1
|
Fasano M, Alberio T. Neurodegenerative disorders: From clinicopathology convergence to systems biology divergence. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:73-86. [PMID: 36796949 DOI: 10.1016/b978-0-323-85538-9.00007-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Neurodegenerative diseases are multifactorial. This means that several genetic, epigenetic, and environmental factors contribute to their emergence. Therefore, for the future management of these highly prevalent diseases, it is necessary to change perspective. If a holistic viewpoint is assumed, the phenotype (the clinicopathological convergence) emerges from the perturbation of a complex system of functional interactions among proteins (systems biology divergence). The systems biology top-down approach starts with the unbiased collection of sets of data generated through one or more -omics techniques and has the aim to identify the networks and the components that participate in the generation of a phenotype (disease), often without any available a priori knowledge. The principle behind the top-down method is that the molecular components that respond similarly to experimental perturbations are somehow functionally related. This allows the study of complex and relatively poorly characterized diseases without requiring extensive knowledge of the processes under investigation. In this chapter, the use of a global approach will be applied to the comprehension of neurodegeneration, with a particular focus on the two most prevalent ones, Alzheimer's and Parkinson's diseases. The final purpose is to distinguish disease subtypes (even with similar clinical manifestations) to launch a future of precision medicine for patients with these disorders.
Collapse
Affiliation(s)
- Mauro Fasano
- Department of Science and High Technology, University of Insubria, Busto Arsizio and Como, Italy; Center of Neuroscience, University of Insubria, Busto Arsizio and Como, Italy.
| | - Tiziana Alberio
- Department of Science and High Technology, University of Insubria, Busto Arsizio and Como, Italy; Center of Neuroscience, University of Insubria, Busto Arsizio and Como, Italy
| |
Collapse
|
2
|
Pérez-Carrión MD, Posadas I, Solera J, Ceña V. LRRK2 and Proteostasis in Parkinson's Disease. Int J Mol Sci 2022; 23:6808. [PMID: 35743250 PMCID: PMC9224256 DOI: 10.3390/ijms23126808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition initially characterized by the presence of tremor, muscle stiffness and impaired balance, with the deposition of insoluble protein aggregates in Lewy's Bodies the histopathological hallmark of the disease. Although different gene variants are linked to Parkinson disease, mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene are one of the most frequent causes of Parkinson's disease related to genetic mutations. LRRK2 toxicity has been mainly explained by an increase in kinase activity, but alternative mechanisms have emerged as underlying causes for Parkinson's disease, such as the imbalance in LRRK2 homeostasis and the involvement of LRRK2 in aggregation and spreading of α-synuclein toxicity. In this review, we recapitulate the main LRRK2 pathological mutations that contribute to Parkinson's disease and the different cellular and therapeutic strategies devised to correct LRRK2 homeostasis. In this review, we describe the main cellular control mechanisms that regulate LRRK2 folding and aggregation, such as the chaperone network and the protein-clearing pathways such as the ubiquitin-proteasome system and the autophagic-lysosomal pathway. We will also address the more relevant strategies to modulate neurodegeneration in Parkinson's disease through the regulation of LRRK2, using small molecules or LRRK2 silencing.
Collapse
Affiliation(s)
- María Dolores Pérez-Carrión
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Inmaculada Posadas
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Solera
- Servicio de Medicina Interna, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain;
- Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Verma A, Ebanks K, Fok CY, Lewis PA, Bettencourt C, Bandopadhyay R. In silico comparative analysis of LRRK2 interactomes from brain, kidney and lung. Brain Res 2021; 1765:147503. [PMID: 33915162 PMCID: PMC8212912 DOI: 10.1016/j.brainres.2021.147503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/06/2021] [Accepted: 04/23/2021] [Indexed: 01/11/2023]
Abstract
Mutations in LRRK2 are the most frequent cause of familial Parkinson's disease (PD), with common LRRK2 non-coding variants also acting as risk factors for idiopathic PD. Currently, therapeutic agents targeting LRRK2 are undergoing advanced clinical trials in humans, however, it is important to understand the wider implications of LRRK2 targeted treatments given that LRRK2 is expressed in diverse tissues including the brain, kidney and lungs. This presents challenges to treatment in terms of effects on peripheral organ functioning, thus, protein interactors of LRRK2 could be targeted in lieu to optimize therapeutic effects. Herein an in-silico analysis of LRRK2 direct interactors in brain tissue from various brain regionswas conducted along with a comparative analysis of the LRRK2 interactome in the brain, kidney, and lung tissues. This was carried out based on curated protein-protein interaction (PPI) data from protein interaction databases such as HIPPIE, human gene/protein expression databases and Gene ontology (GO) enrichment analysis using Bingo. Seven targets (MAP2K6, MATK, MAPT, PAK6, SH3GL2, CDC42EP3 and CHGB) were found to be viable objectives for LRRK2 based investigations for PD that would have minimal impact on optimal functioning within peripheral organs. Specifically, MAPT, CHGB, PAK6, and SH3GL2 interacted with LRRK2 in the brain and kidney but not in lung tissue whilst LRRK2-MAP2K6 interacted only in the cerebellum and MATK-LRRK2 interaction was absent in kidney tissues. CDC42EP3 expression levels were low in brain tissues compared to kidney/lung. The results of this computational analysis suggest new avenues for experimental investigations towards LRRK2-targeted therapeutics.
Collapse
Affiliation(s)
- Amrita Verma
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Kirsten Ebanks
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Chi-Yee Fok
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Patrick A Lewis
- Royal Veterinary College, Royal College Street, London NW10TV, United Kingdom; Department of Neurodegenerative Disease and Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Conceicao Bettencourt
- Department of Neurodegenerative Disease and Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom.
| |
Collapse
|
4
|
Foerster H, Battey JND, Sierro N, Ivanov NV, Mueller LA. Metabolic networks of the Nicotiana genus in the spotlight: content, progress and outlook. Brief Bioinform 2021; 22:bbaa136. [PMID: 32662816 PMCID: PMC8138835 DOI: 10.1093/bib/bbaa136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 01/09/2023] Open
Abstract
Manually curated metabolic databases residing at the Sol Genomics Network comprise two taxon-specific databases for the Solanaceae family, i.e. SolanaCyc and the genus Nicotiana, i.e. NicotianaCyc as well as six species-specific databases for Nicotiana tabacum TN90, N. tabacum K326, Nicotiana benthamiana, N. sylvestris, N. tomentosiformis and N. attenuata. New pathways were created through the extraction, examination and verification of related data from the literature and the aid of external database guided by an expert-led curation process. Here we describe the curation progress that has been achieved in these databases since the first release version 1.0 in 2016, the curation flow and the curation process using the example metabolic pathway for cholesterol in plants. The current content of our databases comprises 266 pathways and 36 superpathways in SolanaCyc and 143 pathways plus 21 superpathways in NicotianaCyc, manually curated and validated specifically for the Solanaceae family and Nicotiana genus, respectively. The curated data have been propagated to the respective Nicotiana-specific databases, which resulted in the enrichment and more accurate presentation of their metabolic networks. The quality and coverage in those databases have been compared with related external databases and discussed in terms of literature support and metabolic content.
Collapse
|
5
|
Advances in protein-protein interaction network analysis for Parkinson's disease. Neurobiol Dis 2021; 155:105395. [PMID: 34022367 DOI: 10.1016/j.nbd.2021.105395] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023] Open
Abstract
Protein-protein interactions (PPIs) are a key component of the subcellular molecular networks which enable cells to function. Due to their importance in homeostasis, alterations to the networks can be detrimental, leading to cellular dysfunction and ultimately disease states. Parkinson's disease (PD) is a progressive neurodegenerative condition with multifactorial aetiology, spanning genetic variation and environmental modifiers. At a molecular and systems level, the characterisation of PD is the focus of extensive research, largely due to an unmet need for disease modifying therapies. PPI network analysis approaches are a valuable strategy to accelerate our understanding of the molecular crosstalk and biological processes underlying PD pathogenesis, especially due to the complex nature of this disease. In this review, we describe the utility of PPI network approaches in modelling complex systems, focusing on previous work in PD research. We discuss four principal strategies for using PPI network approaches: to infer PD related cellular functions, pathways and novel genes; to support genomics studies; to study the interactome of single PD related genes; and to compare the molecular basis of PD to other neurodegenerative disorders. This is an evolving area of research which is likely to further expand as omics data generation and availability increase. These approaches complement and bridge-the-gap between genetics and functional research to inform future investigations. In this review we outline several limitations that require consideration, acknowledging that ongoing challenges in this field continue to be addressed and the refinement of these approaches will facilitate further advances using PPI network analysis for understanding complex diseases.
Collapse
|
6
|
Tian-Huang Formula, a Traditional Chinese Medicinal Prescription, Improves Hepatosteatosis and Glucose Intolerance Targeting AKT-SREBP Nexus in Diet-Induced Obese Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6617586. [PMID: 33763145 PMCID: PMC7955866 DOI: 10.1155/2021/6617586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
The progressive increase of metabolic diseases underscores the necessity for developing effective therapies. Although we found Tian-Huang formula (THF) could alleviate metabolic disorders, the underlying mechanism remains to be fully understood. In the present study, firstly, male Sprague-Dawley rats were fed with high-fat diet plus high-fructose drink (HFF, the diet is about 60% of calories from fat and the drink is 12.5% fructose solution) for 14 weeks to induce hepatosteatosis and glucose intolerance and then treated with THF (200 mg/kg) for 4 weeks. Then, metabolomics analysis was performed with rat liver samples and following the clues illustrated by Ingenuity Pathway Analysis (IPA) with the metabolomics discoveries, RT-qPCR and Western blotting were carried out to validate the putative pathways. Our results showed that THF treatment reduced the body weight from 735.1 ± 81.29 to 616.3 ± 52.81 g and plasma triglyceride from 1.5 ± 0.42 to 0.88 ± 0.33 mmol/L; meanwhile, histological examinations of hepatic tissue and epididymis adipose tissue showed obvious alleviation. Compared with the HFF group, the fasting serum insulin and blood glucose level of the THF group were improved from 20.77 ± 6.58 to 9.65 ± 5.48 mIU/L and from 8.96 ± 0.56 to 7.66 ± 1.25 mmol/L, respectively, so did the serum aspartate aminotransferase, insulin resistance index, and oral glucose tolerance (p = 0.0019, 0.0053, and 0.0066, respectively). Furthermore, based on a list of 32 key differential endogenous metabolites, the molecular networks generated by IPA suggested that THF alleviated glucose intolerance and hepatosteatosis by activating phosphatidylinositol-3 kinase (PI3K) and low-density lipoprotein receptor (LDL-R) involved pathways. RT-qPCR and Western blotting results confirmed that THF alleviated hepatic steatosis and glucose intolerance partly through protein kinase B- (AKT-) sterol regulatory element-binding protein (SREBP) nexus. Our findings shed light on molecular mechanisms of THF on alleviating metabolic diseases and provided further evidence for developing its therapeutic potential.
Collapse
|
7
|
Pischedda F, Piccoli G. LRRK2 at the pre-synaptic site: A 16-years perspective. J Neurochem 2021; 157:297-311. [PMID: 33206398 DOI: 10.1111/jnc.15240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a common neurodegenerative disorder and is clinically characterized by bradykinesia, rigidity, and resting tremor. Missense mutations in the leucine-rich repeat protein kinase-2 gene (LRRK2) are a recognized cause of inherited Parkinson's disease. The physiological and pathological impact of LRRK2 is still obscure, but accumulating evidence indicates that LRRK2 orchestrates diverse aspects of membrane trafficking, such as membrane fusion and vesicle formation and transport along actin and tubulin tracks. In the present review, we focus on the special relation between LRRK2 and synaptic vesicles. LRRK2 binds and phosphorylates key actors within the synaptic vesicle cycle. Accordingly, alterations in dopamine and glutamate transmission have been described upon LRRK2 manipulations. However, the different modeling strategies and phenotypes observed require a critical approach to decipher the outcome of LRRK2 at the pre-synaptic site.
Collapse
Affiliation(s)
- Francesca Pischedda
- CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| | - Giovanni Piccoli
- CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| |
Collapse
|
8
|
Porras P, Barrera E, Bridge A, Del-Toro N, Cesareni G, Duesbury M, Hermjakob H, Iannuccelli M, Jurisica I, Kotlyar M, Licata L, Lovering RC, Lynn DJ, Meldal B, Nanduri B, Paneerselvam K, Panni S, Pastrello C, Pellegrini M, Perfetto L, Rahimzadeh N, Ratan P, Ricard-Blum S, Salwinski L, Shirodkar G, Shrivastava A, Orchard S. Towards a unified open access dataset of molecular interactions. Nat Commun 2020; 11:6144. [PMID: 33262342 PMCID: PMC7708836 DOI: 10.1038/s41467-020-19942-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The International Molecular Exchange (IMEx) Consortium provides scientists with a single body of experimentally verified protein interactions curated in rich contextual detail to an internationally agreed standard. In this update to the work of the IMEx Consortium, we discuss how this initiative has been working in practice, how it has ensured database sustainability, and how it is meeting emerging annotation challenges through the introduction of new interactor types and data formats. Additionally, we provide examples of how IMEx data are being used by biomedical researchers and integrated in other bioinformatic tools and resources.
Collapse
Affiliation(s)
- Pablo Porras
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Elisabet Barrera
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Alan Bridge
- SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 rue Michel Servet, CH-1211, Geneva, Switzerland
| | - Noemi Del-Toro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Gianni Cesareni
- University of Rome Tor Vergata, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Margaret Duesbury
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
- UCLA-DOE Institute, University of California, Los Angeles, CA, 90095, USA
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Krembil Research Institute, University Health Network, 60 Leonard Avenue, 5KD-407, Toronto, ON, M5T 0S8, Canada
- Departments of Medical Biophysics, and Computer Science, University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Krembil Research Institute, University Health Network, 60 Leonard Avenue, 5KD-407, Toronto, ON, M5T 0S8, Canada
| | | | - Ruth C Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| | - David J Lynn
- Computational and Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Birgit Meldal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Bindu Nanduri
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, USA
| | - Kalpana Paneerselvam
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Simona Panni
- Università della Calabria, Dipartimento di Biologia, Ecologia e Scienze della Terra, Via Pietro Bucci Cubo 6/C, Rende, CS, Italy
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Krembil Research Institute, University Health Network, 60 Leonard Avenue, 5KD-407, Toronto, ON, M5T 0S8, Canada
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, UCLA, Box 951606, Los Angeles, CA, 90095-1606, USA
| | - Livia Perfetto
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Negin Rahimzadeh
- UCLA-DOE Institute, University of California, Los Angeles, CA, 90095, USA
| | - Prashansa Ratan
- UCLA-DOE Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sylvie Ricard-Blum
- ICBMS, UMR 5246 University Lyon 1 - CNRS, Univ. Lyon, 69622, Villeurbanne, France
| | - Lukasz Salwinski
- UCLA-DOE Institute, University of California, Los Angeles, CA, 90095, USA
| | - Gautam Shirodkar
- UCLA-DOE Institute, University of California, Los Angeles, CA, 90095, USA
| | - Anjalia Shrivastava
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
9
|
Marchand A, Drouyer M, Sarchione A, Chartier-Harlin MC, Taymans JM. LRRK2 Phosphorylation, More Than an Epiphenomenon. Front Neurosci 2020; 14:527. [PMID: 32612495 PMCID: PMC7308437 DOI: 10.3389/fnins.2020.00527] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene are linked to autosomal dominant Parkinson's disease (PD), and genetic variations at the LRRK2 locus are associated with an increased risk for sporadic PD. This gene encodes a kinase that is physiologically multiphosphorylated, including clusters of both heterologous phosphorylation and autophosphorylation sites. Several pieces of evidence indicate that LRRK2's phosphorylation is important for its pathological and physiological functioning. These include a reduced LRRK2 heterologous phosphorylation in PD brains or after pharmacological inhibition of LRRK2 kinase activity as well as the appearance of subcellular LRRK2 accumulations when this protein is dephosphorylated at heterologous phosphosites. Nevertheless, the regulatory mechanisms governing LRRK2 phosphorylation levels and the cellular consequences of changes in LRRK2 phosphorylation remain incompletely understood. In this review, we present current knowledge on LRRK2 phosphorylation, LRRK2 phosphoregulation, and how LRRK2 phosphorylation changes affect cellular processes that may ultimately be linked to PD mechanisms.
Collapse
Affiliation(s)
- Antoine Marchand
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Matthieu Drouyer
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Alessia Sarchione
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Marie-Christine Chartier-Harlin
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Jean-Marc Taymans
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| |
Collapse
|
10
|
Gloeckner CJ, Porras P. Guilt-by-Association - Functional Insights Gained From Studying the LRRK2 Interactome. Front Neurosci 2020; 14:485. [PMID: 32508578 PMCID: PMC7251075 DOI: 10.3389/fnins.2020.00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
The Parkinson's disease-associated Leucine-rich repeat kinase 2 (LRRK2) is a complex multi-domain protein belonging to the Roco protein family, a unique group of G-proteins. Variants of this gene are associated with an increased risk of Parkinson's disease. Besides its well-characterized enzymatic activities, conferred by its GTPase and kinase domains, and a central dimerization domain, it contains four predicted repeat domains, which are, based on their structure, commonly involved in protein-protein interactions (PPIs). In the past decades, tremendous progress has been made in determining comprehensive interactome maps for the human proteome. Knowledge of PPIs has been instrumental in assigning functions to proteins involved in human disease and helped to understand the connectivity between different disease pathways and also significantly contributed to the functional understanding of LRRK2. In addition to an increased kinase activity observed for proteins containing PD-associated variants, various studies helped to establish LRRK2 as a large scaffold protein in the interface between cytoskeletal dynamics and the vesicular transport. This review first discusses a number of specific LRRK2-associated PPIs for which a functional consequence can at least be speculated upon, and then considers the representation of LRRK2 protein interactions in public repositories, providing an outlook on open research questions and challenges in this field.
Collapse
Affiliation(s)
- Christian Johannes Gloeckner
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Center for Ophthalmology, Institute for Ophthalmic Research, Core Facility for Medical Bioanalytics, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Pablo Porras
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cherry Hinton, United Kingdom
| |
Collapse
|
11
|
Kim JH, Seo Y, Jo M, Jeon H, Lee WH, Yachie N, Zhong Q, Vidal M, Roth FP, Suk K. Yeast-Based Genetic Interaction Analysis of Human Kinome. Cells 2020; 9:cells9051156. [PMID: 32392905 PMCID: PMC7291280 DOI: 10.3390/cells9051156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Kinases are critical intracellular signaling proteins. To better understand kinase-mediated signal transduction, a large-scale human-yeast genetic interaction screen was performed. Among 597 human kinase genes tested, 28 displayed strong toxicity in yeast when overexpressed. En masse transformation of these toxic kinase genes into 4653 homozygous diploid yeast deletion mutants followed by barcode sequencing identified yeast toxicity modifiers and thus their human orthologs. Subsequent network analyses and functional grouping revealed that the 28 kinases and their 676 interaction partners (corresponding to a total of 969 genetic interactions) are enriched in cell death and survival (34%), small-molecule biochemistry (18%) and molecular transport (11%), among others. In the subnetwork analyses, a few kinases were commonly associated with glioma, cell migration and cell death/survival. Our analysis enabled the creation of a first draft of the kinase genetic interactome network and identified multiple drug targets for inflammatory diseases and cancer, in which deregulated kinase signaling plays a pathogenic role.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.K.); (Y.S.); (M.J.); (H.J.)
| | - Yeojin Seo
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.K.); (Y.S.); (M.J.); (H.J.)
| | - Myungjin Jo
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.K.); (Y.S.); (M.J.); (H.J.)
| | - Hyejin Jeon
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.K.); (Y.S.); (M.J.); (H.J.)
| | - Won-Ha Lee
- School of Life Sciences, Brain Korea 21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea;
| | - Nozomu Yachie
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto and Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (N.Y.); (F.P.R.)
| | - Quan Zhong
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA;
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - Frederick P. Roth
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto and Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (N.Y.); (F.P.R.)
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.K.); (Y.S.); (M.J.); (H.J.)
- Correspondence:
| |
Collapse
|
12
|
Marku A, Carrion MDP, Pischedda F, Marte A, Casiraghi Z, Marciani P, von Zweydorf F, Gloeckner CJ, Onofri F, Perego C, Piccoli G. The LRRK2 N-terminal domain influences vesicle trafficking: impact of the E193K variant. Sci Rep 2020; 10:3799. [PMID: 32123243 PMCID: PMC7052203 DOI: 10.1038/s41598-020-60834-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/12/2020] [Indexed: 11/09/2022] Open
Abstract
The LRRK2 protein consists of multiple functional domains, including protein-binding domains at its N and C-terminus. Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) have been linked to familial and sporadic Parkinson's disease (PD). We have recently described a novel variant falling within the N-terminal armadillo repeats, E193K. Herein, our aim is to investigate the functional impact of LRRK2 N-terminal domain and the E193K variant on vesicle trafficking. By combining Total Internal Reflection Fluorescence (TIRF) microscopy and a synaptopHluorin assay, we found that expression of a construct lacking the N-terminal domain increases the frequency and amplitude of spontaneous synaptic events. Complementary biochemical approaches showed that the E193K variant alters the binding properties of LRRK2, decreases LRRK2 binding to synaptic vesicles, and promotes vesicle fusion. Our results confirm the physiological and pathological relevance of the nature of the LRRK2-associated macro-molecular complex solidifying the idea that different pathological mutations critically alter the scaffolding function of LRRK2 resulting in a perturbation of the vesicular trafficking as a common denominator.
Collapse
Affiliation(s)
- Algerta Marku
- Department of Excellence of Pharmacological and Biomolecular Sciences Università degli Studi di Milano, Milano, Italy
| | - Maria Dolores Perez Carrion
- CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy.,Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Francesca Pischedda
- CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| | - Antonella Marte
- Department of Experimental Medicine, University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Zeila Casiraghi
- Department of Excellence of Pharmacological and Biomolecular Sciences Università degli Studi di Milano, Milano, Italy
| | - Paola Marciani
- Department of Excellence of Pharmacological and Biomolecular Sciences Università degli Studi di Milano, Milano, Italy
| | | | - Christian Johannes Gloeckner
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,University of Tübingen, Center for Ophthalmology, Institute for Ophthalmic Research, 72076, Tübingen, Germany
| | - Franco Onofri
- Department of Experimental Medicine, University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Carla Perego
- Department of Excellence of Pharmacological and Biomolecular Sciences Università degli Studi di Milano, Milano, Italy.
| | - Giovanni Piccoli
- CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy.
| |
Collapse
|
13
|
Breuza L, Arighi CN, Argoud-Puy G, Casals-Casas C, Estreicher A, Famiglietti ML, Georghiou G, Gos A, Gruaz-Gumowski N, Hinz U, Hyka-Nouspikel N, Kramarz B, Lovering RC, Lussi Y, Magrane M, Masson P, Perfetto L, Poux S, Rodriguez-Lopez M, Stoeckert C, Sundaram S, Wang LS, Wu E, Orchard S. A Coordinated Approach by Public Domain Bioinformatics Resources to Aid the Fight Against Alzheimer's Disease Through Expert Curation of Key Protein Targets. J Alzheimers Dis 2020; 77:257-273. [PMID: 32716361 PMCID: PMC7592670 DOI: 10.3233/jad-200206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The analysis and interpretation of data generated from patient-derived clinical samples relies on access to high-quality bioinformatics resources. These are maintained and updated by expert curators extracting knowledge from unstructured biological data described in free-text journal articles and converting this into more structured, computationally-accessible forms. This enables analyses such as functional enrichment of sets of genes/proteins using the Gene Ontology, and makes the searching of data more productive by managing issues such as gene/protein name synonyms, identifier mapping, and data quality. OBJECTIVE To undertake a coordinated annotation update of key public-domain resources to better support Alzheimer's disease research. METHODS We have systematically identified target proteins critical to disease process, in part by accessing informed input from the clinical research community. RESULTS Data from 954 papers have been added to the UniProtKB, Gene Ontology, and the International Molecular Exchange Consortium (IMEx) databases, with 299 human proteins and 279 orthologs updated in UniProtKB. 745 binary interactions were added to the IMEx human molecular interaction dataset. CONCLUSION This represents a significant enhancement in the expert curated data pertinent to Alzheimer's disease available in a number of biomedical databases. Relevant protein entries have been updated in UniProtKB and concomitantly in the Gene Ontology. Molecular interaction networks have been significantly extended in the IMEx Consortium dataset and a set of reference protein complexes created. All the resources described are open-source and freely available to the research community and we provide examples of how these data could be exploited by researchers.
Collapse
Affiliation(s)
- Lionel Breuza
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Cecilia N. Arighi
- Protein Information Resource, Georgetown University Medical Center, Washington, DC, USA
- Protein Information Resource, University of Delaware, Newark, DE, USA
| | - Ghislaine Argoud-Puy
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Cristina Casals-Casas
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Anne Estreicher
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Maria Livia Famiglietti
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - George Georghiou
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, UK
| | - Arnaud Gos
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Nadine Gruaz-Gumowski
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Ursula Hinz
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Nevila Hyka-Nouspikel
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Barbara Kramarz
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, UK
| | - Ruth C. Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, UK
| | - Yvonne Lussi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, UK
| | - Michele Magrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, UK
| | - Patrick Masson
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Livia Perfetto
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, UK
| | - Sylvain Poux
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Milagros Rodriguez-Lopez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, UK
| | - Christian Stoeckert
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shyamala Sundaram
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Li-San Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, UK
| | - IMEx Consortium, UniProt Consortium
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
- Protein Information Resource, Georgetown University Medical Center, Washington, DC, USA
- Protein Information Resource, University of Delaware, Newark, DE, USA
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, UK
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, UK
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Alzforum, Cambridge, MA, USA
| |
Collapse
|
14
|
Correddu D, Sharma N, Kaur S, Varnava KG, Mbenza NM, Sarojini V, Leung IKH. An investigation into the effect of ribosomal protein S15 phosphorylation on its intermolecular interactions by using phosphomimetic mutant. Chem Commun (Camb) 2020; 56:7857-7860. [DOI: 10.1039/d0cc01618g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An investigation using recombinant ribosomal proteins and synthetic peptide models was conducted to uncover the effect of the introduction of a negative charge at the C-terminal tail of ribosomal protein S15.
Collapse
Affiliation(s)
- Danilo Correddu
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| | - Nabangshu Sharma
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| | - Simranjeet Kaur
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| | - Kyriakos G. Varnava
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| | - Naasson M. Mbenza
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology
| | - Ivanhoe K. H. Leung
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
15
|
Li K, Yuan M, He Z, Wu Q, Zhang C, Lei Z, Rong X, Huang Z, Turnbull JE, Guo J. Omics Insights into Metabolic Stress and Resilience of Rats in Response to Short‐term Fructose Overfeeding. Mol Nutr Food Res 2019; 63:e1900773. [DOI: 10.1002/mnfr.201900773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Kun‐Ping Li
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Min Yuan
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Zhuo‐Ru He
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Qi Wu
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| | - Chu‐Mei Zhang
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Zhi‐Li Lei
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| | - Xiang‐Lu Rong
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| | - Zebo Huang
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510006 China
| | - Jeremy E. Turnbull
- Centre for Glycobiology, Department of BiochemistryInstitute of Integrative BiologyUniversity of Liverpool Liverpool L69 7ZB UK
| | - Jiao Guo
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| |
Collapse
|
16
|
Yan K, Zhang W, Han X, Chang F, Liu Y. Inhibitory role of peroxiredoxin 2 in LRRK2 kinase activity induced cellular pathogenesis. J Biomed Res 2019; 34:103-113. [PMID: 32305964 DOI: 10.7555/jbr.33.20190090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Parkinson's disease (PD) is a major neurodegenerative disease. One of the known genetic contributors to PD pathogenesis is leucine-rich repeat kinase 2 (LRRK2) whose mutations with elevated kinase activity could lead to both familial and sporadic PD. However, how the pathogenic kinase activity of LRRK2 is regulated remains largely unclear. Here we report that peroxiredoxin 2 (Prx2) was identified as a novel interacting protein to LRRK2 with preferential expression in dopaminergic neurons over other Prx proteins. We also confirmed that Prx2 interacted with LRRK2 through its COR domain and its overexpression significantly decreased the kinase activity of mutant LRRK2. Functionally, overexpressed Prx2 rescued the transfected cells from LRRK2 mutant induced apoptotic processes. Importantly, overexpressed Prx2 reversed the altered subcellular distribution of cation-independent mannose 6-phosphate receptor (CI-M6PR) induced by PD-mutant LRRK2. Our results suggest that, by interacting with LRRK2, Prx2 may play an inhibitory role in the LRRK2 mediated cellular toxicity in PD by inhibiting its kinase activity.
Collapse
Affiliation(s)
- Kang Yan
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wenfeng Zhang
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu Han
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fei Chang
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yongjian Liu
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
17
|
Correddu D, Leung IK. Targeting mRNA translation in Parkinson’s disease. Drug Discov Today 2019; 24:1295-1303. [DOI: 10.1016/j.drudis.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/23/2019] [Accepted: 04/02/2019] [Indexed: 01/22/2023]
|
18
|
Seol W, Nam D, Son I. Rab GTPases as Physiological Substrates of LRRK2 Kinase. Exp Neurobiol 2019; 28:134-145. [PMID: 31138985 PMCID: PMC6526114 DOI: 10.5607/en.2019.28.2.134] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
LRRK2 (Leucine-Rich Repeat Kinase 2) is a gene whose specific mutations cause Parkinson's disease (PD), the most common neurodegenerative movement disorder. LRRK2 harbors GTPase and kinase activities, two enzyme activities that play critical roles in the regulation of cellular signal transduction. Among the several LRRK2 pathogenic mutations, the most prevalent G2019S mutation increases its kinase activity when compared with the wild-type (WT), suggesting that LRRK2 kinase substrates are potential culprits of PD pathogenesis. Although there were several studies to identify LRRK2 kinase substrates, most of them mainly employed in vitro kinase assays. Therefore, it remains uncertain whether the identified substrates were real physiological substrates. However, efforts to determine physiological LRRK2 kinase substrates have recently identified several members of the Rab GTPase family as physiological LRRK2 kinase substrates. A conserved threonine or serine in the switch II domain of certain Rab GTPase family members (Rab3A/B/C/D, Rab5A/B, Rab8A/B, Rab10, Rab12, Rab29, Rab35 and Rab43) has been pinpointed to be phosphorylated by LRRK2 in cells using sophisticated phosphoproteomics technology in combination with LRRK2-specific kinase inhibitors. The Rab GTPases regulate vesicle trafficking, suggesting that LRRK2 may be a regulator of such vesicle trafficking, confirming previously suggested LRRK2 functions. However, how the consequence of the LRRK2-mediated Rab phosphorylation is related to PD pathogenesis is not clear. This review briefly summarizes the recent results about LRRK2-mediated Rab phosphorylation studies.
Collapse
Affiliation(s)
- Wongi Seol
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea
| | - Daleum Nam
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea
| | - Ilhong Son
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea
- Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea
| |
Collapse
|
19
|
Funk N, Munz M, Ott T, Brockmann K, Wenninger-Weinzierl A, Kühn R, Vogt-Weisenhorn D, Giesert F, Wurst W, Gasser T, Biskup S. The Parkinson's disease-linked Leucine-rich repeat kinase 2 (LRRK2) is required for insulin-stimulated translocation of GLUT4. Sci Rep 2019; 9:4515. [PMID: 30872638 PMCID: PMC6418296 DOI: 10.1038/s41598-019-40808-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Mutations within Leucine-rich repeat kinase 2 (LRRK2) are associated with late-onset Parkinson's disease. The physiological function of LRRK2 and molecular mechanism underlying the pathogenic role of LRRK2 mutations remain uncertain. Here, we investigated the role of LRRK2 in intracellular signal transduction. We find that deficiency of Lrrk2 in rodents affects insulin-dependent translocation of glucose transporter type 4 (GLUT4). This deficit is restored during aging by prolonged insulin-dependent activation of protein kinase B (PKB, Akt) and Akt substrate of 160 kDa (AS160), and is compensated by elevated basal expression of GLUT4 on the cell surface. Furthermore, we find a crucial role of Rab10 phosphorylation by LRRK2 for efficient insulin signal transduction. Translating our findings into human cell lines, we find comparable molecular alterations in fibroblasts from Parkinson's patients with the known pathogenic G2019S LRRK2 mutation. Our results highlight the role of LRRK2 in insulin-dependent signalling with potential therapeutic implications.
Collapse
Affiliation(s)
- Natalja Funk
- Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University Clinic Tuebingen, Tuebingen, Germany.
| | - Marita Munz
- Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University Clinic Tuebingen, Tuebingen, Germany
| | - Thomas Ott
- IZKF Facility for Transgenic Animals, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Kathrin Brockmann
- Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University Clinic Tuebingen, Tuebingen, Germany
| | - Andrea Wenninger-Weinzierl
- Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University Clinic Tuebingen, Tuebingen, Germany
| | - Ralf Kühn
- Max-Delbrueck-Center for Moleculare Medizin and Berlin Institute of Health, Berlin, Germany
- Helmholtz Zentrum Muenchen, Technical University Muenchen-Weihenstephan, Institute of Developmental Genetics, Neuherberg, Germany
| | - Daniela Vogt-Weisenhorn
- Helmholtz Zentrum Muenchen, Technical University Muenchen-Weihenstephan, Institute of Developmental Genetics, Neuherberg, Germany
| | - Florian Giesert
- Helmholtz Zentrum Muenchen, Technical University Muenchen-Weihenstephan, Institute of Developmental Genetics, Neuherberg, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum Muenchen, Technical University Muenchen-Weihenstephan, Institute of Developmental Genetics, Neuherberg, Germany
- German Center for Neurodegenerative Diseases, Munich, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Gasser
- Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University Clinic Tuebingen, Tuebingen, Germany
| | - Saskia Biskup
- Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University Clinic Tuebingen, Tuebingen, Germany.
| |
Collapse
|
20
|
Tomkins JE, Dihanich S, Beilina A, Ferrari R, Ilacqua N, Cookson MR, Lewis PA, Manzoni C. Comparative Protein Interaction Network Analysis Identifies Shared and Distinct Functions for the Human ROCO Proteins. Proteomics 2018; 18:e1700444. [PMID: 29513927 PMCID: PMC5992104 DOI: 10.1002/pmic.201700444] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/05/2018] [Indexed: 12/19/2022]
Abstract
Signal transduction cascades governed by kinases and GTPases are a critical component of the command and control of cellular processes, with the precise outcome partly determined by direct protein-protein interactions (PPIs). Here, we use the human ROCO proteins as a model for investigating PPI signaling events-taking advantage of the unique dual kinase/GTPase activities and scaffolding properties of these multidomain proteins. PPI networks are reported that encompass the human ROCO proteins, developed using two complementary approaches. First, using the recently developed weighted PPI network analysis (WPPINA) pipeline, a confidence-weighted overview of validated ROCO protein interactors is obtained from peer-reviewed literature. Second, novel ROCO PPIs are assessed experimentally via protein microarray screens. The networks derived from these orthologous approaches are compared to identify common elements within the ROCO protein interactome; functional enrichment analysis of this common core of the network identified stress response and cell projection organization as shared functions within this protein family. Despite the presence of these commonalities, the results suggest that many unique interactors and therefore some specialized cellular roles have evolved for different members of the ROCO proteins. Overall, this multi-approach strategy to increase the resolution of protein interaction networks represents a prototype for the utility of PPI data integration in understanding signaling biology.
Collapse
Affiliation(s)
- James E. Tomkins
- School of PharmacyUniversity of ReadingWhiteknights CampusReadingUK
| | - Sybille Dihanich
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
| | - Alexandra Beilina
- Laboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaUSA
| | - Raffaele Ferrari
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
| | - Nicolò Ilacqua
- School of PharmacyUniversity of ReadingWhiteknights CampusReadingUK
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Mark R. Cookson
- Laboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaUSA
| | - Patrick A. Lewis
- School of PharmacyUniversity of ReadingWhiteknights CampusReadingUK
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
| | - Claudia Manzoni
- School of PharmacyUniversity of ReadingWhiteknights CampusReadingUK
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
| |
Collapse
|
21
|
A network-based analysis of the human TET Gene Family. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Foulger RE, Denny P, Hardy J, Martin MJ, Sawford T, Lovering RC. Using the Gene Ontology to Annotate Key Players in Parkinson's Disease. Neuroinformatics 2018; 14:297-304. [PMID: 26825309 PMCID: PMC4896971 DOI: 10.1007/s12021-015-9293-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Gene Ontology (GO) is widely recognised as the gold standard bioinformatics resource for summarizing functional knowledge of gene products in a consistent and computable, information-rich language. GO describes cellular and organismal processes across all species, yet until now there has been a considerable gene annotation deficit within the neurological and immunological domains, both of which are relevant to Parkinson’s disease. Here we introduce the Parkinson’s disease GO Annotation Project, funded by Parkinson’s UK and supported by the GO Consortium, which is addressing this deficit by providing GO annotation to Parkinson’s-relevant human gene products, principally through expert literature curation. We discuss the steps taken to prioritise proteins, publications and cellular processes for annotation, examples of how GO annotations capture Parkinson’s-relevant information, and the advantages that a topic-focused annotation approach offers to users. Building on the existing GO resource, this project collates a vast amount of Parkinson’s-relevant literature into a set of high-quality annotations to be utilized by the research community.
Collapse
Affiliation(s)
- R E Foulger
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK.
| | - P Denny
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| | - J Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - M J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - T Sawford
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - R C Lovering
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
23
|
Abstract
Proteomics and lipidomics are powerful tools to the large-scale study of proteins and lipids, respectively. Several methods can be employed with particular benefits and limitations in the study of human brain. This is a review of the rationale use of current techniques with particular attention to limitations and pitfalls inherent to each one of the techniques, and more importantly, to their use in the study of post-mortem brain tissue. These aspects are cardinal to avoid false interpretations, errors and unreal expectancies. Other points are also stressed as exemplified in the analysis of human neurodegenerative diseases which are manifested by disease-, region-, and stage-specific modifications commonly in the context of aging. Information about certain altered protein clusters and proteins oxidatively damaged is summarized for Alzheimer and Parkinson diseases.
Collapse
Affiliation(s)
- Isidro Ferrer
- Pathologic Anatomy Service, Institute of Neuropathology, Bellvitge University Hospital; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona; and Network Center of Biomedical Research on Neurodegenerative Diseases, Institute Carlos III; Hospitalet de Llobregat, Llobregat, Spain.
| |
Collapse
|
24
|
Panni S, Prakash A, Bateman A, Orchard S. The yeast noncoding RNA interaction network. RNA (NEW YORK, N.Y.) 2017; 23:1479-1492. [PMID: 28701522 PMCID: PMC5602107 DOI: 10.1261/rna.060996.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
This article describes the creation of the first expert manually curated noncoding RNA interaction networks for S. cerevisiae The RNA-RNA and RNA-protein interaction networks have been carefully extracted from the experimental literature and made available through the IntAct database (www.ebi.ac.uk/intact). We provide an initial network analysis and compare their properties to the much larger protein-protein interaction network. We find that the proteins that bind to ncRNAs in the network contain only a small proportion of classical RNA binding domains. We also see an enrichment of WD40 domains suggesting their direct involvement in ncRNA interactions. We discuss the challenges in collecting noncoding RNA interaction data and the opportunities for worldwide collaboration to fill the unmet need for this data.
Collapse
Affiliation(s)
- Simona Panni
- Università della Calabria, Dipartimento di Biologia, Ecologia e Scienze della Terra, Rende 87036, Italy
| | - Ananth Prakash
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| |
Collapse
|
25
|
LRRK2: from kinase to GTPase to microtubules and back. Biochem Soc Trans 2017; 45:141-146. [PMID: 28202667 DOI: 10.1042/bst20160333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022]
Abstract
Mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene are intimately linked to both familial and sporadic Parkinson's disease. LRRK2 is a large protein kinase able to bind and hydrolyse GTP. A wealth of in vitro studies have established that the distinct pathogenic LRRK2 mutants differentially affect those enzymatic activities, either causing an increase in kinase activity without altering GTP binding/GTP hydrolysis, or displaying no change in kinase activity but increased GTP binding/decreased GTP hydrolysis. Importantly, recent studies have shown that all pathogenic LRRK2 mutants display increased kinase activity towards select kinase substrates when analysed in intact cells. To understand those apparently discrepant results, better insight into the cellular role(s) of normal and pathogenic LRRK2 is crucial. Various studies indicate that LRRK2 regulates numerous intracellular vesicular trafficking pathways, but the mechanism(s) by which the distinct pathogenic mutants may equally interfere with such pathways has largely remained elusive. Here, we summarize the known alterations in the catalytic activities of the distinct pathogenic LRRK2 mutants and propose a testable working hypothesis by which the various mutants may affect membrane trafficking events in identical ways by culminating in increased phosphorylation of select substrate proteins known to be crucial for membrane trafficking between specific cellular compartments.
Collapse
|
26
|
Kang UB, Marto JA. Leucine-rich repeat kinase 2 and Parkinson's disease. Proteomics 2016; 17. [PMID: 27723254 DOI: 10.1002/pmic.201600092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein that is expressed in many tissues and participates in numerous biological pathways. Mutations in LRRK2 are recognized as genetic risk factors for familial Parkinson's disease (PD) and may also represent causal factors in the more common sporadic form of PD. The structure of LRRK2 comprises a combination of GTPase, kinase, and scaffolding domains. This functional diversity, combined with a potentially central role in genetic and idiopathic PD motivates significant effort to further credential LRRK2 as a therapeutic target. Here, we review the current understanding for LRRK2 function in normal physiology and PD, with emphasis on insight gained from proteomic approaches.
Collapse
Affiliation(s)
- Un-Beom Kang
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
First model of dimeric LRRK2: the challenge of unrevealing the structure of a multidomain Parkinson's-associated protein. Biochem Soc Trans 2016; 44:1635-1641. [DOI: 10.1042/bst20160226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 01/10/2023]
Abstract
Mutations within the leucine-rich repeat kinase 2 (LRRK2) gene represent the most common cause of Mendelian forms of Parkinson's disease, among autosomal dominant cases. Its gene product, LRRK2, is a large multidomain protein that belongs to the Roco protein family exhibiting GTPase and kinase activity, with the latter activity increased by pathogenic mutations. To allow rational drug design against LRRK2 and to understand the cross-regulation of the G- and the kinase domain at a molecular level, it is key to solve the three-dimensional structure of the protein. We review here our recent successful approach to build the first structural model of dimeric LRRK2 by an integrative modeling approach.
Collapse
|
28
|
Duclert-Savatier N, Bouvier G, Nilges M, Malliavin TE. Building Graphs To Describe Dynamics, Kinetics, and Energetics in the d-ALa:d-Lac Ligase VanA. J Chem Inf Model 2016; 56:1762-75. [PMID: 27579990 PMCID: PMC5039762 DOI: 10.1021/acs.jcim.6b00211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
The d-Ala:d-Lac ligase, VanA, plays a critical
role in the resistance of vancomycin. Indeed, it is involved in the
synthesis of a peptidoglycan precursor, to which vancomycin cannot
bind. The reaction catalyzed by VanA requires the opening of the so-called
“ω-loop”, so that the substrates can enter the
active site. Here, the conformational landscape of VanA is explored
by an enhanced sampling approach: the temperature-accelerated molecular
dynamics (TAMD). Analysis of the molecular dynamics (MD) and TAMD
trajectories recorded on VanA permits a graphical description of the
structural and kinetics aspects of the conformational space of VanA,
where the internal mobility and various opening modes of the ω-loop
play a major role. The other important feature is the correlation
of the ω-loop motion with the movements of the opposite domain,
defined as containing the residues A149–Q208. Conformational
and kinetic clusters have been determined and a path describing the
ω-loop opening was extracted from these clusters. The determination
of this opening path, as well as the relative importance of hydrogen
bonds along the path, permit one to propose some key residue interactions
for the kinetics of the ω-loop opening.
Collapse
Affiliation(s)
- Nathalie Duclert-Savatier
- Département de Biologie Structurale et Chimie, Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528 , 25, rue du Dr Roux, 75015 Paris, France
| | - Guillaume Bouvier
- Département de Biologie Structurale et Chimie, Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528 , 25, rue du Dr Roux, 75015 Paris, France
| | - Michael Nilges
- Département de Biologie Structurale et Chimie, Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528 , 25, rue du Dr Roux, 75015 Paris, France
| | - Thérèse E Malliavin
- Département de Biologie Structurale et Chimie, Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528 , 25, rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
29
|
Fasano M, Monti C, Alberio T. A systems biology-led insight into the role of the proteome in neurodegenerative diseases. Expert Rev Proteomics 2016; 13:845-55. [PMID: 27477319 DOI: 10.1080/14789450.2016.1219254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Multifactorial disorders are the result of nonlinear interactions of several factors; therefore, a reductionist approach does not appear to be appropriate. Proteomics is a global approach that can be efficiently used to investigate pathogenetic mechanisms of neurodegenerative diseases. AREAS COVERED Here, we report a general introduction about the systems biology approach and mechanistic insights recently obtained by over-representation analysis of proteomics data of cellular and animal models of Alzheimer's disease, Parkinson's disease and other neurodegenerative disorders, as well as of affected human tissues. Expert commentary: As an inductive method, proteomics is based on unbiased observations that further require validation of generated hypotheses. Pathway databases and over-representation analysis tools allow researchers to assign an expectation value to pathogenetic mechanisms linked to neurodegenerative diseases. The systems biology approach based on omics data may be the key to unravel the complex mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Mauro Fasano
- a Department of Science and High Technology and Center of Neuroscience , University of Insubria , Busto Arsizio , Italy
| | - Chiara Monti
- a Department of Science and High Technology and Center of Neuroscience , University of Insubria , Busto Arsizio , Italy
| | - Tiziana Alberio
- a Department of Science and High Technology and Center of Neuroscience , University of Insubria , Busto Arsizio , Italy
| |
Collapse
|
30
|
Structure, function, and leucine-rich repeat kinase 2: On the importance of reproducibility in understanding Parkinson's disease. Proc Natl Acad Sci U S A 2016; 113:8346-8. [PMID: 27422551 DOI: 10.1073/pnas.1609311113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Sowada N, Stiller B, Kubisch C. Increased copper toxicity in Saccharomyces cerevisiae lacking VPS35, a component of the retromer and monogenic Parkinson disease gene in humans. Biochem Biophys Res Commun 2016; 476:528-533. [PMID: 27262440 DOI: 10.1016/j.bbrc.2016.05.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/28/2016] [Indexed: 10/21/2022]
Abstract
The Saccharomyces cerevisiae gene VPS35 encodes a component of the retromer complex which is involved in vesicle transport from endosomes to the trans-Golgi network. Yeast and human VPS35 orthologs are highly conserved and mutations in human VPS35 cause an autosomal dominant form of late-onset Parkinson disease (PD). We now show that deletion of VPS35 in yeast (vps35Δ) leads to a dose-dependent growth defect towards copper. This increased sensitivity could be rescued by transformation with yeast wild-type VPS35 but not by the expression of a construct harboring the yeast equivalent (i.e. D686N) of the most commonly identified VPS35-associated PD mutation, p.D620N. In addition, we show that expression of one copy of α-synuclein, which is known to directly interact with copper, leads to a pronounced aggravation of copper toxicity in vps35Δ cells, thereby linking the regulation of copper homeostasis by Vps35p in yeast to one of the key molecules in PD pathophysiology.
Collapse
Affiliation(s)
- Nadine Sowada
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Barbara Stiller
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University of Ulm, Ulm, Germany; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
32
|
Abstract
Mutations in LRRK2 are associated with inherited Parkinson's disease (PD) in a large number of families, and the genetic locus containing the LRRK2 gene contains a risk factor for sporadic PD. The LRRK2 protein contains several domains that suggest a role in cellular signaling, including a kinase domain. It is also clear that LRRK2 interacts, either physically or genetically, with several other important proteins implicated in PD, suggesting that LRRK2 may be a central player in the pathways that underlie parkinsonism. As such, LRRK2 has been proposed to be a plausible target for therapeutic intervention, with kinase inhibition being pursued most actively. However, there are still several fundamental aspects of LRRK2 biology and function that remain unresolved at this time. This review will focus on the key questions of normal function of LRRK2 and how this might be related to the pathophysiology of PD.
Collapse
|
33
|
Wallings R, Manzoni C, Bandopadhyay R. Cellular processes associated with LRRK2 function and dysfunction. FEBS J 2015; 282:2806-26. [PMID: 25899482 PMCID: PMC4522467 DOI: 10.1111/febs.13305] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/23/2015] [Accepted: 04/20/2015] [Indexed: 02/07/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2)-encoding gene are the most common cause of monogenic Parkinson's disease. The identification of LRRK2 polymorphisms associated with increased risk for sporadic Parkinson's disease, as well as the observation that LRRK2-Parkinson's disease has a pathological phenotype that is almost indistinguishable from the sporadic form of disease, suggested LRRK2 as the culprit to provide understanding for both familial and sporadic Parkinson's disease cases. LRRK2 is a large protein with both GTPase and kinase functions. Mutations segregating with Parkinson's disease reside within the enzymatic core of LRRK2, suggesting that modification of its activity impacts greatly on disease onset and progression. Although progress has been made since its discovery in 2004, there is still much to be understood regarding LRRK2's physiological and neurotoxic properties. Unsurprisingly, given the presence of multiple enzymatic domains, LRRK2 has been associated with a diverse set of cellular functions and signalling pathways including mitochondrial function, vesicle trafficking together with endocytosis, retromer complex modulation and autophagy. This review discusses the state of current knowledge on the role of LRRK2 in health and disease with discussion of potential substrates of phosphorylation and functional partners with particular emphasis on signalling mechanisms. In addition, the use of immune cells in LRRK2 research and the role of oxidative stress as a regulator of LRRK2 activity and cellular function are also discussed.
Collapse
Affiliation(s)
- Rebecca Wallings
- Reta Lila Weston Institute of Neurological Studies and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, UK.,UCL Institute of Neurology, London, UK
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
34
|
Orchard S, Hermjakob H. Shared resources, shared costs--leveraging biocuration resources. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav009. [PMID: 25776020 PMCID: PMC4360620 DOI: 10.1093/database/bav009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The manual curation of the information in biomedical resources is an expensive task. This article argues the value of this approach in comparison with other apparently less costly options, such as automated annotation or text-mining, then discusses ways in which databases can make cost savings by sharing infrastructure and tool development. Sharing curation effort is a model already being adopted by several data resources. Approaches taken by two of these, the Gene Ontology annotation effort and the IntAct molecular interaction database, are reviewed in more detail. These models help to ensure long-term persistence of curated data and minimizes redundant development of resources by multiple disparate groups. Database URL:http://www.ebi.ac.uk/intact and http://www.ebi.ac.uk/GOA/
Collapse
Affiliation(s)
- Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|