics, Lund University, 221 00 Lund, Sweden;
- Department of Neonatology, Skåne University Hospital, 222 42 Lund, Sweden
- Biofilms—Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
| | - Khalil Helou
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden; (C.Y.); (E.S.); (M.D.)
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| |
Collapse
|
4
|
Khan A, Liu G, Zhang G, Li X. Radiation-resistant bacteria in desiccated soil and their potentiality in applied sciences. Front Microbiol 2024; 15:1348758. [PMID: 38894973 PMCID: PMC11184166 DOI: 10.3389/fmicb.2024.1348758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
A rich diversity of radiation-resistant (Rr) and desiccation-resistant (Dr) bacteria has been found in arid habitats of the world. Evidence from scientific research has linked their origin to reactive oxygen species (ROS) intermediates. Rr and Dr. bacteria of arid regions have the potential to regulate imbalance radicals and evade a higher dose of radiation and oxidation than bacterial species of non-arid regions. Photochemical-activated ROS in Rr bacteria is run through photo-induction of electron transfer. A hypothetical model of the biogeochemical cycle based on solar radiation and desiccation. These selective stresses generate oxidative radicals for a short span with strong reactivity and toxic effects. Desert-inhibiting Rr bacteria efficiently evade ROS toxicity with an evolved antioxidant system and other defensive pathways. The imbalanced radicals in physiological disorders, cancer, and lung diseases could be neutralized by a self-sustaining evolved Rr bacteria antioxidant system. The direct link of evolved antioxidant system with intermediate ROS and indirect influence of radiation and desiccation provide useful insight into richness, ecological diversity, and origin of Rr bacteria capabilities. The distinguishing features of Rr bacteria in deserts present a fertile research area with promising applications in the pharmaceutical industry, genetic engineering, biological therapy, biological transformation, bioremediation, industrial biotechnology, and astrobiology.
Collapse
Affiliation(s)
- Asaf Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Ansari M, Rezaei-Tavirani M, Hamzeloo-Moghadam M, Razzaghi M, Arjmand B, Zamanian Azodi M, Khodadoost M, Okhovatian F. Investigation into Chronic Low-Dose Ionizing Radiation Effect on Gene Expression Profile of Human HUVECs Cells. J Lasers Med Sci 2022; 13:e35. [PMID: 36743135 PMCID: PMC9841377 DOI: 10.34172/jlms.2022.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023]
Abstract
Introduction: Understanding the molecular mechanism of chronic low-dose ionizing radiation (LDIR) effects on the human body is the subject of many research studies. Several aspects of cell function such as cell proliferation, apoptosis, inflammation, and tumorigenesis are affected by LDIR. Detection of the main biological process that is targeted by LIDR via network analysis is the main aim of this study. Methods: GSE66720 consisting of gene expression profiles of human umbilical vein endothelial cells (HUVECs) (a suitable cell line to be investigated), including irradiated and control cells, was downloaded from Gene Expression Omnibus (GEO). The significant differentially expressed genes (DEGs) were determined and analyzed via protein-protein interaction (PPI) network analysis to find the central individuals. The main cell function which was related to the central nodes was introduced. Results: Among 64 queried DEGs, 48 genes were recognized by the STRING database. C-X-C motif chemokine ligand 8 (CXCL8), intercellular adhesion molecule 1 (ICAM1), Melanoma growth-stimulatory activity/growth-regulated protein α (CXCL1), vascular cell adhesion molecule 1 (VCAM-1), and nerve growth factor (NGF) were introduced as hub nodes. Conclusion: Findings indicate that inflammation is the main initial target of LDIR at the cellular level which is associated with alteration in the other essential functions of the irradiated cells.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Faculty of Medicine, Imam Hosein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center, Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohhamadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian Azodi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Khodadoost
- Traditional Medicine and Materia Medica Research Center, Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Okhovatian
- Physiotherapy Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Guo L, Wu B, Wang X, Kou X, Zhu X, Fu K, Zhang Q, Hong S, Wang X. Long-term low-dose ionizing radiation induced chromosome-aberration-specific metabolic phenotype changes in radiation workers. J Pharm Biomed Anal 2022; 214:114718. [DOI: 10.1016/j.jpba.2022.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
|
7
|
Senevirathna JDM, Asakawa S. Multi-Omics Approaches and Radiation on Lipid Metabolism in Toothed Whales. Life (Basel) 2021; 11:364. [PMID: 33923876 PMCID: PMC8074237 DOI: 10.3390/life11040364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 11/25/2022] Open
Abstract
Lipid synthesis pathways of toothed whales have evolved since their movement from the terrestrial to marine environment. The synthesis and function of these endogenous lipids and affecting factors are still little understood. In this review, we focused on different omics approaches and techniques to investigate lipid metabolism and radiation impacts on lipids in toothed whales. The selected literature was screened, and capacities, possibilities, and future approaches for identifying unusual lipid synthesis pathways by omics were evaluated. Omics approaches were categorized into the four major disciplines: lipidomics, transcriptomics, genomics, and proteomics. Genomics and transcriptomics can together identify genes related to unique lipid synthesis. As lipids interact with proteins in the animal body, lipidomics, and proteomics can correlate by creating lipid-binding proteome maps to elucidate metabolism pathways. In lipidomics studies, recent mass spectroscopic methods can address lipid profiles; however, the determination of structures of lipids are challenging. As an environmental stress, the acoustic radiation has a significant effect on the alteration of lipid profiles. Radiation studies in different omics approaches revealed the necessity of multi-omics applications. This review concluded that a combination of many of the omics areas may elucidate the metabolism of lipids and possible hazards on lipids in toothed whales by radiation.
Collapse
Affiliation(s)
- Jayan D. M. Senevirathna
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Shuichi Asakawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| |
Collapse
|
8
|
Shukla SK, Sharma AK, Bajaj S, Yashavarddhan MH. Radiation proteome: a clue to protection, carcinogenesis, and drug development. Drug Discov Today 2020; 26:525-531. [PMID: 33137481 DOI: 10.1016/j.drudis.2020.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Sandeep Kumar Shukla
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India.
| | - Ajay Kumar Sharma
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India
| | - Sania Bajaj
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India
| | - M H Yashavarddhan
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India
| |
Collapse
|
9
|
Effects of Radiofrequency Radiation on Gene Expression: A Study of Gene Expressions of Human Keratinocytes From Different Origins. Bioelectromagnetics 2020; 41:552-557. [DOI: 10.1002/bem.22287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/23/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022]
|
10
|
Nishida T, Yamaguchi M, Tatara Y, Kashiwakura I. Proteomic changes by radio-mitigative thrombopoietin receptor agonist romiplostim in the blood of mice exposed to lethal total-body irradiation. Int J Radiat Biol 2020; 96:1125-1134. [PMID: 32602419 DOI: 10.1080/09553002.2020.1787546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE The thrombopoietin receptor agonist romiplostim (RP) is a therapeutic agent for immune thrombocytopenia that can achieve complete survival in mice exposed to a lethal dose of ionizing radiation. The estimated mechanism of the radio-protective/mitigative effects of RP has been proposed; however, the detailed mechanism of action remains unclear. This study aimed to elucidate the mechanism of the radio-protective/mitigative effects of RP, the fluctuation of protein in the blood was analyzed by proteomics. MATERIALS AND METHODS Eight-week-old female C57BL/6J mice were randomly divided into 5 groups; control at day 0, total-body irradiation (TBI) groups at day 10 and day 18, and TBI plus RP groups at day 10 and day18, consisting of 3 mice per group, and subjected to TBI with 7 Gy of 137Cs γ-rays at a dose rate of 0.74 Gy/min. RP was administered intraperitoneally to mice at a dose of 50 µg/kg once daily for 3 days starting 2 hours after TBI. On day 10 and day 18 after TBI, serum collected from each mouse was analyzed by liquid chromatography tandem mass spectrometry. RESULTS Nine proteins were identified by proteomics methods from 269 analyzed proteins detected in mice exposed to a lethal dose of TBI: keratin, type II cytoskeletal 1 (KRT1), fructose-1, 6-bisphosphatase (FBP1), cytosolic 10-formyltetrahydrofolate dehydrogenase (ALDH1L1), peptidyl-prolyl cis-trans isomerase A (PPIA), glycine N-methyltransferase (GNMT), glutathione S-transferase Mu 1 (GSTM1), regucalcin (RGN), fructose-bisphosphate aldolase B (ALDOB) and betain-homocysteine S-methyltransferase 1 (BHMT). On the 10th day after TBI, KRT1 was significantly increased (p < 0.05) by 4.26-fold compared to the control group in the TBI group and significantly inhibited in the TBI plus RP group (p < 0.05). Similarly, the expression levels of other 8 proteins detected at 18th day after TBI were significantly increased by 4.29 to 27.44-fold in the TBI group, but significantly decreased in the TBI plus RP group compared to the TBI group, respectively. CONCLUSION Nine proteins were identified by proteomics methods from 269 analyzed proteins detected in mice exposed to a lethal dose of TBI. These proteins are also expected to be indicators of the damage induced by high-dose radiation.
Collapse
Affiliation(s)
- Teruki Nishida
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Masaru Yamaguchi
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Yota Tatara
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ikuo Kashiwakura
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| |
Collapse
|
11
|
Liu K, Singer E, Cohn W, Micewicz ED, McBride WH, Whitelegge JP, Loo JA. Time-Dependent Measurement of Nrf2-Regulated Antioxidant Response to Ionizing Radiation Toward Identifying Potential Protein Biomarkers for Acute Radiation Injury. Proteomics Clin Appl 2019; 13:e1900035. [PMID: 31419066 PMCID: PMC7213060 DOI: 10.1002/prca.201900035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/16/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE Potential acute exposure to ionizing radiation in nuclear or radiological accidents presents complex mass casualty scenarios that demand prompt triage and treatment decisions. Due to delayed symptoms and varied response of radiation victims, there is an urgent need to develop robust biomarkers to assess the extent of injuries in individuals. EXPERIMENTAL DESIGN The transcription factor Nrf2 is the master of redox homeostasis and there is transcriptional evidence of Nrf2-dependent antioxidant response activation upon radiation. The biomarker potential of Nrf2-dependent downstream target enzymes is investigated by measuring their response in bone marrow extracted from C57Bl/6 and C3H mice of both genders for up to 4 days following 6 Gy total body irradiation using targeted MS. RESULTS Overall, C57Bl/6 mice have a stronger proteomic response than C3H mice. In both strains, male mice have more occurrences of upregulation in antioxidant enzymes than female mice. For C57Bl/6 male mice, three proteins show elevated abundances after radiation exposure: catalase, superoxide dismutase 1, and heme oxygenase 1. Across both strains and genders, glutathione S-transferase Mu 1 is consistently decreased. CONCLUSIONS AND CLINICAL RELEVANCE This study provides the basis for future development of organ-specific protein biomarkers used in diagnostic blood test for radiation injury.
Collapse
Affiliation(s)
- Kate Liu
- Department of Chemistry and Biochemistry, UCLA
| | - Elizabeth Singer
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA
| | - Ewa D. Micewicz
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA
| | | | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, UCLA
- Department of Biological Chemistry, David Geffen School of Medicine, Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, UCLA
| |
Collapse
|
12
|
Paunesku T, Haley B, Brooks A, Woloschak GE. Biological basis of radiation protection needs rejuvenation. Int J Radiat Biol 2017; 93:1056-1063. [PMID: 28287035 PMCID: PMC7340141 DOI: 10.1080/09553002.2017.1294773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/04/2017] [Accepted: 02/09/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE Human beings encounter radiation in many different situations - from proximity to radioactive waste sites to participation in medical procedures using X-rays etc. Limits for radiation exposures are legally regulated; however, current radiation protection policy does not explicitly acknowledge that biological, cellular and molecular effects of low doses and low dose rates of radiation differ from effects induced by medium and high dose radiation exposures. Recent technical developments in biology and medicine, from single cell techniques to big data computational research, have enabled new approaches for study of biology of low doses of radiation. Results of the work done so far support the idea that low doses of radiation have effects that differ from those associated with high dose exposures; this work, however, is far from sufficient for the development of a new theoretical framework needed for the understanding of low dose radiation exposures. CONCLUSIONS Mechanistic understanding of radiation effects at low doses is necessary in order to develop better radiation protection policy.
Collapse
Affiliation(s)
- Tatjana Paunesku
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| | - Benjamin Haley
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| | - Antone Brooks
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| | - Gayle E Woloschak
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| |
Collapse
|
13
|
Nakajima T, Wang B, Ono T, Uehara Y, Nakamura S, Ichinohe K, Braga-Tanaka I, Tanaka S, Tanaka K, Nenoi M. Differences in sustained alterations in protein expression between livers of mice exposed to high-dose-rate and low-dose-rate radiation. JOURNAL OF RADIATION RESEARCH 2017; 58:421-429. [PMID: 28201773 PMCID: PMC5570048 DOI: 10.1093/jrr/rrw133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 05/13/2023]
Abstract
Molecular mechanisms of radiation dose-rate effects are not well understood. Among many possibilities, long-lasting sustained alterations in protein levels would provide critical information. To evaluate sustained effects after acute and chronic radiation exposure, we analyzed alterations in protein expression in the livers of mice. Acute exposure consisted of a lethal dose of 8 Gy and a sublethal dose of 4 Gy, with analysis conducted 6 days and 3 months after irradiation, respectively. Chronic irradiation consisted of a total dose of 8 Gy delivered over 400 days (20 mGy/day). Analyses following chronic irradiation were done immediately and at 3 months after the end of the exposure. Based on antibody arrays of protein expression following both acute lethal and sublethal dose exposures, common alterations in the expression of two proteins were detected. In the sublethal dose exposure, the expression of additional proteins was altered 3 months after irradiation. Immunohistochemical analysis showed that the increase in one of the two commonly altered proteins, MyD88, was observed around blood vessels in the liver. The alterations in protein expression after chronic radiation exposure were different from those caused by acute radiation exposures. Alterations in the expression of proteins related to inflammation and apoptosis, such as caspase 12, were observed even at 3 months after the end of the chronic radiation exposure. The alterations in protein expression depended on the dose, the dose rate, and the passage of time after irradiation. These changes could be involved in long-term effects of radiation in the liver.
Collapse
Affiliation(s)
- Tetsuo Nakajima
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, 9-1, Anagawa-4-chome, Inage-ku, Chiba-shi 263-8555, Japan
- Corresponding author. National Institute of Radiological Sciences, National Institutes of Quantum and Radiolgical Science and Technology, 9-1, Anagawa-4-chome, Inage-ku, Chiba-shi 263-8555, Japan. Tel: +81-43-206-3086; Fax: +81-43-255-6497;
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, 9-1, Anagawa-4-chome, Inage-ku, Chiba-shi 263-8555, Japan
| | - Tetsuya Ono
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Yoshihiko Uehara
- Department of Cell Biology, Tohoku University School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Shingo Nakamura
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Kazuaki Ichinohe
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Ignacia Braga-Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Kimio Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Mitsuru Nenoi
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, 9-1, Anagawa-4-chome, Inage-ku, Chiba-shi 263-8555, Japan
| |
Collapse
|
14
|
Kuzniar A, Laffeber C, Eppink B, Bezstarosti K, Dekkers D, Woelders H, Zwamborn APM, Demmers J, Lebbink JHG, Kanaar R. Semi-quantitative proteomics of mammalian cells upon short-term exposure to non-ionizing electromagnetic fields. PLoS One 2017; 12:e0170762. [PMID: 28234898 PMCID: PMC5325209 DOI: 10.1371/journal.pone.0170762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/10/2017] [Indexed: 01/26/2023] Open
Abstract
The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required. We present the first proteome-wide semi-quantitative mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled mammalian cells followed by reliable statistical analyses of differential protein- and pathway-level regulations using an array of established bioinformatics methods. Our results indicate that less than 1% of the quantitated human or mouse proteome responds to the EMFs by small changes in protein abundance. Further network-based analysis of the differentially regulated proteins did not detect significantly perturbed cellular processes or pathways in human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not support the notion that the short-time exposures to non-ionizing EMFs have a consistent biologically significant bearing on mammalian cells in culture.
Collapse
Affiliation(s)
- Arnold Kuzniar
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
- Netherlands eScience Center, Amsterdam, The Netherlands
- * E-mail: (RK); (AK)
| | - Charlie Laffeber
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Berina Eppink
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Henri Woelders
- Wageningen Livestock Research, Wageningen, The Netherlands
| | | | - Jeroen Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
- Netherlands Proteomics Center, Rotterdam, The Netherlands
| | - Joyce H. G. Lebbink
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail: (RK); (AK)
| |
Collapse
|
15
|
Megger DA, Rosowski K, Radunsky C, Kösters J, Sitek B, Müller J. Structurally related hydrazone-based metal complexes with different antitumor activities variably induce apoptotic cell death. Dalton Trans 2017; 46:4759-4767. [DOI: 10.1039/c6dt04613d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three new metal complexes bearing a tridentate hydrazone-based ligand were synthesized and structurally characterized. Depending on the metal ion, the complexes show remarkably different antitumor activities.
Collapse
Affiliation(s)
- Dominik A. Megger
- Medizinisches Proteom-Center
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - Kristin Rosowski
- Medizinisches Proteom-Center
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - Christian Radunsky
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|
16
|
Hussain S, Dutta A, Sarkar A, Singh A, Gupta ML, Biswas S. Proteomic analysis of irradiated lung tissue of mice using gel-based proteomic approach. Int J Radiat Biol 2016; 93:373-380. [PMID: 28000521 DOI: 10.1080/09553002.2016.1266058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Exposure to radiation causes severe alterations of protein expression level inside the cell, thus it may influence the biological events and stress response. In the present investigation, we have demonstrated the effect of radiation on mice lung tissues. MATERIALS AND METHODS Two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF was used to check the expression changes in lung proteome profile of strain 'A' female mice after exposure to lethal doses of gamma irradiation at different time periods (24 and 48 h). Identified proteins were analysed for their altered expression and were further validated by Western blotting and enzyme-linked immunosorbent assay (ELISA). RESULTS Nine significant differentially expressed proteins were identified from irradiated lungs tissues. The expression level of zinc finger protein was found to be up regulated at 24 h irradiation in comparison to 48 h irradiation. CONCLUSIONS Zinc finger protein may be considered as a radiation responsive protein. Alteration in its expression pattern may primarily affect binding specificity of the protein that can further result in the interference in transcriptional control of multiple stress responsive genes.
Collapse
Affiliation(s)
- Shabir Hussain
- a Department of Genomics & Molecular Medicine , CSIR - Institute of Genomics & Integrative Biology (IGIB), Delhi University Campus , Delhi , India
| | - Ajaswrata Dutta
- b Division of Radioprotective Drug Development Research , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - Ashish Sarkar
- a Department of Genomics & Molecular Medicine , CSIR - Institute of Genomics & Integrative Biology (IGIB), Delhi University Campus , Delhi , India
| | - Abhinav Singh
- b Division of Radioprotective Drug Development Research , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - Manju Lata Gupta
- b Division of Radioprotective Drug Development Research , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - Sagarika Biswas
- a Department of Genomics & Molecular Medicine , CSIR - Institute of Genomics & Integrative Biology (IGIB), Delhi University Campus , Delhi , India
| |
Collapse
|
17
|
Wang Y, Guan H, Xie DF, Xie Y, Liu XD, Wang Q, Sui L, Song M, Zhang H, Zhou J, Zhou PK. Proteomic Analysis Implicates Dominant Alterations of RNA Metabolism and the Proteasome Pathway in the Cellular Response to Carbon-Ion Irradiation. PLoS One 2016; 11:e0163896. [PMID: 27711237 PMCID: PMC5053480 DOI: 10.1371/journal.pone.0163896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 09/18/2016] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy with heavy ions is considered advantageous compared to irradiation with photons due to the characteristics of the Braggs peak and the high linear energy transfer (LET) value. To understand the mechanisms of cellular responses to different LET values and dosages of heavy ion radiation, we analyzed the proteomic profiles of mouse embryo fibroblast MEF cells exposed to two doses from different LET values of heavy ion 12C. Total proteins were extracted from these cells and examined by Q Exactive with Liquid Chromatography (LC)—Electrospray Ionization (ESI) Tandem MS (MS/MS). Using bioinformatics approaches, differentially expressed proteins with 1.5 or 2.0-fold changes between different dosages of exposure were compared. With the higher the dosage and/or LET of ion irradiation, the worse response the cells were in terms of protein expression. For instance, compared to the control (0 Gy), 771 (20.2%) proteins in cells irradiated at 0.2 Gy of carbon-ion radiation with 12.6 keV/μm, 313 proteins (8.2%) in cells irradiated at 2 Gy of carbon-ion radiation with 12.6 keV/μm, and 243 proteins (6.4%) in cells irradiated at 2 Gy of carbon-ion radiation with 31.5 keV/μm exhibited changes of 1.5-fold or greater. Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Munich Information Center for Protein Sequences (MIPS) analysis, and BioCarta analysis all indicated that RNA metabolic processes (RNA splicing, destabilization and deadenylation) and proteasome pathways may play key roles in the cellular response to heavy-ion irradiation. Proteasome pathways ranked highest among all biological processes associated with heavy carbon-ion irradiation. In addition, network analysis revealed that cellular pathways involving proteins such as Col1a1 and Fn1 continued to respond to high dosages of heavy-ion irradiation, suggesting that these pathways still protect cells against damage. However, pathways such as those involving Ikbkg1 responded better at lower dosages than at higher dosages, implying that cell damage would occur when the networks involving these proteins stop responding. Our investigation provides valuable proteomic information for elucidating the mechanism of biological effects induced by carbon ions in general.
Collapse
Affiliation(s)
- Yu Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Da-Fei Xie
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yi Xie
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiao-Dan Liu
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qi Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Li Sui
- China Institute of Atomic Energy, Beijing 102413, China
| | - Man Song
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jianhua Zhou
- iBioinfo Groups, Lexington, Massachusetts 02421, United States of America
- Department of Neuroregeneration, Nantong University, Nantong, China
- * E-mail: (PKZ); (JZ)
| | - Ping-Kun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- * E-mail: (PKZ); (JZ)
| |
Collapse
|
18
|
Effects of ionizing radiation on the mammalian brain. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:219-230. [DOI: 10.1016/j.mrrev.2016.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 11/21/2022]
|
19
|
Huang L, Wickramasekara SI, Akinyeke T, Stewart BS, Jiang Y, Raber J, Maier CS. Ion mobility-enhanced MS(E)-based label-free analysis reveals effects of low-dose radiation post contextual fear conditioning training on the mouse hippocampal proteome. J Proteomics 2016; 140:24-36. [PMID: 27020882 PMCID: PMC5029422 DOI: 10.1016/j.jprot.2016.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/15/2022]
Abstract
UNLABELLED Recent advances in the field of biodosimetry have shown that the response of biological systems to ionizing radiation is complex and depends on the type and dose of radiation, the tissue(s) exposed, and the time lapsed after exposure. The biological effects of low dose radiation on learning and memory are not well understood. An ion mobility-enhanced data-independent acquisition (MS(E)) approach in conjunction with the ISOQuant software tool was utilized for label-free quantification of hippocampal proteins with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-rays, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. Global proteome analysis revealed deregulation of 73 proteins (out of 399 proteins). Deregulated proteins indicated adverse effects of irradiation on myelination and perturbation of energy metabolism pathways involving a shift from the TCA cycle to glutamate oxidation. Our findings also indicate that proteins associated with synaptic activity, including vesicle recycling and neurotransmission, were altered in the irradiated mice. The elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which would be consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. SIGNIFICANCE This study is significant because the biological consequences of low dose radiation on learning and memory are complex and not yet well understood. We conducted a IMS-enhanced MS(E)-based label-free quantitative proteomic analysis of hippocampal tissue with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-ray, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. The IMS-enhanced MS(E) approach in conjunction with ISOQuant software was robust and accurate with low median CV values of 0.99% for the technical replicates of samples from both the sham and irradiated group. The biological variance was as low as 1.61% for the sham group and 1.31% for the irradiated group. The applied data generation and processing workflow allowed the quantitative evaluation of 399 proteins. The current proteomic analysis indicates that myelination is sensitive to low dose radiation. The observed protein level changes imply modulation of energy metabolism pathways in the radiation exposed group, specifically changes in protein abundance levels suggest a shift from TCA cycle to glutamate oxidation to satisfy energy demands. Most significantly, our study reveals deregulation of proteins involved in processes that govern synaptic activity including enhanced synaptic vesicle cycling, and altered long-term potentiation (LTP) and depression (LTD). An elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which is consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. Overall, our results underscore the importance of low dose radiation experiments for illuminating the sensitivity of biochemical pathways to radiation, and the modulation of potential repair and compensatory response mechanisms. This kind of studies and associated findings may ultimately lead to the design of strategies for ameliorating hippocampal and CNS injury following radiation exposure as part of medical therapies or as a consequence of occupational hazards.
Collapse
Affiliation(s)
- Lin Huang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | | | - Tunde Akinyeke
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Blair S Stewart
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
| |
Collapse
|
20
|
Menon SS, Uppal M, Randhawa S, Cheema MS, Aghdam N, Usala RL, Ghosh SP, Cheema AK, Dritschilo A. Radiation Metabolomics: Current Status and Future Directions. Front Oncol 2016; 6:20. [PMID: 26870697 PMCID: PMC4736121 DOI: 10.3389/fonc.2016.00020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/18/2016] [Indexed: 12/25/2022] Open
Abstract
Human exposure to ionizing radiation (IR) disrupts normal metabolic processes in cells and organs by inducing complex biological responses that interfere with gene and protein expression. Conventional dosimetry, monitoring of prodromal symptoms, and peripheral lymphocyte counts are of limited value as organ- and tissue-specific biomarkers for personnel exposed to radiation, particularly, weeks or months after exposure. Analysis of metabolites generated in known stress-responsive pathways by molecular profiling helps to predict the physiological status of an individual in response to environmental or genetic perturbations. Thus, a multi-metabolite profile obtained from a high-resolution mass spectrometry-based metabolomics platform offers potential for identification of robust biomarkers to predict radiation toxicity of organs and tissues resulting from exposures to therapeutic or non-therapeutic IR. Here, we review the status of radiation metabolomics and explore applications as a standalone technology, as well as its integration in systems biology, to facilitate a better understanding of the molecular basis of radiation response. Finally, we draw attention to the identification of specific pathways that can be targeted for the development of therapeutics to alleviate or mitigate harmful effects of radiation exposure.
Collapse
Affiliation(s)
- Smrithi S Menon
- Department of Oncology, Georgetown University Medical Center , Washington, DC , USA
| | - Medha Uppal
- Department of Oncology, Georgetown University Medical Center , Washington, DC , USA
| | - Subeena Randhawa
- Department of Oncology, Georgetown University Medical Center , Washington, DC , USA
| | - Mehar S Cheema
- Department of Radiation Medicine, Georgetown University Medical Center , Washington, DC , USA
| | - Nima Aghdam
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center , Washington, DC , USA
| | - Rachel L Usala
- School of Medicine, Georgetown University Medical Center , Washington, DC , USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute , Bethesda, MD , USA
| | - Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center , Washington, DC , USA
| | - Anatoly Dritschilo
- Department of Radiation Medicine, Georgetown University Medical Center , Washington, DC , USA
| |
Collapse
|
21
|
Dynamic changes in the proteome of human peripheral blood mononuclear cells with low dose ionizing radiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 797:9-20. [DOI: 10.1016/j.mrgentox.2016.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023]
|
22
|
Tóth E, Vékey K, Ozohanics O, Jekő A, Dominczyk I, Widlak P, Drahos L. Changes of protein glycosylation in the course of radiotherapy. J Pharm Biomed Anal 2015; 118:380-386. [PMID: 26609677 DOI: 10.1016/j.jpba.2015.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 01/11/2023]
Abstract
This is the first study of changes in protein glycosylation due to exposure of human subjects to ionizing radiation. Site specific glycosylation patterns of 7 major plasma proteins were analyzed; 171 glycoforms were identified; and the abundance of 99 of these was followed in the course of cancer radiotherapy in 10 individual patients. It was found that glycosylation of plasma proteins does change in response to partial body irradiation (∼ 60 Gy), and the effects last during follow-up; the abundance of some glycoforms changed more than twofold. Both the degree of changes and their time-evolution showed large inter-individual variability.
Collapse
Affiliation(s)
- Eszter Tóth
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Semmelweis University, School of Ph.D. Studies, Budapest, Hungary
| | - Károly Vékey
- Core Technologies Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Olivér Ozohanics
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anita Jekő
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Iwona Dominczyk
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Piotr Widlak
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - László Drahos
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
23
|
Brzóska K, Kruszewski M. Toward the development of transcriptional biodosimetry for the identification of irradiated individuals and assessment of absorbed radiation dose. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:353-63. [PMID: 25972268 PMCID: PMC4510913 DOI: 10.1007/s00411-015-0603-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/30/2015] [Indexed: 05/03/2023]
Abstract
The most frequently used and the best established method of biological dosimetry at present is the dicentric chromosome assay, which is poorly suitable for a mass casualties scenario. This gives rise to the need for the development of new, high-throughput assays for rapid identification of the subjects exposed to ionizing radiation. In the present study, we tested the usefulness of gene expression analysis in blood cells for biological dosimetry. Human peripheral blood from three healthy donors was X-irradiated with doses of 0 (control), 0.6, and 2 Gy. The mRNA level of 16 genes (ATF3, BAX, BBC3, BCL2, CDKN1A, DDB2, FDXR, GADD45A, GDF15, MDM2, PLK3, SERPINE1, SESN2, TNFRSF10B, TNFSF4, and VWCE) was assessed by reverse transcription quantitative PCR 6, 12, 24, and 48 h after exposure with ITFG1 and DPM1 used as a reference genes. The panel of radiation-responsive genes was selected comprising GADD45A, CDKN1A, BAX, BBC3, DDB2, TNFSF4, GDF15, and FDXR. Cluster analysis showed that ΔC t values of the selected genes contained sufficient information to allow discrimination between irradiated and non-irradiated blood samples. The samples were clearly grouped according to the absorbed doses of radiation and not to the time interval after irradiation or to the blood donor.
Collapse
Affiliation(s)
- Kamil Brzóska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland,
| | | |
Collapse
|
24
|
Rashydov NM, Hajduch M. Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 26217350 PMCID: PMC4492160 DOI: 10.3389/fpls.2015.00493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk.
Collapse
Affiliation(s)
- Namik M. Rashydov
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, KievUkraine
| | - Martin Hajduch
- Department of Developmental and Reproduction Biology, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, NitraSlovakia
- *Correspondence: Martin Hajduch, Department of Developmental and Reproduction Biology, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademicka 2, P.O. Box 39A, Nitra, Slovakia,
| |
Collapse
|
25
|
Barshishat-Kupper M, Tipton AJ, McCart EA, McCue J, Mueller GP, Day RM. Effect of ionizing radiation on liver protein oxidation and metabolic function in C57BL/6J mice. Int J Radiat Biol 2014; 90:1169-78. [PMID: 24899392 DOI: 10.3109/09553002.2014.930536] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Protein oxidation in response to radiation results in DNA damage, endoplasmic reticulum stress/unfolded protein response, cell cycle arrest, cell death and senescence. The liver, a relatively radiosensitive organ, undergoes measurable alterations in metabolic functions following irradiation. Accordingly, we investigated radiation-induced changes in liver metabolism and alterations in protein oxidation. MATERIALS AND METHODS C57BL/6 mice were sham irradiated or exposed to 8.5 Gy (60)Co (0.6 Gy/min) total body irradiation. Metabolites and metabolic enzymes in the blood and liver tissue were analyzed. Two-dimensional gel electrophoresis and OxyBlot™ were used to detect carbonylated proteins that were then identified by peptide mass fingerprinting. RESULTS Analysis of serum metabolites revealed elevated glucose, bilirubin, lactate dehydrogenase (LDH), high-density lipoprotein, and aspartate aminotransferase within 24-72 h post irradiation. Liver tissue LDH and alkaline phosphatase activities were elevated 24-72 h post irradiation. OxyBlotting revealed that the hepatic proteome contains baseline protein carbonylation. Radiation exposure increased carbonylation of specific liver proteins including carbonic anhydrase 1, α-enolase, and regucalcin. CONCLUSIONS 8.5 Gy irradiation resulted in distinct metabolic alterations in hepatic functions. Coincident with these changes, radiation induced the carbonylation of specific liver enzymes. The oxidation of liver enzymes may underlie some radiation-induced alterations in hepatic function.
Collapse
Affiliation(s)
- Michal Barshishat-Kupper
- Department of Pharmacology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | | | | | | | | | | |
Collapse
|
26
|
Quantitative Proteomic Profiling of Low-Dose Ionizing Radiation Effects in a Human Skin Model. Proteomes 2014; 2:382-398. [PMID: 28250387 PMCID: PMC5302749 DOI: 10.3390/proteomes2030382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/08/2014] [Accepted: 07/18/2014] [Indexed: 01/14/2023] Open
Abstract
To assess responses to low-dose ionizing radiation (LD-IR) exposures potentially encountered during medical diagnostic procedures, nuclear accidents or terrorist acts, a quantitative proteomic approach was used to identify changes in protein abundance in a reconstituted human skin tissue model treated with 0.1 Gy of ionizing radiation. To improve the dynamic range of the assay, subcellular fractionation was employed to remove highly abundant structural proteins and to provide insight into radiation-induced alterations in protein localization. Relative peptide quantification across cellular fractions, control and irradiated samples was performing using 8-plex iTRAQ labeling followed by online two-dimensional nano-scale liquid chromatography and high resolution MS/MS analysis. A total of 107 proteins were detected with statistically significant radiation-induced change in abundance (>1.5 fold) and/or subcellular localization compared to controls. The top biological pathways identified using bioinformatics include organ development, anatomical structure formation and the regulation of actin cytoskeleton. From the proteomic data, a change in proteolytic processing and subcellular localization of the skin barrier protein, filaggrin, was identified, and the results were confirmed by western blotting. This data indicate post-transcriptional regulation of protein abundance, localization and proteolytic processing playing an important role in regulating radiation response in human tissues.
Collapse
|
27
|
Stickel S, Gomes N, Su TT. The Role of Translational Regulation in Survival after Radiation Damage; an Opportunity for Proteomics Analysis. Proteomes 2014; 2:272-290. [PMID: 26269784 PMCID: PMC4530795 DOI: 10.3390/proteomes2020272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/31/2014] [Accepted: 06/04/2014] [Indexed: 12/20/2022] Open
Abstract
In this review, we will summarize the data from different model systems that illustrate the need for proteome-wide analyses of the biological consequences of ionizing radiation (IR). IR remains one of three main therapy choices for oncology, the others being surgery and chemotherapy. Understanding how cells and tissues respond to IR is essential for improving therapeutic regimes against cancer. Numerous studies demonstrating the changes in the transcriptome following exposure to IR, in diverse systems, can be found in the scientific literature. However, the limitation of our knowledge is illustrated by the fact that the number of transcripts that change after IR exposure is approximately an order of magnitude lower than the number of transcripts that re-localize to or from ribosomes under similar conditions. Furthermore, changes in the post-translational modifications of proteins (phosphorylation, acetylation as well as degradation) are profoundly important for the cellular response to IR. These considerations make proteomics a highly suitable tool for mechanistic studies of the effect of IR. Strikingly such studies remain outnumbered by those utilizing proteomics for diagnostic purposes such as the identification of biomarkers for the outcome of radiation therapy. Here we will discuss the role of the ribosome and translational regulation in the survival and preservation of cells and tissues after exposure to ionizing radiation. In doing so we hope to provide a strong incentive for the study of proteome-wide changes following IR exposure.
Collapse
Affiliation(s)
- Stefanie Stickel
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; E-Mails: (S.S.); (N.G.)
| | - Nathan Gomes
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; E-Mails: (S.S.); (N.G.)
- SuviCa, Inc. P O Box 3131, Boulder, CO 80301, USA
| | - Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; E-Mails: (S.S.); (N.G.)
| |
Collapse
|