1
|
Sukkasam N, Kaewbai-Ngam J, Leksingto J, In-Na P, Nootong K, Incharoensakdi A, Hallam SJ, Monshupanee T. Disrupted H 2 synthesis combined with methyl viologen treatment inhibits photosynthetic electron flow to synergistically enhance glycogen accumulation in the cyanobacterium Synechocystis sp. PCC 6803. PLANT MOLECULAR BIOLOGY 2024; 114:87. [PMID: 39023834 DOI: 10.1007/s11103-024-01484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Under nitrogen deprivation (-N), cyanobacterium Synechocystis sp. PCC 6803 exhibits growth arrest, reduced protein content, and remarkably increased glycogen accumulation. However, producing glycogen under this condition requires a two-step process with cell transfer from normal to -N medium. Metabolic engineering and chemical treatment for rapid glycogen accumulation can bypass the need for two-step cultivation. For example, recent studies indicate that individually disrupting hydrogen (H2) or poly(3-hydroxybutyrate) (PHB) synthesis, or treatment with methyl viologen (MV), effectively increases glycogen accumulation in Synechocystis. Here we explore the effects of disrupted H2 or poly(3-hydroxybutyrate) synthesis, together with MV treatment to on enhanced glycogen accumulation in Synechocystis grown in normal medium. Wild-type cells without MV treatment exhibited low glycogen content of less than 6% w/w dry weight (DW). Compared with wild type, disrupting PHB synthesis combined with MV treatment did not increase glycogen content. Disrupted H₂ production without MV treatment yielded up to 11% w/w DW glycogen content. Interestingly, when combined, disrupted H2 production with MV treatment synergistically enhanced glycogen accumulation to 51% and 59% w/w DW within 3 and 7 days, respectively. Metabolomic analysis suggests that MV treatment mediated the conversion of proteins into glycogen. Metabolomic and transcriptional-expression analysis suggests that disrupted H2 synthesis under MV treatment positively influenced glycogen synthesis. Disrupted H₂ synthesis under MV treatment significantly increased NADPH levels. This increased NADPH content potentially contributed to the observed enhancements in antioxidant activity against MV-induced oxidants, O2 evolution, and metabolite substrates levels for glycogen synthesis in normal medium, ultimately leading to enhanced glycogen accumulation in Synechocystis. KEY MESSAGE: Combining disrupted hydrogen-gas synthesis and the treatment by photosynthesis electron-transport inhibitor significantly enhance glycogen production in cyanobacteria.
Collapse
Affiliation(s)
- Nannaphat Sukkasam
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Janine Kaewbai-Ngam
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jidapa Leksingto
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pichaya In-Na
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kasidit Nootong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Srivastava R, Kanda T, Yadav S, Singh N, Yadav S, Prajapati R, Kesari V, Atri N. Salinity pretreatment synergies heat shock toxicity in cyanobacterium Anabaena PCC7120. Front Microbiol 2023; 14:1061927. [PMID: 36876104 PMCID: PMC9983364 DOI: 10.3389/fmicb.2023.1061927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
This study was undertaken to bridge the knowledge gap pertaining to cyanobacteria's response to pretreatment. The result elucidates the synergistic effect of pretreatment toxicity in cyanobacterium Anabaena PCC7120 on morphological and biochemical attributes. Chemical (salt) and physical (heat) stress-pretreated cells exhibited significant and reproducible changes in terms of growth pattern, morphology, pigments, lipid peroxidation, and antioxidant activity. Salinity pretreatment showed more than a five-fold decrease in the phycocyanin content but a six-fold and five-fold increase in carotenoid, lipid peroxidation (MDA content), and antioxidant activity (SOD and CAT) at 1 h and on 3rd day of treatment, respectively, giving the impression of stress-induced free radicals that are scavenged by antioxidants when compared to heat shock pretreatment. Furthermore, quantitative analysis of transcript (qRT-PCR) for FeSOD and MnSOD displayed a 3.6- and 1.8-fold increase in salt-pretreated (S-H) samples. The upregulation of transcript corresponding to salt pretreatment suggests a toxic role of salinity in synergizing heat shock. However, heat pretreatment suggests a protective role in mitigating salt toxicity. It could be inferred that pretreatment enhances the deleterious effect. However, it further showed that salinity (chemical stress) augments the damaging effect of heat shock (physical stress) more profoundly than physical stress on chemical stress possibly by modulating redox balance via activation of antioxidant responses. Our study reveals that upon pretreatment of heat, the negative effect of salt can be mitigated in filamentous cyanobacteria, thus providing a foundation for improved cyanobacterial tolerance to salt stress.
Collapse
Affiliation(s)
- Rupanshee Srivastava
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Tripti Kanda
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Sadhana Yadav
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Nidhi Singh
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Shivam Yadav
- Department of Botany, Thakur Prasad Singh (T.P.S.) College, Patna, Bihar, India
| | - Rajesh Prajapati
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Vigya Kesari
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Neelam Atri
- Department of Botany, Mahila Mahavidyalaya (M.M.V.), Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Mechanisms of Stress Tolerance in Cyanobacteria under Extreme Conditions. STRESSES 2022. [DOI: 10.3390/stresses2040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyanobacteria are oxygen-evolving photoautotrophs with worldwide distribution in every possible habitat, and they account for half of the global primary productivity. Because of their ability to thrive in a hostile environment, cyanobacteria are categorized as “extremophiles”. They have evolved a fascinating repository of distinct secondary metabolites and biomolecules to promote their development and survival in various habitats, including severe conditions. However, developing new proteins/enzymes and metabolites is mostly directed by an appropriate gene regulation system that results in stress adaptations. However, only few proteins have been characterized to date that have the potential to improve resistance against abiotic stresses. As a result, studying environmental stress responses to post-genomic analysis, such as proteome changes using latest structural proteomics and synthetic biology techniques, is critical. In this regard, scientists working on these topics will benefit greatly from the stress of proteomics research. Progress in these disciplines will aid in understanding cyanobacteria’s physiology, biochemical, and metabolic systems. This review summarizes the most recent key findings of cyanobacterial proteome study under various abiotic stresses and the application of secondary metabolites formed during different abiotic conditions.
Collapse
|
4
|
Rai R, Singh S, Rai KK, Raj A, Sriwastaw S, Rai LC. Regulation of antioxidant defense and glyoxalase systems in cyanobacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:353-372. [PMID: 34700048 DOI: 10.1016/j.plaphy.2021.09.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 05/19/2023]
Abstract
Oxidative stress is common consequence of abiotic stress in plants as well as cyanobacteria caused by generation of reactive oxygen species (ROS), an inevitable product of respiration and photosynthetic electron transport. ROS act as signalling molecule at low concentration however, when its production exceeds the endurance capacity of antioxidative defence system, the organisms suffer oxidative stress. A highly toxic metabolite, methylglyoxal (MG) is also produced in cyanobacteria in response to various abiotic stresses which consequently augment the ensuing oxidative damage. Taking recourse to the common lineage of eukaryotic plants and cyanobacteria, it would be worthwhile to explore the regulatory role of glyoxalase system and antioxidative defense mechanism in combating abiotic stress in cyanobacteria. This review provides comprehensive information on the complete glyoxalase system (GlyI, GlyII and GlyIII) in cyanobacteria. Furthermore, it elucidates the recent understanding regarding the production of ROS and MG, noteworthy link between intracellular MG and ROS and its detoxification via synchronization of antioxidants (enzymatic and non-enzymatic) and glyoxalase systems using glutathione (GSH) as common co-factor.
Collapse
Affiliation(s)
- Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Krishna Kumar Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alka Raj
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sonam Sriwastaw
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - L C Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Hu X, Zhang T, Ji K, Luo K, Wang L, Chen W. Transcriptome and metabolome analyses of response of Synechocystis sp. PCC 6803 to methyl viologen. Appl Microbiol Biotechnol 2021; 105:8377-8392. [PMID: 34668984 DOI: 10.1007/s00253-021-11628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
The toxicity of methyl viologen (MV) to organisms is mainly due to the oxidative stress caused by reactive oxygen species produced from cell response. This study mainly investigated the response of Synechocystis sp. PCC 6803 to MV by combining transcriptomic and metabolomic analyses. Through transcriptome sequencing, we found many genes responding to MV stress, and analyzed them by weighted gene co-expression network analysis (WGCNA). Meanwhile, many metabolites were also found by metabolomic analysis to be regulated post MV treatment. Based on the analysis results of Kyoto encyclopedia of genes and genomes (KEGG) of the differentially expressed genes (DEGs) in the transcriptome and the differential metabolites in the metabolome, the dynamic changes of genes and metabolites involved in ten metabolic pathways in response to MV were analyzed. The results indicated that although the oxidative stress caused by MV was the strongest at 6 h, the proportion of the upregulated genes and metabolites involved in these ten metabolic pathways was the highest. Photosynthesis positively regulated the response to MV-induced oxidative stress, and the regulation of environmental information processing was inhibited by MV. Other metabolic pathways played different roles at different times and interacted with each other to respond to MV. This study comprehensively analyzed the response of Synechocystis sp. PCC 6803 to oxidative stress caused by MV from a multi-omics perspective, with providing key data and important information for in-depth analysis of the response of organisms to MV, especially photosynthetic organisms. KEY POINTS: • Methyl viologen (MV) treatment caused regulatory changes in genes and metabolites. • Proportion of upregulated genes and metabolites was the highest at 6-h MV treatment. • Photosynthesis and environmental information processing involved in MV response.
Collapse
Affiliation(s)
- Xinyu Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Tianyuan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kai Ji
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ke Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
6
|
Transcriptome Analysis Reveals IsiA-Regulatory Mechanisms Underlying Iron Depletion and Oxidative-Stress Acclimation in Synechocystis sp. Strain PCC 6803. Appl Environ Microbiol 2020; 86:AEM.00517-20. [PMID: 32332138 DOI: 10.1128/aem.00517-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
Microorganisms in nature are commonly exposed to various stresses in parallel. The isiA gene encodes an iron stress-induced chlorophyll-binding protein which is significantly induced under iron starvation and oxidative stress. Acclimation of oxidative stress and iron deficiency was investigated using a regulatory mutant of the Synechocystis sp. strain PCC 6803. In this study, the ΔisiA mutant grew more slowly in oxidative-stress and iron depletion conditions compared to the wild-type (WT) counterpart under the same conditions. Thus, we performed transcriptome sequencing (RNA-seq) analysis of the WT strain and the ΔisiA mutant under double-stress conditions to obtain a comprehensive view of isiA-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed significant differences between the WT strain and ΔisiA mutant, mainly related to photosynthesis and the iron-sulfur cluster. The deletion of isiA affects the expression of various genes that are involved in cellular processes and structures, such as photosynthesis, phycobilisome, and the proton-transporting ATPase complex. Weighted gene coexpression network analysis (WGCNA) demonstrated three functional modules in which the turquoise module was negatively correlated with superoxide dismutase (SOD) activity. Coexpression network analysis identified several hub genes of each module. Cotranscriptional PCR and reads coverage using the Integrative Genomics Viewer demonstrated that isiA, isiB, isiC, ssl0461, and dfp belonged to the isi operon. Three sRNAs related to oxidative stress were identified. This study enriches our knowledge of IsiA-regulatory mechanisms under iron deficiency and oxidative stress.IMPORTANCE This study analyzed the impact of isiA deletion on the transcriptomic profile of Synechocystis The isiA gene encodes an iron stress-induced chlorophyll-binding protein, which is significantly induced under iron starvation. The deletion of isiA affects the expression of various genes that are involved in photosynthesis and ABC transporters. WGCNA revealed three functional modules in which the blue module was correlated with oxidative stress. We further demonstrated that the isi operon contained the following five genes: isiA, isiB, isiC, ssl0461, and dfp by cotranscriptional PCR. Three sRNAs were identified that were related to oxidative stress. This study enhances our knowledge of IsiA-regulatory mechanisms under iron deficiency and oxidative stress.
Collapse
|
7
|
Babele PK, Kumar J, Chaturvedi V. Proteomic De-Regulation in Cyanobacteria in Response to Abiotic Stresses. Front Microbiol 2019; 10:1315. [PMID: 31263458 PMCID: PMC6584798 DOI: 10.3389/fmicb.2019.01315] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/27/2019] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are oxygenic photoautotrophs, exhibiting a cosmopolitan distribution in almost all possible environments and are significantly responsible for half of the global net primary productivity. They are well adapted to the diverse environments including harsh conditions by evolving a range of fascinating repertoires of unique biomolecules and secondary metabolites to support their growth and survival. These phototrophs are proved as excellent models for unraveling the mysteries of basic biochemical and physiological processes taking place in higher plants. Several known species of cyanobacteria have tremendous biotechnological applications in diverse fields such as biofuels, biopolymers, secondary metabolites and much more. Due to their potential biotechnological and commercial applications in various fields, there is an imperative need to engineer robust cyanobacteria in such a way that they can tolerate and acclimatize to ever-changing environmental conditions. Adaptations to stress are mainly governed by a precise gene regulation pathways resulting in the expression of novel protein/enzymes and metabolites. Despite the demand, till date few proteins/enzymes have been identified which play a potential role in improving tolerance against abiotic stresses. Therefore, it is utmost important to study environmental stress responses related to post-genomic investigations, including proteomic changes employing advanced proteomics, synthetic and structural biology workflows. In this respect, the study of stress proteomics offers exclusive advantages to scientists working on these aspects. Advancements on these fields could be helpful in dissecting, characterization and manipulation of physiological and metabolic systems of cyanobacteria to understand the stress induced proteomic responses. Till date, it remains ambiguous how cyanobacteria perceive changes in the ambient environment that lead to the stress-induced proteins thus metabolic deregulation. This review briefly describes the current major findings in the fields of proteome research on the cyanobacteria under various abiotic stresses. These findings may improve and advance the information on the role of different class of proteins associated with the mechanism(s) of stress mitigation in cyanobacteria under harsh environmental conditions.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jay Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Venkatesh Chaturvedi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Oh S, Montgomery BL. Roles of CpcF and CpcG1 in Peroxiredoxin-Mediated Oxidative Stress Responses and Cellular Fitness in the Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2019; 10:1059. [PMID: 31143173 PMCID: PMC6521580 DOI: 10.3389/fmicb.2019.01059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
As a component of the photosynthetic apparatus in cyanobacteria, the phycobilisome (PBS) plays an important role in harvesting and transferring light energy to the core photosynthetic reaction centers. The size, composition (phycobiliprotein and chromophore), and assembly of PBSs can be dynamic to cope with tuning photosynthesis and associated cellular fitness in variable light environments. Here, we explore the role of PBS-related stress responses by analyzing deletion mutants of cpcF or cpcG1 genes in Synechocystis sp. PCC 6803. The cpcF gene encodes a lyase that links the phycocyanobilin (PCB) chromophore to the alpha subunit of phycocyanin (PC), a central phycobiliprotein (PBP) in PBSs. Deletion of cpcF (i.e., ΔcpcF strain) resulted in slow growth, reduced greening, elevated reactive oxygen species (ROS) levels, together with an elevated accumulation of a stress-related Peroxiredoxin protein (Sll1621). Additionally, ΔcpcF exhibited reduced sensitivity to a photosynthesis-related stress inducer, methyl viologen (MV), which disrupts electron transfer. The cpcG1 gene encodes a linker protein that serves to connect PC to the core PBP allophycocyanin. A deletion mutant of cpcG1 (i.e.,ΔcpcG1) exhibited delayed growth, a defect in pigmentation, reduced accumulation of ROS, and insensitivity to MV treatment. By comparison, ΔcpcF and ΔcpcG1 exhibited similarity in growth, pigmentation, and stress responses; yet, these strains showed distinct phenotypes for ROS accumulation, sensitivity to MV and Sll1621 accumulation. Our data emphasize an importance of the regulation of PBS structure in ROS-mediated stress responses that impact successful growth and development in cyanobacteria.
Collapse
Affiliation(s)
- Sookyung Oh
- MSU-DOE Plant Research Laboratory, College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Beronda L. Montgomery
- MSU-DOE Plant Research Laboratory, College of Natural Science, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
9
|
Bathke J, Konzer A, Remes B, McIntosh M, Klug G. Comparative analyses of the variation of the transcriptome and proteome of Rhodobacter sphaeroides throughout growth. BMC Genomics 2019; 20:358. [PMID: 31072330 PMCID: PMC6509803 DOI: 10.1186/s12864-019-5749-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023] Open
Abstract
Background In natural environments, bacteria must frequently cope with extremely scarce nutrients. Most studies focus on bacterial growth in nutrient replete conditions, while less is known about the stationary phase. Here, we are interested in global gene expression throughout all growth phases, including the adjustment to deep stationary phase. Results We monitored both the transcriptome and the proteome in cultures of the alphaproteobacterium Rhodobacter sphaeroides, beginning with the transition to stationary phase and at different points of the stationary phase and finally during exit from stationary phase (outgrowth) following dilution with fresh medium. Correlation between the transcriptomic and proteomic changes was very low throughout the growth phases. Surprisingly, even in deep stationary phase, the abundance of many proteins continued to adjust, while the transcriptome analysis revealed fewer adjustments. This pattern was reversed during the first 90 min of outgrowth, although this depended upon the duration of the stationary phase. We provide a detailed analysis of proteomic changes based on the clustering of orthologous groups (COGs), and compare these with the transcriptome. Conclusions The low correlation between transcriptome and proteome supports the view that post-transcriptional processes play a major role in the adaptation to growth conditions. Our data revealed that many proteins with functions in transcription, energy production and conversion and the metabolism and transport of amino acids, carbohydrates, lipids, and secondary metabolites continually increased in deep stationary phase. Based on these findings, we conclude that the bacterium responds to sudden changes in environmental conditions by a radical and rapid reprogramming of the transcriptome in the first 90 min, while the proteome changes were modest. In response to gradually deteriorating conditions, however, the transcriptome remains mostly at a steady state while the bacterium continues to adjust its proteome. Even long after the population has entered stationary phase, cells are still actively adjusting their proteomes. Electronic supplementary material The online version of this article (10.1186/s12864-019-5749-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jochen Bathke
- Institute of Bioinformatics, University of Giessen, Giessen, Germany
| | - Anne Konzer
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Bernhard Remes
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Matthew McIntosh
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany.
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| |
Collapse
|
10
|
Molecular and biochemical characterization of All0580 as a methylglyoxal detoxifying glyoxalase II of Anabaena sp. PCC7120 that confers abiotic stress tolerance in E. coli. Int J Biol Macromol 2019; 124:981-993. [DOI: 10.1016/j.ijbiomac.2018.11.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 12/13/2022]
|
11
|
Subramanyam R, Allakhverdiev SI. Honoring eight senior distinguished plant biologists from India. PHOTOSYNTHESIS RESEARCH 2019; 139:45-52. [PMID: 29948748 DOI: 10.1007/s11120-018-0531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
We summarize here research contributions of eight stalwarts in photosynthesis research from India. These distinguished scientists (Shree Kumar Apte, Basanti Biswal, Udaya C. Biswal, Agepati S. Raghavendra, Attipalli Ramachandra Reddy, Prafullachandra Vishnu (Raj) Sane, Baishnab Charan Tripathy, and Dinesh C. Uprety) were honored on November 2, 2017, at the School of Life Sciences, University of Hyderabad. We include here two group photographs of this special event, which was organized by the Department of Plant Sciences, during the 8th International Conference on Photosynthesis and Hydrogen Energy Research for Sustainability-2017 ( https://prs.science/wp-content/uploads/2017/10/Photosynthesis-Research-for-Sustainability-2017.pdf , also available at: http://www.life.illinois.edu/govindjee/world-historical.html ). The main conference had honored three international scientists: William Cramer (Purdue University. West Lafayette, Indiana, USA), Govindjee (University of Illinois at Urbana-Champaign, Illinois, USA, one of the authors here); and Agepati S. Raghavendra (University of Hyderabad, India, one of those honored here as well); see papers in this Special Issue, edited by Suleyman Allakhverdiev, one of the authors here.
Collapse
Affiliation(s)
- Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| |
Collapse
|
12
|
Sen S, Rai R, Chatterjee A, Rai S, Yadav S, Agrawal C, Rai LC. Molecular characterization of two novel proteins All1122 and Alr0750 of Anabaena PCC 7120 conferring tolerance to multiple abiotic stresses in Escherichia coli. Gene 2019; 685:230-241. [PMID: 30448320 DOI: 10.1016/j.gene.2018.11.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 09/28/2018] [Accepted: 11/08/2018] [Indexed: 11/19/2022]
Abstract
In- silico and functional genomics approaches have been used to determine cellular functions of two hypothetical proteins All1122 and Alr0750 of Anabaena sp. PCC 7120. Motif analysis and multiple sequence alignment predicted them as typical α/β ATP binding universal stress family protein-A (UspA) with G-(2×)-G-(9×)-G(S/T) as conserved motif. qRT-PCR data under UV-B, NaCl, heat, As, CdCl2, mannitol and methyl viologen registered approximately 1.4 to 4.3 fold induction of all1122 and alr0750 thus confirming their multiple abiotic stress tolerance potential. The recombinant E. coli (BL21) cells harboring All1122 and Alr0750 showed 12-41% and 23-41% better growth respectively over wild type control under said abiotic stresses thus revalidating their stress coping ability. Functional complementation on heterologous expression in UspA mutant E. coli strain LN29MG1655 (ΔuspA::Kan) attested their UspA family membership. This study tempted us to suggest that recombinant Anabaena PCC 7120 over expressing all1122 and alr0750 might contribute to the nitrogen economy in paddy fields experiencing array of abiotic stresses including drought and nutrient limitation.
Collapse
Affiliation(s)
- Sonia Sen
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ruchi Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Antra Chatterjee
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shweta Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shivam Yadav
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Chhavi Agrawal
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - L C Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
13
|
Anaganti N, Padwal MK, Dani P, Basu B. Pleiotropic effects of a cold shock protein homolog PprM on the proteome of Deinococcus radiodurans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:98-106. [PMID: 30389625 DOI: 10.1016/j.bbapap.2018.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
Abstract
An extremophile D. radiodurans encodes a non-cold shock inducible cold shock protein homolog DR_0907 (also known as PprM). The DR_0907 ORF was deleted by knockout mutagenesis and the resultant deletion mutant (ΔpprM D. radiodurans) displayed growth defect as well as gamma-radiation sensitivity (D10 values = ΔpprM D. radiodurans: 12.1 kGy versus wild type (WT) D. radiodurans: 14 kGy). 2D gel based comparative proteomics revealed a comparable induction of DNA repair proteins in ΔpprM D. radiodurans and WT D. radiodurans recovering from 5 kGy gamma irradiation (60Co gamma source, dose rate: 2 kGy/h), suggesting that pprM does not cause radiation sensitivity through modulation of DdrO-regulated DNA repair genes. However, deletion of pprM did result in repression of several proteins that belonged to vital housekeeping pathways such as metabolism and protein homeostasis that might contribute to slow growth phenotype. These deficiencies intrinsic to ΔpprM D. radiodurans might also contribute to its radiation sensitivity.
Collapse
Affiliation(s)
- Narasimha Anaganti
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Pratiksha Dani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
14
|
Kumar A, Kirti A, Rajaram H. Regulation of multiple abiotic stress tolerance by LexA in the cyanobacterium Anabaena sp. strain PCC7120. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30185-8. [PMID: 30055321 DOI: 10.1016/j.bbagrm.2018.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/15/2018] [Accepted: 07/19/2018] [Indexed: 11/28/2022]
Abstract
The paradigm of involvement of LexA in regulation of only SOS-response in bacteria through the down-regulation of DNA repair genes was challenged in the unicellular cyanobacterium, Synechocystis PCC6803, wherein it was originally shown not to be associated with DNA repair and later also involved in management of carbon-starvation through up-regulation of C-metabolism genes. In the filamentous cyanobacterium, Anabaena sp. strain PCC7120, global stress management role for LexA and a consensus LexA-binding box (AnLexA-box) has been established using a LexA-overexpressing recombinant strain, AnlexA+. High levels of LexA rendered Anabaena cells sensitive to different DNA damage and oxidative stress-inducing agents, through the transcriptional down-regulation of the genes involved in DNA repair and alleviation of oxidative stress. LexA overexpression enhanced the ability of Anabaena to tolerate C-depletion, induced by inhibiting photosynthesis, by up-regulating genes involved in C-fixation and down-regulating those involved in C-breakdown, while maintaining the overall photosynthetic efficiency. A consensus LexA-binding box, AnLexA-box [AGT-N4-11-ACT] was identified upstream of both up- and down-regulated genes using a subset of Anabaena genes identified on the basis of proteomic analysis of AnlexA+ strain along with a few DNA repair genes. A short genome search revealed the presence of AnLexA box in at least 40 more genes, with functional roles in fatty acid biosynthesis, toxin-antitoxin systems in addition to DNA repair, oxidative stress, metal tolerance and C-metabolism. Thus, Anabaena LexA modulates the tolerance to multitude of stresses through transcriptional up/down-regulation of their functional genes directly by binding to the AnLexA Box present in their promoter region.
Collapse
Affiliation(s)
- Arvind Kumar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Trombay, Mumbai 400094, India
| | - Anurag Kirti
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Trombay, Mumbai 400094, India.
| |
Collapse
|
15
|
T V D, Chandwadkar P, Acharya C. NmtA, a novel metallothionein of Anabaena sp. strain PCC 7120 imparts protection against cadmium stress but not oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:152-161. [PMID: 29626757 DOI: 10.1016/j.aquatox.2018.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Metallothioneins (MTs) are low molecular weight, sulfhydryl-containing, cysteine-rich, metal-binding proteins. Eukaryotes have multiple metallothionein genes; however, there is dearth of reports on prokaryotic metallothioneins. Bacterial MTs with SmtA from Synechococcus PCC 7942 as prototype have been studied in the context of cadmium detoxification. In this study, a smtA related ORF, namely nmtA, was identified in the heterocystous, nitrogen-fixing cyanobacterium, Anabaena PCC 7120. A recombinant N-terminal histidine-tagged Anabaena NmtA protein was overexpressed in Escherichia coli and purified. The protein was identified by peptide mass fingerprinting using MALDI-TOF Mass Spectrometry as putative metallothionein of Anabaena PCC 7120 with a calculated mass of ∼6.1 kDa. While the native metallated NmtA exhibited resistance against proteolysis, metal free apo-NmtA resulting from acid and dithiothreitol (DTT) treatment could be digested by proteinase K revealing a metal dependent proteolytic protection of NmtA. Expression of nmtA in Anabaena PCC 7120 was induced evidently by cadmium, zinc and copper but not by uranium or hydrogen peroxide. Recombinant Anabaena PCC 7120 overexpressing NmtA protein revealed superior cadmium tolerance but showed limited influence against oxidative stress tolerance as compared with the strain carrying vector alone. In contrast, a mutant of Synechococcus PCC 7942 deficient in MT locus was found to be highly susceptible to H2O2 indicating a likely involvement of cyanobacterial MT in protection against oxidative damage. Overall, the study improved our understanding of metal tolerance mechanisms in Anabaena PCC 7120 by demonstrating a key role of NmtA in cadmium tolerance.
Collapse
Affiliation(s)
- Divya T V
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Pallavi Chandwadkar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
16
|
Sen S, Rai S, Yadav S, Agrawal C, Rai R, Chatterjee A, Rai L. Dehydration and rehydration - induced temporal changes in cytosolic and membrane proteome of the nitrogen fixing cyanobacterium Anabaena sp. PCC 7120. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Ujaoney AK, Padwal MK, Basu B. Proteome dynamics during post-desiccation recovery reveal convergence of desiccation and gamma radiation stress response pathways in Deinococcus radiodurans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28645711 DOI: 10.1016/j.bbapap.2017.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deinococcus radiodurans is inherently resistant to both ionizing radiation and desiccation. Fifteen months of desiccation was found to be the LD50 dose for D. radiodurans. Desiccated cells of D. radiodurans entered 6h of growth arrest during post-desiccation recovery (PDR). Proteome dynamics during PDR were mapped by resolving cellular proteins by 2-dimensional gel electrophoresis coupled with mass spectrometry. At least 41 proteins, represented by 51 spots on proteome profiles, were differentially expressed throughout PDR. High upregulation in expression was observed for DNA repair proteins involved in single strand annealing (DdrA and DdrB), nucleotide excision repair (UvrA and UvrB), homologous recombination (RecA) and other vital proteins that contribute to DNA replication, recombination and repair (Ssb, GyrA and GyrB). Expression of CRP/FNR family transcriptional regulator (Crp) remained high throughout PDR. Other pathways such as cellular detoxification, protein homeostasis and metabolism displayed both, moderately induced and repressed proteins. Functional relevance of proteomic modulations to surviving desiccation stress is discussed in detail. Comparison of our data with the published literature revealed convergence of radiation and desiccation stress responses of D. radiodurans. This is the first report that substantiates the hypothesis that the radiation stress resistance of D. radiodurans is incidental to its desiccation stress resistance.
Collapse
Affiliation(s)
- Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
18
|
Ali A, Bovilla VR, Mysarla DK, Siripurapu P, Pathak RU, Basu B, Mamillapalli A, Bhattacharya S. Knockdown of Broad-Complex Gene Expression of Bombyx mori by Oligopyrrole Carboxamides Enhances Silk Production. Sci Rep 2017; 7:805. [PMID: 28400559 PMCID: PMC5429751 DOI: 10.1038/s41598-017-00653-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/15/2016] [Indexed: 11/09/2022] Open
Abstract
Bombyx mori (B. mori) is important due to its major role in the silk production. Though DNA binding ligands often influence gene expression, no attempt has been made to exploit their use in sericulture. The telomeric heterochromatin of B. mori is enriched with 5'-TTAGG-3' sequences. These sequences were also found to be present in several genes in the euchromatic regions. We examined three synthetic oligopyrrole carboxamides that target 5'-TTAGG-3' sequences in controlling the gene expression in B. mori. The ligands did not show any defect or feeding difference in the larval stage, crucial for silk production. The ligands caused silencing of various isoforms of the broad-complex transcription factor and cuticle proteins which resulted in late pupal developmental defects. Furthermore, treatment with such drugs resulted in statistically enhanced cocoon weight, shell weight, and silk yield. This study shows for the first time use of oligopyrrole carboxamide drugs in controlling gene expression in B. mori and their long term use in enhancing silk production.
Collapse
Affiliation(s)
- Asfa Ali
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Venugopal Reddy Bovilla
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam, 530 045, India
| | - Danti Kumari Mysarla
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam, 530 045, India
| | - Prasanthi Siripurapu
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam, 530 045, India
| | - Rashmi U Pathak
- Centre for Cellular and Molecular Biology, Hyderabad, 500 007, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Anitha Mamillapalli
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam, 530 045, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India. .,Director's Research Unit, and Technical Research Centre, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal, 700 032, India.
| |
Collapse
|
19
|
Srivastava A, Brilisauer K, Rai AK, Ballal A, Forchhammer K, Tripathi AK. Down-Regulation of the Alternative Sigma Factor SigJ Confers a Photoprotective Phenotype to Anabaena PCC 7120. PLANT & CELL PHYSIOLOGY 2017; 58:287-297. [PMID: 27837096 DOI: 10.1093/pcp/pcw188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
Alternative sigma factors belonging to Group 3 are thought to play an important role in the adaptation of cyanobacteria to environmental challenges by altering expression of genes needed for coping with such stresses. In this study, the role of an alternative sigma factor, SigJ, was analyzed in the filamentous nitrogen-fixing cyanobacterium, Anabaena sp. PCC 7120 by knocking down the expression of the sigJ gene (alr0277) employing an antisense RNA-mediated approach. In the absence of any stress, the knock-down (KD0277) or the wild-type strain both grew similarly. Upon exposure to high-intensity light, KD0277 showed substantially reduced bleaching of its pigments, higher photosynthetic activity and consequently better survival than the wild type. KD0277 also showed an enhanced accumulation of two carotenoids, which were identified as myxoxanthophyll and keto-myxoxanthophyll. Further, KD0277 was more tolerant to ammonium-triggered photodamage than the wild type. Moreover, PSII was better protected against photodamage in KD0277 than in the wild type. Down-regulation of sigJ in Anabaena PCC 7120, however, reduced its ability to cope with desiccation. This study demonstrates that down-regulation of the sigJ gene in Anabaena PCC 7120 differentially affects its ability to tolerate two environmentally relevant stresses, i.e. high-intensity light and desiccation.
Collapse
Affiliation(s)
- Amit Srivastava
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Klaus Brilisauer
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle, Tübingen, Germany
| | - Ashutosh K Rai
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle, Tübingen, Germany
| | - Anil K Tripathi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
20
|
Mihara S, Yoshida K, Higo A, Hisabori T. Functional Significance of NADPH-Thioredoxin Reductase C in the Antioxidant Defense System of Cyanobacterium Anabaena sp. PCC 7120. PLANT & CELL PHYSIOLOGY 2017; 58:86-94. [PMID: 28011872 DOI: 10.1093/pcp/pcw182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
The redox regulation system is widely accepted as a crucial mechanism for controlling the activities of various metabolic enzymes. In addition to thioredoxin reductase/thioredoxin cascades, NADPH-thioredoxin reductase C (NTRC), a hybrid protein formed by an NADPH-thioredoxin reductase domain and a thioredoxin (Trx) domain, is present in chloroplasts and in most cyanobacteria species. Although several target proteins and physiological functions of NTRC in chloroplasts have been characterized, little is known about NTRC functions in cyanobacteria. Therefore, we investigated the molecular basis and physiological significance of NTRC-dependent redox regulation in the filamentous heterocyst-forming nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 (Anabaena 7120). Initially, we identified six candidate NTRC targets in Anabaena 7120 using NTRC affinity chromatography. Subsequently, we compared the efficiency of reducing-equivalent transfer from NTRC and Trx-m1 to the NTRC target protein 2-Cys peroxiredoxin. Biochemical analyses revealed that compared with Trx-m1, NTRC more efficiently transfers reducing equivalents to 2-Cys peroxiredoxin. Subsequently, we constructed and analyzed an ntrC knockout strain in Anabaena 7120. The mutant showed impaired growth under oxidative stress conditions and lower concentrations of reduced 2-Cys peroxiredoxin in cells. Taken together, the present in vitro and in vivo results indicate that NTRC is a significant electron donor for 2-Cys peroxiredoxin and plays a pivotal role in antioxidant defense systems in Anabaena 7120 cells.
Collapse
Affiliation(s)
- Shoko Mihara
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Akiyoshi Higo
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| |
Collapse
|
21
|
Panda B, Basu B, Acharya C, Rajaram H, Apte SK. Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:205-213. [PMID: 27940385 DOI: 10.1016/j.aquatox.2016.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED Two strains of the nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, displayed differential sensitivity to exposure to uranyl carbonate at neutral pH. Anabaena sp. strain PCC 7120 and Anabaena sp. strain L-31 displayed 50% reduction in survival (LD50 dose), following 3h exposure to 75μM and 200μM uranyl carbonate, respectively. Uranium responsive proteome alterations were visualized by 2D gel electrophoresis, followed by protein identification by MALDI-ToF mass spectrometry. The two strains displayed significant differences in levels of proteins associated with photosynthesis, carbon metabolism, and oxidative stress alleviation, commensurate with their uranium tolerance. Higher uranium tolerance of Anabaena sp. strain L-31 could be attributed to sustained photosynthesis and carbon metabolism and superior oxidative stress defense, as compared to the uranium sensitive Anabaena sp. strain PCC 7120. SIGNIFICANCE Uranium responsive proteome modulations in two nitrogen-fixing strains of Anabaena, native to Indian paddy fields, revealed that rapid adaptation to better oxidative stress management, and maintenance of metabolic and energy homeostasis underlies superior uranium tolerance of Anabaena sp. strain L-31 compared to Anabaena sp. strain PCC 7120.
Collapse
Affiliation(s)
- Bandita Panda
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Shree Kumar Apte
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| |
Collapse
|
22
|
Misra CS, Basu B, Apte SK. Surface (S)-layer proteins of Deinococcus radiodurans and their utility as vehicles for surface localization of functional proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3181-7. [DOI: 10.1016/j.bbamem.2015.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022]
|
23
|
A single gene all3940 (Dps) overexpression in Anabaena sp. PCC 7120 confers multiple abiotic stress tolerance via proteomic alterations. Funct Integr Genomics 2015; 16:67-78. [DOI: 10.1007/s10142-015-0467-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/20/2015] [Accepted: 09/24/2015] [Indexed: 12/19/2022]
|
24
|
Involvement of phosphoesterases in tributyl phosphate degradation in Sphingobium sp. strain RSMS. Appl Microbiol Biotechnol 2015; 100:461-8. [DOI: 10.1007/s00253-015-6979-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/20/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
|
25
|
Sen S, Agrawal C, Mishra Y, Rai S, Chatterjee A, Yadav S, Singh S, Rai LC. Exploring the membrane proteome of the diazotropic cyanobacterium Anabaena PCC7120 through gel-based proteomics and in silico approaches. J Proteomics 2015. [PMID: 26210591 DOI: 10.1016/j.jprot.2015.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED This paper focuses on the gel-based membrane proteomics from diazotrophic cyanobacterium Anabaena PCC7120 by modifying the protocol of Hall et al. [1]. The bioinformatic analysis revealed that 59 (29 integral, 30 peripheral) of the 67 proteins identified were membrane proteins. Of the 29 integral proteins, except Alr0834, the remaining 28 contained 1-12 transmembrane helices. Sixteen integral proteins harboring signal peptides (Sec/TAT/LipoP) suggest that protein targeting in Anabaena involves both sec-dependent and sec-independent pathways. While majority of photosynthesis and respiration proteins (21 of 24) were confined to broad pH gradient the hypothetical and unknown (12 of 13), and cell envelope proteins (3 of 3) preferred the narrow pH range. Of the 5 transporters and binding proteins, Na(+)/H(+)-exchanging protein and Alr2372 were present in broad, pstS1 and cmpD in narrow and cmpA was common to both pH ranges. The distribution of proteins across pH gradient, thus clearly indicates the functional and structural diversity in membrane proteome of Anabaena. It requires mention that protochlorophyllide oxido-reductase, Na(+)/H(+)-exchanging protein, All1355, Alr2055, Alr3514, Alr2903 and Alr2751 were new entries to the 2DE membrane protein profile of Anabaena. This study demonstrates suitability of the modified protocol for the study of membrane protein from filamentous cyanobacteria. SIGNIFICANCE Anabaena sp. PCC7120 is used as a model organism due to its agriculture significance as biofertilizer, close resemblance with higher plant chloroplast and availability of full genome sequence. Although cytosolic proteome has been explored a lot membrane proteins are still understudied as they are notoriously difficult to display using 2-D technology. Identification and characterization of these proteins is therefore required to elucidate and understand cellular mechanisms. The purpose of this study was to develop a protocol suitable for membrane protein extraction from Anabaena. Additionally, by homology comparison or domain assignment a possible function could be ascribed to novel uncharacterized proteins which will serve as a useful reference for further detailed studies of membrane system in filamentous cyanobacteria. Resolution of membrane proteins ranging from least (single transmembrane helix) to highly hydrophobic (several transmembrane helices) one on 2D gels recommends the gel based approach for identification of membrane proteomics from filamentous cyanobacteria. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Sonia Sen
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Chhavi Agrawal
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Yogesh Mishra
- Department of Botany, Punjab University, Sector 14, Chandigarh 160014, India
| | - Shweta Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Antra Chatterjee
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Shivam Yadav
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - L C Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
26
|
Proteomic responses to a methyl viologen-induced oxidative stress in the wild type and FerB mutant strains of Paracoccus denitrificans. J Proteomics 2015; 125:68-75. [DOI: 10.1016/j.jprot.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/24/2015] [Accepted: 05/01/2015] [Indexed: 01/17/2023]
|
27
|
Panda B, Basu B, Rajaram H, Apte SK. Comparative proteomics of oxidative stress response in three cyanobacterial strains native to Indian paddy fields. J Proteomics 2015; 127:152-60. [PMID: 26013413 DOI: 10.1016/j.jprot.2015.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/05/2015] [Accepted: 05/20/2015] [Indexed: 11/26/2022]
Abstract
Three strains of photoautotrophic, heterocystous, nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, were examined for their tolerance and proteomic response to the frequently used weedicide paraquat (methyl viologen). Anabaena 7120 (LD50 dose: 2μM for 6h) and Anabaena L-31 (LD50 dose: 2μM for 5h) showed distinctly better tolerance than Anabaena doliolum (LD50 dose: 2μM for 3h), to methyl viologen induced oxidative stress. The proteomic response, at respective LD50 dose, was mapped by 2D gel protein electrophoresis followed by protein identification by MALDI-ToF mass spectrometry. About 92 and 41 oxidative stress-responsive proteins were identified from Anabaena L-31 and A. doliolum, respectively, and compared with methyl viologen responsive proteins reported from Anabaena 7120 earlier. Upregulation of proteins involved in oxidative stress alleviation and protein homeostasis and downregulation of photosynthesis and carbon metabolism related enzymes appeared to underlie the oxidative stress response in all three Anabaena strains. Reduced photosynthesis and cellular reserves of molecular energy [ATP+NAD(P)H] seemed to overwhelm the cellular machinery to combat oxidative stress and protein denaturation, in preference to other adaptations, while the strain specific differences observed in proteome response appeared to determine the methyl viologen tolerance of individual cyanobacterial strains. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Bandita Panda
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Shree Kumar Apte
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| |
Collapse
|
28
|
Narula K, Pandey A, Gayali S, Chakraborty N, Chakraborty S. Birth of plant proteomics in India: a new horizon. J Proteomics 2015; 127:34-43. [PMID: 25920368 DOI: 10.1016/j.jprot.2015.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 01/02/2023]
Abstract
UNLABELLED In the post-genomic era, proteomics is acknowledged as the next frontier for biological research. Although India has a long and distinguished tradition in protein research, the initiation of proteomics studies was a new horizon. Protein research witnessed enormous progress in protein separation, high-resolution refinements, biochemical identification of the proteins, protein-protein interaction, and structure-function analysis. Plant proteomics research, in India, began its journey on investigation of the proteome profiling, complexity analysis, protein trafficking, and biochemical modeling. The research article by Bhushan et al. in 2006 marked the birth of the plant proteomics research in India. Since then plant proteomics studies expanded progressively and are now being carried out in various institutions spread across the country. The compilation presented here seeks to trace the history of development in the area during the past decade based on publications till date. In this review, we emphasize on outcomes of the field providing prospects on proteomic pathway analyses. Finally, we discuss the connotation of strategies and the potential that would provide the framework of plant proteome research. BIOLOGICAL SIGNIFICANCE The past decades have seen rapidly growing number of sequenced plant genomes and associated genomic resources. To keep pace with this increasing body of data, India is in the provisional phase of proteomics research to develop a comparative hub for plant proteomes and protein families, but it requires a strong impetus from intellectuals, entrepreneurs, and government agencies. Here, we aim to provide an overview of past, present and future of Indian plant proteomics, which would serve as an evaluation platform for those seeking to incorporate proteomics into their research programs. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Kanika Narula
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aarti Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Gayali
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
29
|
Zingde SM. Has Proteomics come of age in India? J Proteomics 2015; 127:3-6. [PMID: 25748142 DOI: 10.1016/j.jprot.2015.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/25/2015] [Indexed: 12/24/2022]
|
30
|
Anaganti N, Basu B, Gupta A, Joseph D, Apte SK. Depletion of reduction potential and key energy generation metabolic enzymes underlies tellurite toxicity inDeinococcus radiodurans. Proteomics 2014; 15:89-97. [DOI: 10.1002/pmic.201400113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/05/2014] [Accepted: 10/14/2014] [Indexed: 01/25/2023]
Affiliation(s)
| | - Bhakti Basu
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| | - Alka Gupta
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| | - Daisy Joseph
- Nuclear Physics Division; Bhabha Atomic Research Centre; Mumbai India
| | - Shree Kumar Apte
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| |
Collapse
|