1
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
2
|
Ren C, Chen T, Zhang S, Gao Q, Zou J, Li P, Wang B, Zhao Y, OuYang A, Suolang S, Zhou H. PLK3 facilitates replication of swine influenza virus by phosphorylating viral NP protein. Emerg Microbes Infect 2023; 12:2275606. [PMID: 37874309 PMCID: PMC10768867 DOI: 10.1080/22221751.2023.2275606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Swine H1N1/2009 influenza is a highly infectious respiratory disease in pigs, which poses a great threat to pig production and human health. In this study, we investigated the global expression profiling of swine-encoded genes in response to swine H1N1/2009 influenza A virus (SIV-H1N1/2009) in newborn pig trachea (NPTr) cells. In total, 166 genes were found to be differentially expressed (DE) according to the gene microarray. After analyzing the DE genes which might affect the SIV-H1N1/2009 replication, we focused on polo-like kinase 3 (PLK3). PLK3 is a member of the PLK family, which is a highly conserved serine/threonine kinase in eukaryotes and well known for its role in the regulation of cell cycle and cell division. We validated that the expression of PLK3 was upregulated after SIV-H1N1/2009 infection. Additionally, PLK3 was found to interact with viral nucleoprotein (NP), significantly increased NP phosphorylation and oligomerization, and promoted viral ribonucleoprotein assembly and replication. Furthermore, we identified serine 482 (S482) as the phosphorylated residue on NP by PLK3. The phosphorylation of S482 regulated NP oligomerization, viral polymerase activity and growth. Our findings provide further insights for understanding the replication of influenza A virus.
Collapse
Affiliation(s)
- Caiyue Ren
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Tong Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Shishuo Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Qingxia Gao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Peng Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Biaoxiong Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yaxin Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Aotian OuYang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Sizhu Suolang
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, People’s Republic of China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| |
Collapse
|
3
|
Deubiquitinating Enzyme Inhibitors Block Chikungunya Virus Replication. Viruses 2023; 15:v15020481. [PMID: 36851696 PMCID: PMC9966916 DOI: 10.3390/v15020481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Ubiquitination and deubiquitination processes are widely involved in modulating the function, activity, localization, and stability of multiple cellular proteins regulating almost every aspect of cellular function. Several virus families have been shown to exploit the cellular ubiquitin-conjugating system to achieve a productive infection: enter the cell, promote genome replication, or assemble and release viral progeny. In this study, we analyzed the role of deubiquitinating enzymes (DUBs) during chikungunya virus (CHIKV) infection. HEK293T, Vero-E6, and Huh-7 cells were treated with two DUB inhibitors (PR619 or WP1130). Then, infected cells were evaluated by flow cytometry, and viral progeny was quantified using the plaque assay method. The changes in viral proteins and viral RNA were analyzed using Western blotting and RT-qPCR, respectively. Results indicate that treatment with DUB inhibitors impairs CHIKV replication due to significant protein and viral RNA synthesis deregulation. Therefore, DUB activity may be a pharmacological target for blocking CHIKV infection.
Collapse
|
4
|
Treffers EE, Tas A, Scholte FEM, de Ru AH, Snijder EJ, van Veelen PA, van Hemert MJ. The alphavirus nonstructural protein 2 NTPase induces a host translational shut-off through phosphorylation of eEF2 via cAMP-PKA-eEF2K signaling. PLoS Pathog 2023; 19:e1011179. [PMID: 36848386 PMCID: PMC9997916 DOI: 10.1371/journal.ppat.1011179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/09/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging alphavirus. Since 2005, it has infected millions of people during outbreaks in Africa, Asia, and South/Central America. CHIKV replication depends on host cell factors at many levels and is expected to have a profound effect on cellular physiology. To obtain more insight into host responses to infection, stable isotope labeling with amino acids in cell culture and liquid chromatography-tandem mass spectrometry were used to assess temporal changes in the cellular phosphoproteome during CHIKV infection. Among the ~3,000 unique phosphorylation sites analyzed, the largest change in phosphorylation status was measured on residue T56 of eukaryotic elongation factor 2 (eEF2), which showed a >50-fold increase at 8 and 12 h p.i. Infection with other alphaviruses (Semliki Forest, Sindbis and Venezuelan equine encephalitis virus (VEEV)) triggered a similarly strong eEF2 phosphorylation. Expression of a truncated form of CHIKV or VEEV nsP2, containing only the N-terminal and NTPase/helicase domains (nsP2-NTD-Hel), sufficed to induce eEF2 phosphorylation, which could be prevented by mutating key residues in the Walker A and B motifs of the NTPase domain. Alphavirus infection or expression of nsP2-NTD-Hel resulted in decreased cellular ATP levels and increased cAMP levels. This did not occur when catalytically inactive NTPase mutants were expressed. The wild-type nsP2-NTD-Hel inhibited cellular translation independent of the C-terminal nsP2 domain, which was previously implicated in directing the virus-induced host shut-off for Old World alphaviruses. We hypothesize that the alphavirus NTPase activates a cellular adenylyl cyclase resulting in increased cAMP levels, thus activating PKA and subsequently eukaryotic elongation factor 2 kinase. This in turn triggers eEF2 phosphorylation and translational inhibition. We conclude that the nsP2-driven increase of cAMP levels contributes to the alphavirus-induced shut-off of cellular protein synthesis that is shared between Old and New World alphaviruses. MS Data are available via ProteomeXchange with identifier PXD009381.
Collapse
Affiliation(s)
- Emmely E. Treffers
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ali Tas
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Florine E. M. Scholte
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud H. de Ru
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J. Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A. van Veelen
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn J. van Hemert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
5
|
Peinado RDS, Eberle RJ, Arni RK, Coronado MA. A Review of Omics Studies on Arboviruses: Alphavirus, Orthobunyavirus and Phlebovirus. Viruses 2022; 14:2194. [PMID: 36298749 PMCID: PMC9607206 DOI: 10.3390/v14102194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Since the intricate and complex steps in pathogenesis and host-viral interactions of arthropod-borne viruses or arboviruses are not completely understood, the multi-omics approaches, which encompass proteomics, transcriptomics, genomics and metabolomics network analysis, are of great importance. We have reviewed the omics studies on mosquito-borne viruses of the Togaviridae, Peribuyaviridae and Phenuiviridae families, specifically for Chikungunya, Mayaro, Oropouche and Rift Valley Fever viruses. Omics studies can potentially provide a new perspective on the pathophysiology of arboviruses, contributing to a better comprehension of these diseases and their effects and, hence, provide novel insights for the development of new antiviral drugs or therapies.
Collapse
Affiliation(s)
- Rafaela dos S. Peinado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Sao Paulo State University, Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Raphael J. Eberle
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, Sao Paulo State University, Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Mônika A. Coronado
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
6
|
Bonaventure B, Goujon C. DExH/D-box helicases at the frontline of intrinsic and innate immunity against viral infections. J Gen Virol 2022; 103. [PMID: 36006669 DOI: 10.1099/jgv.0.001766] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
DExH/D-box helicases are essential nucleic acid and ribonucleoprotein remodelers involved in all aspects of nucleic acid metabolism including replication, gene expression and post-transcriptional modifications. In parallel to their importance in basic cellular functions, DExH/D-box helicases play multiple roles in viral life cycles, with some of them highjacked by viruses or negatively regulating innate immune activation. However, other DExH/D-box helicases have recurrently been highlighted as direct antiviral effectors or as positive regulators of innate immune activation. Innate immunity relies on the ability of Pathogen Recognition Receptors to recognize viral signatures and trigger the production of interferons (IFNs) and pro-inflammatory cytokines. Secreted IFNs interact with their receptors to establish antiviral cellular reprogramming via expression regulation of the interferon-stimulated genes (ISGs). Several DExH/D-box helicases have been reported to act as viral sensors (DDX3, DDX41, DHX9, DDX1/DDX21/DHX36 complex), and others to play roles in innate immune activation (DDX60, DDX60L, DDX23). In contrast, the DDX39A, DDX46, DDX5 and DDX24 helicases act as negative regulators and impede IFN production upon viral infection. Beyond their role in viral sensing, the ISGs DDX60 and DDX60L act as viral inhibitors. Interestingly, the constitutively expressed DEAD-box helicases DDX56, DDX17, DDX42 intrinsically restrict viral replication. Hence, DExH/D-box helicases appear to form a multilayer network of primary and secondary factors involved in both intrinsic and innate antiviral immunity. In this review, we highlight recent findings on the extent of antiviral defences played by helicases and emphasize the need to better understand their immune functions as well as their complex interplay.
Collapse
Affiliation(s)
- Boris Bonaventure
- IRIM, CNRS, Montpellier University, France.,Present address: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
7
|
Abstract
The abundance, localization, modifications, and protein-protein interactions of many host cell and virus proteins can change dynamically throughout the course of any viral infection. Studying these changes is critical for a comprehensive understanding of how viruses replicate and cause disease, as well as for the development of antiviral therapeutics and vaccines. Previously, we developed a mass spectrometry-based technique called quantitative temporal viromics (QTV), which employs isobaric tandem mass tags (TMTs) to allow precise comparative quantification of host and virus proteomes through a whole time course of infection. In this review, we discuss the utility and applications of QTV, exemplified by numerous studies that have since used proteomics with a variety of quantitative techniques to study virus infection through time. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom;
| |
Collapse
|
8
|
Small-Molecule Inhibitors of Chikungunya Virus: Mechanisms of Action and Antiviral Drug Resistance. Antimicrob Agents Chemother 2020; 64:AAC.01788-20. [PMID: 32928738 PMCID: PMC7674028 DOI: 10.1128/aac.01788-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has spread to more than 60 countries worldwide. CHIKV infection leads to a febrile illness known as chikungunya fever (CHIKF), which is characterized by long-lasting and debilitating joint and muscle pain. CHIKV can cause large-scale epidemics with high attack rates, which substantiates the need for development of effective therapeutics suitable for outbreak containment. In this review, we highlight the different strategies used for developing CHIKV small-molecule inhibitors, ranging from high-throughput cell-based screening to in silico screens and enzymatic assays with purified viral proteins. Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has spread to more than 60 countries worldwide. CHIKV infection leads to a febrile illness known as chikungunya fever (CHIKF), which is characterized by long-lasting and debilitating joint and muscle pain. CHIKV can cause large-scale epidemics with high attack rates, which substantiates the need for development of effective therapeutics suitable for outbreak containment. In this review, we highlight the different strategies used for developing CHIKV small-molecule inhibitors, ranging from high-throughput cell-based screening to in silico screens and enzymatic assays with purified viral proteins. We further discuss the current status of the most promising molecules, including in vitro and in vivo findings. In particular, we focus on describing host and/or viral targets, mode of action, and mechanisms of antiviral drug resistance and associated mutations. Knowledge of the key molecular determinants of drug resistance will aid selection of the most promising antiviral agent(s) for clinical use. For these reasons, we also summarize the available information about drug-resistant phenotypes in Aedes mosquito vectors. From this review, it is evident that more of the active molecules need to be evaluated in preclinical and clinical models to address the current lack of antiviral treatment for CHIKF.
Collapse
|
9
|
Wong KZ, Chu JJH. The Interplay of Viral and Host Factors in Chikungunya Virus Infection: Targets for Antiviral Strategies. Viruses 2018; 10:E294. [PMID: 29849008 PMCID: PMC6024654 DOI: 10.3390/v10060294] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/13/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) has re-emerged as one of the many medically important arboviruses that have spread rampantly across the world in the past decade. Infected patients come down with acute fever and rashes, and a portion of them suffer from both acute and chronic arthralgia. Currently, there are no targeted therapeutics against this debilitating virus. One approach to develop potential therapeutics is by understanding the viral-host interactions. However, to date, there has been limited research undertaken in this area. In this review, we attempt to briefly describe and update the functions of the different CHIKV proteins and their respective interacting host partners. In addition, we also survey the literature for other reported host factors and pathways involved during CHIKV infection. There is a pressing need for an in-depth understanding of the interaction between the host environment and CHIKV in order to generate potential therapeutics.
Collapse
Affiliation(s)
- Kai Zhi Wong
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06-05, Singapore 138673, Singapore.
| |
Collapse
|
10
|
Pohl MO, von Recum-Knepper J, Rodriguez-Frandsen A, Lanz C, Yángüez E, Soonthornvacharin S, Wolff T, Chanda SK, Stertz S. Identification of Polo-like kinases as potential novel drug targets for influenza A virus. Sci Rep 2017; 7:8629. [PMID: 28819179 PMCID: PMC5561215 DOI: 10.1038/s41598-017-08942-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years genome-wide RNAi screens have revealed hundreds of cellular factors required for influenza virus infections in human cells. The long-term goal is to establish some of them as drug targets for the development of the next generation of antivirals against influenza. We found that several members of the polo-like kinases (PLK), a family of serine/threonine kinases with well-known roles in cell cycle regulation, were identified as hits in four different RNAi screens and we therefore studied their potential as drug target for influenza. We show that knockdown of PLK1, PLK3, and PLK4, as well as inhibition of PLK kinase activity by four different compounds, leads to reduced influenza virus replication, and we map the requirement of PLK activity to early stages of the viral replication cycle. We also tested the impact of the PLK inhibitor BI2536 on influenza virus replication in a human lung tissue culture model and observed strong inhibition of virus replication with no measurable toxicity. This study establishes the PLKs as potential drug targets for influenza and contributes to a more detailed understanding of the intricate interactions between influenza viruses and their host cells.
Collapse
Affiliation(s)
- Marie O Pohl
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Life Sciences Zurich Graduate School, ETH and University of Zürich, 8057, Zurich, Switzerland
| | - Jessica von Recum-Knepper
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ariel Rodriguez-Frandsen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Caroline Lanz
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Life Sciences Zurich Graduate School, ETH and University of Zürich, 8057, Zurich, Switzerland
| | - Emilio Yángüez
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Stephen Soonthornvacharin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch Institute, 13353, Berlin, Germany
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
11
|
Burt FJ, Chen W, Miner JJ, Lenschow DJ, Merits A, Schnettler E, Kohl A, Rudd PA, Taylor A, Herrero LJ, Zaid A, Ng LFP, Mahalingam S. Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. THE LANCET. INFECTIOUS DISEASES 2017; 17:e107-e117. [PMID: 28159534 DOI: 10.1016/s1473-3099(16)30385-1] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/26/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022]
Abstract
Re-emergence of chikungunya virus, a mosquito-transmitted pathogen, is of serious public health concern. In the past 15 years, after decades of infrequent, sporadic outbreaks, the virus has caused major epidemic outbreaks in Africa, Asia, the Indian Ocean, and more recently the Caribbean and the Americas. Chikungunya virus is mainly transmitted by Aedes aegypti mosquitoes in tropical and subtropical regions, but the potential exists for further spread because of genetic adaptation of the virus to Aedes albopictus, a species that thrives in temperate regions. Chikungunya virus represents a substantial health burden to affected populations, with symptoms that include severe joint and muscle pain, rashes, and fever, as well as prolonged periods of disability in some patients. The inflammatory response coincides with raised levels of immune mediators and infiltration of immune cells into infected joints and surrounding tissues. Animal models have provided insights into disease pathology and immune responses. Although host innate and adaptive responses have a role in viral clearance and protection, they can also contribute to virus-induced immune pathology. Understanding the mechanisms of host immune responses is essential for the development of treatments and vaccines. Inhibitory compounds targeting key inflammatory pathways, as well as attenuated virus vaccines, have shown some success in animal models, including an attenuated vaccine strain based on an isolate from La Reunion incorporating an internal ribosome entry sequence that prevents the virus from infecting mosquitoes and a vaccine based on virus-like particles expressing envelope proteins. However, immune correlates of protection, as well as the safety of prophylactic and therapeutic candidates, are important to consider for their application in chikungunya infections. In this Review, we provide an update on chikungunya virus with regard to its epidemiology, molecular virology, virus-host interactions, immunological responses, animal models, and potential antiviral therapies and vaccines.
Collapse
Affiliation(s)
- Felicity J Burt
- National Health Laboratory Services, Universitas and Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Weiqiang Chen
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jonathan J Miner
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Deborah J Lenschow
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Penny A Rudd
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Adam Taylor
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ali Zaid
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
12
|
Zhao H, Konzer A, Mi J, Chen M, Pettersson U, Lind SB. Posttranscriptional Regulation in Adenovirus Infected Cells. J Proteome Res 2016; 16:872-888. [PMID: 27959563 DOI: 10.1021/acs.jproteome.6b00834] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A deeper understanding of how viruses reprogram their hosts for production of progeny is needed to combat infections. Most knowledge on the regulation of cellular gene expression during adenovirus infection is derived from mRNA studies. Here, we investigated the changes in protein expression during the late phase of adenovirus type 2 (Ad2) infection of the IMR-90 cell line by stable isotope labeling in cell culture with subsequent liquid chromatography-high resolution tandem mass spectrometric analysis. Two biological replicates of samples collected at 24 and 36 h post-infection (hpi) were investigated using swapped labeling. In total, 2648 and 2394 proteins were quantified at 24 and 36 hpi, respectively. Among them, 659 and 645 were deregulated >1.6-fold at the two time points. The protein expression was compared with RNA expression using cDNA sequencing data. The correlation was surprisingly low (r = 0.3), and several examples of posttranscriptional regulation were observed; e.g., proteins related to carbohydrate metabolism were up-regulated at the protein level but unchanged at the RNA level, whereas histone proteins were down-regulated at the protein level but up-regulated at the RNA level. The deregulation of cellular gene expression by adenovirus is mediated at multiple levels and more complex than hitherto believed.
Collapse
Affiliation(s)
- Hongxing Zhao
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory , 751 85 Uppsala, Sweden
| | - Anne Konzer
- Department of Chemistry-BMC, Science for Life Laboratory, Analytical Chemistry, Box 599, Uppsala University , 751 24 Uppsala, Sweden
| | - Jia Mi
- Department of Chemistry-BMC, Science for Life Laboratory, Analytical Chemistry, Box 599, Uppsala University , 751 24 Uppsala, Sweden
| | - Moashan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, LaTrobe University , Melbourne, Victoria 3086, Australia
| | - Ulf Pettersson
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory , 751 85 Uppsala, Sweden
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Science for Life Laboratory, Analytical Chemistry, Box 599, Uppsala University , 751 24 Uppsala, Sweden
| |
Collapse
|
13
|
The nucleolar helicase DDX56 redistributes to West Nile virus assembly sites. Virology 2016; 500:169-177. [PMID: 27821284 DOI: 10.1016/j.virol.2016.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 10/18/2016] [Accepted: 10/25/2016] [Indexed: 01/30/2023]
Abstract
Flaviviruses, including the human pathogen, West Nile virus (WNV), are known to co-opt many host factors for their replication and propagation. To this end, we previously reported that the nucleolar DEAD-box RNA helicase, DDX56, is important for production of infectious WNV virions. In this study, we show that WNV infection results in relocalization of DDX56 from nucleoli to virus assembly sites on the endoplasmic reticululm (ER), an observation that is consistent with a role for DDX56 in WNV virion assembly. Super-resolution microscopy revealed that capsid and DDX56 localized to the same subcompartment of the ER, however, unexpectedly, stable interaction between these two proteins was only detected in the nucleus. Together, these data suggest that DDX56 relocalizes to the site of virus assembly during WNV infection and that its interaction with WNV capsid in the cytoplasm may occur transiently during virion morphogenesis.
Collapse
|
14
|
Varghese FS, Thaa B, Amrun SN, Simarmata D, Rausalu K, Nyman TA, Merits A, McInerney GM, Ng LFP, Ahola T. The Antiviral Alkaloid Berberine Reduces Chikungunya Virus-Induced Mitogen-Activated Protein Kinase Signaling. J Virol 2016; 90:9743-9757. [PMID: 27535052 PMCID: PMC5068526 DOI: 10.1128/jvi.01382-16] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/10/2016] [Indexed: 01/06/2023] Open
Abstract
Chikungunya virus (CHIKV) has infected millions of people in the tropical and subtropical regions since its reemergence in the last decade. We recently identified the nontoxic plant alkaloid berberine as an antiviral substance against CHIKV in a high-throughput screen. Here, we show that berberine is effective in multiple cell types against a variety of CHIKV strains, also at a high multiplicity of infection, consolidating the potential of berberine as an antiviral drug. We excluded any effect of this compound on virus entry or on the activity of the viral replicase. A human phosphokinase array revealed that CHIKV infection specifically activated the major mitogen-activated protein kinase (MAPK) signaling pathways extracellular signal-related kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK). Upon treatment with berberine, this virus-induced MAPK activation was markedly reduced. Subsequent analyses with specific inhibitors of these kinases indicated that the ERK and JNK signaling cascades are important for the generation of progeny virions. In contrast to specific MAPK inhibitors, berberine lowered virus-induced activation of all major MAPK pathways and resulted in a stronger reduction in viral titers. Further, we assessed the in vivo efficacy of berberine in a mouse model and measured a significant reduction of CHIKV-induced inflammatory disease. In summary, we demonstrate the efficacy of berberine as a drug against CHIKV and highlight the importance of the MAPK signaling pathways in the alphavirus infectious cycle. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne virus that causes severe and persistent muscle and joint pain and has recently spread to the Americas. No licensed drug exists to counter this virus. In this study, we report that the alkaloid berberine is antiviral against different CHIKV strains and in multiple human cell lines. We demonstrate that berberine collectively reduced the virus-induced activation of cellular mitogen-activated protein kinase signaling. The relevance of these signaling cascades in the viral life cycle was emphasized by specific inhibitors of these kinase pathways, which decreased the production of progeny virions. Berberine significantly reduced CHIKV-induced inflammatory disease in a mouse model, demonstrating efficacy of the drug in vivo Overall, this work makes a strong case for pursuing berberine as a potential anti-CHIKV therapeutic compound and for exploring the MAPK signaling pathways as antiviral targets against alphavirus infections.
Collapse
Affiliation(s)
- Finny S Varghese
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Bastian Thaa
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Siti Naqiah Amrun
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Diane Simarmata
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Tuula A Nyman
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa F P Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Tero Ahola
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Jie P, Zhe M, Chengwei H, Huixing L, Hui Z, Chengping L, Hongjie F. Virulent and Vaccine Strains of Streptococcus equi ssp. zooepidemicus Have Different Influences on Phagocytosis and Cytokine Secretion of Macrophages. J Proteome Res 2016; 16:77-86. [PMID: 27726373 DOI: 10.1021/acs.jproteome.6b00571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Swine streptococcosis is a significant threat to the Chinese pig industry, and Streptococcus equi ssp. zooepidemicus (SEZ) is one of the major pathogens. SEZ ATCC35246 is a classical virulent strain, while SEZ ST171 is a Chinese attenuated vaccine strain. In this study, we employed stable isotope labeling by amino acids in cell culture and liquid chromatography-mass spectrometry (LC-MS) to determine the differential response of macrophages to infection by these two strains. Eighty-seven upregulated proteins and 135 downregulated proteins were identified. The proteomic results were verified by real-time polymerase chain reaction for 10 chosen genes and Western blotting for three proteins. All differentially abundant proteins were analyzed for their Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations. Certain downregulated proteins were associated with immunity functions, and the upregulated proteins were related to cytomembrane and cytoskeleton regulation. The phagocytosis rate and cytokine genes transcription in Raw264.7 cells during SEZ ATCC35246 and ST171 infection were detected to confirm the bioinformatics results. These results showed that different effects on macrophage phagocytosis and cytokine expression might explain the different phenotypes of SEZ ATCC35246 and ST171 infection. This research provided clues to the mechanisms of host immunity responses to SEZ ST171and SEZ ATCC35246, which could identify potential therapy and vaccine development targets.
Collapse
Affiliation(s)
- Peng Jie
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, China
| | - Ma Zhe
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hua Chengwei
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, China
| | - Lin Huixing
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zhang Hui
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Lu Chengping
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, China
| | - Fan Hongjie
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
16
|
Fros JJ, Pijlman GP. Alphavirus Infection: Host Cell Shut-Off and Inhibition of Antiviral Responses. Viruses 2016; 8:v8060166. [PMID: 27294951 PMCID: PMC4926186 DOI: 10.3390/v8060166] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 12/18/2022] Open
Abstract
Alphaviruses cause debilitating disease in humans and animals and are transmitted by blood-feeding arthropods, typically mosquitoes. With a traditional focus on two models, Sindbis virus and Semliki Forest virus, alphavirus research has significantly intensified in the last decade partly due to the re-emergence and dramatic expansion of chikungunya virus in Asia, Europe, and the Americas. As a consequence, alphavirus–host interactions are now understood in much more molecular detail, and important novel mechanisms have been elucidated. It has become clear that alphaviruses not only cause a general host shut-off in infected vertebrate cells, but also specifically suppress different host antiviral pathways using their viral nonstructural proteins, nsP2 and nsP3. Here we review the current state of the art of alphavirus host cell shut-off of viral transcription and translation, and describe recent insights in viral subversion of interferon induction and signaling, the unfolded protein response, and stress granule assembly.
Collapse
Affiliation(s)
- Jelke J Fros
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, England, UK.
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen 6700 AB, The Netherlands.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen 6700 AB, The Netherlands.
| |
Collapse
|
17
|
A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins. J Virol 2015; 89:8318-33. [PMID: 26041291 DOI: 10.1128/jvi.01029-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/22/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED To identify host factors relevant for severe acute respiratory syndrome-coronavirus (SARS-CoV) replication, we performed a small interfering RNA (siRNA) library screen targeting the human kinome. Protein kinases are key regulators of many cellular functions, and the systematic knockdown of their expression should provide a broad perspective on factors and pathways promoting or antagonizing coronavirus replication. In addition to 40 proteins that promote SARS-CoV replication, our study identified 90 factors exhibiting an antiviral effect. Pathway analysis grouped subsets of these factors in specific cellular processes, including the innate immune response and the metabolism of complex lipids, which appear to play a role in SARS-CoV infection. Several factors were selected for in-depth validation in follow-up experiments. In cells depleted for the β2 subunit of the coatomer protein complex (COPB2), the strongest proviral hit, we observed reduced SARS-CoV protein expression and a >2-log reduction in virus yield. Knockdown of the COPB2-related proteins COPB1 and Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) also suggested that COPI-coated vesicles and/or the early secretory pathway are important for SARS-CoV replication. Depletion of the antiviral double-stranded RNA-activated protein kinase (PKR) enhanced virus replication in the primary screen, and validation experiments confirmed increased SARS-CoV protein expression and virus production upon PKR depletion. In addition, cyclin-dependent kinase 6 (CDK6) was identified as a novel antiviral host factor in SARS-CoV replication. The inventory of pro- and antiviral host factors and pathways described here substantiates and expands our understanding of SARS-CoV replication and may contribute to the identification of novel targets for antiviral therapy. IMPORTANCE Replication of all viruses, including SARS-CoV, depends on and is influenced by cellular pathways. Although substantial progress has been made in dissecting the coronavirus replicative cycle, our understanding of the host factors that stimulate (proviral factors) or restrict (antiviral factors) infection remains far from complete. To study the role of host proteins in SARS-CoV infection, we set out to systematically identify kinase-regulated processes that influence virus replication. Protein kinases are key regulators in signal transduction, controlling a wide variety of cellular processes, and many of them are targets of approved drugs and other compounds. Our screen identified a variety of hits and will form the basis for more detailed follow-up studies that should contribute to a better understanding of SARS-CoV replication and coronavirus-host interactions in general. The identified factors could be interesting targets for the development of host-directed antiviral therapy to treat infections with SARS-CoV or other pathogenic coronaviruses.
Collapse
|