1
|
Shen H, Fu Y, Liu F, Zhang W, Yuan Y, Yang G, Yang M, Li L. AuCePt porous hollow cascade nanozymes targeted delivery of disulfiram for alleviating hepatic insulin resistance. J Nanobiotechnology 2024; 22:660. [PMID: 39456019 PMCID: PMC11515139 DOI: 10.1186/s12951-024-02880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
As the pathophysiological basis of type 2 diabetes mellitus (T2DM), insulin resistance (IR) is closely related to oxidative stress (OS) and inflammation, while nanozymes have a good therapeutic effect on inflammation and OS by scavenging reactive oxygen species (ROS). Hence, AuCePt porous hollow cascade nanozymes (AuCePt PHNs) are designed by integrating the dominant enzymatic activities of three metallic materials, which exhibit superior superoxide dismutase/catalase-like activities, and high drug loading capacity. In vitro experiments proved that AuCePt PHNs can ultra-efficiently scavenge endogenous and exogenous ROS. Moreover, AuCePt PHNs modified with lactobionic acid (LA) and loaded with disulfiram (DSF), named as AuCePt PHNs-LA@DSF, can significantly improve glucose uptake and glycogen synthesis in IR hepatocytes by regulating the insulin signaling pathways (IRS-1/AKT) and gluconeogenesis signaling pathways (FOXO-1/PEPCK). Intravenous administration of AuCePt PHNs-LA@DSF not only showed high liver targeting efficiency, but also reduced body weight and blood glucose and improved IR and lipid accumulation in high-fat diet-induced obese mice and diabetic ob/ob mice. This research elucidates the intrinsic activity of AuCePt PHNs for cascade scavenging of ROS, and reveals the potential effect of AuCePt PHNs-LA@DSF in T2DM treatment.
Collapse
Affiliation(s)
- Huawei Shen
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Sichuan-Chongqing Coconstruction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yafei Fu
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Feifei Liu
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wanliang Zhang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yin Yuan
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Mengliu Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Ling Li
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Rafique S, Yang S, Sajid MS, Faheem M. A review of intact glycopeptide enrichment and glycan separation through hydrophilic interaction liquid chromatography stationary phase materials. J Chromatogr A 2024; 1735:465318. [PMID: 39244913 DOI: 10.1016/j.chroma.2024.465318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Protein glycosylation, one of the most important biologically relevant post-translational modifications for biomarker discovery, faces analytical challenges due to heterogeneous glycosite, diverse glycans, and mass spectrometry limitations. Glycopeptide enrichment by removing abundant hydrophobic peptides helps overcome some of these obstacles. Hydrophilic interaction liquid chromatography (HILIC), known for its selectivity, glycan separations, intact glycopeptide enrichment, and compatibility with mass spectrometry, has seen recent advancements in stationary phases like Amide-80, glycoHILIC, amino acids or peptides for improved HILIC-based glycopeptide analysis. Utilization of these materials can improve glycopeptide enrichment through solid-phase extraction and separation via high-performance liquid chromatography. Additionally, using glycopeptides themselves to modify HILIC stationary phases holds promise for improving selectivity and sensitivity in glycosylation analysis. Additionally, HILIC has capability to assess the information about glycosites and structural information of glycans. This review summarizes recent breakthroughs in HILIC stationary materials, highlighting their impact on glycopeptide analysis. Ongoing research on advanced materials continues to refine HILIC's performance, solidifying its value as a tool for exploring protein glycosylation.
Collapse
Affiliation(s)
- Saima Rafique
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Muhammad Salman Sajid
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA.
| | - Muhammad Faheem
- Riphah International University Riphah Institute of Pharmaceutical Sciences, Islamabad, Pakistan
| |
Collapse
|
3
|
Le TD, Suttikhana I, Ashaolu TJ. State of the art on the separation and purification of proteins by magnetic nanoparticles. J Nanobiotechnology 2023; 21:363. [PMID: 37794459 PMCID: PMC10548632 DOI: 10.1186/s12951-023-02123-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
The need for excellent, affordable, rapid, reusable and biocompatible protein purification techniques is justified based on the roles of proteins as key biomacromolecules. Magnetic nanomaterials nowadays have become the subject of discussion in proteomics, drug delivery, and gene sensing due to their various abilities including rapid separation, superparamagnetism, and biocompatibility. These nanomaterials also referred to as magnetic nanoparticles (MNPs) serve as excellent options for traditional protein separation and analytical methods because they have a larger surface area per volume. From ionic metals to carbon-based materials, MNPs are easily functionalized by modifying their surface to precisely recognize and bind proteins. This review excavates state-of-the-art MNPs and their functionalizing agents, as efficient protein separation and purification techniques, including ionic metals, polymers, biomolecules, antibodies, and graphene. The MNPs could be reused and efficaciously manipulated with these nanomaterials leading to highly improved efficiency, adsorption, desorption, and purity rate. We also discuss the binding and selectivity parameters of the MNPs, as well as their future outlook. It is concluded that parameters like charge, size, core-shell, lipophilicity, lipophobicity, and surface energy of the MNPs are crucial when considering protein selectivity, chelation, separation, and purity.
Collapse
Affiliation(s)
- Thanh-Do Le
- Institute for Global Health Innovations, Faculty of Medicine, Duy Tan University, Da Nang, 550000, Vietnam
| | - Itthanan Suttikhana
- Department of Multifunctional Agriculture, Faculty of Agriculture and Technology, University of South Bohemia, České Budějovice, Czech Republic
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Faculty of Medicine, Duy Tan University, Da Nang, 550000, Vietnam.
| |
Collapse
|
4
|
Recent advances in development of functional magnetic adsorbents for selective separation of proteins/peptides. Talanta 2023; 253:123919. [PMID: 36126523 DOI: 10.1016/j.talanta.2022.123919] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
Nowadays, proteins separation has attracted great attention in proteomics research. Because the proteins separation is helpful for making an early diagnosis of many diseases. Magnetic nanoparticles are an interesting and useful functional material, and have attracted extensive research interest during the past decades. Because of the excellent properties such as easy surface functionalization, tunable biocompatibility, high saturation magnetization etc, magnetic microspheres have been widely used in isolation of proteins/peptides. Notably, with the rapid development of surface decoration strategies, more and more functional magnetic adsorbents have been designed and fabricated to meet the growing demands of biological separation. In this review, we have collected recent information about magnetic adsorbents applications in selective separation of proteins/peptides. Furthermore, we present a comprehensive prospects and challenges in the field of protein separation relying on magnetic nanoparticles.
Collapse
|
5
|
Zheng L, Li H, Lai X, Huang W, Lin Z, Zeng X. Superwettable Janus nylon membrane for multifunctional emulsion separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Zhu C, Wu J, Jin X, Yan Y, Ding CF, Tang K, Zhang Q. Graphene functionalized with structurally complementary amino acids for sensitive recognition of N-linked glycopeptides. J Chromatogr A 2021; 1655:462505. [PMID: 34500222 DOI: 10.1016/j.chroma.2021.462505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/05/2023]
Abstract
Herein, a hydrophilic graphene composite functionalized with glutathione (GSH) and L(+)-Cysteine (Cys) was prepared via a simple and fast synthesis route, which was named G@S@Au@GC. The combination attack with two different zwitterionic polymers resulted in enhanced adsorption sites for glycopeptides. The obtained G@S@Au@GC exhibited excellent performance on a low limit of detection (0.2 fmol), a high selectivity (HRP: bovine serum albumin = 1:1500), a good load capacity (250 μg•mg-1) and recovery rate (93%), which was also evaluated with IgG. Subsequently, 60 glycopeptides from complex biological sample (human saliva) were identified by Nano-LC-MS/MS. The advantages of combination attack, low-cost, simple and fast synthesis, and superior enrichment performance make G@S@Au@GC composite a bright future on glycoproteomics analysis and related diseases.
Collapse
Affiliation(s)
- Canhong Zhu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Jiani Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Xueting Jin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China.
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Qiaohong Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
7
|
Eivazzadeh-Keihan R, Bahreinizad H, Amiri Z, Aliabadi HAM, Salimi-Bani M, Nakisa A, Davoodi F, Tahmasebi B, Ahmadpour F, Radinekiyan F, Maleki A, Hamblin MR, Mahdavi M, Madanchi H. Functionalized magnetic nanoparticles for the separation and purification of proteins and peptides. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116291] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Xu Z, Wu Y, Deng Z, Long J, Sun N, Deng C. One-step fabrication of strongly hydrophilic mesoporous silica for comprehensive analysis of serum glycopeptidome. Talanta 2021; 234:122713. [PMID: 34364505 DOI: 10.1016/j.talanta.2021.122713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/20/2022]
Abstract
Glycopeptidome represents reliable predictors of physiological and pathological status. Obstructions mainly including low abundance of endogenous glycopeptides and varied interference necessitate glycopeptide enrichment prior to MS analysis. Inspired by the prevalence of hydrophilic interaction chromatography for glycopeptide enrichment, a novel magnetic mesoporous silica nanomaterial (Fe3O4@mSiO2-TSG) with strongly hydrophilic property was developed through a one-pot method. In this work, the gluconamide-containing organosilane is innovatively proposed to directly serve as the strongly hydrophilic silica source for fabrication of hydrophilic mesoporous silica nanomaterial for glycopeptidomics research. Apart from excellent hydrophilicity, Fe3O4@mSiO2-TSG also was equipped with large specific surface area, ordered mesopore channels and great magnetic responsiveness. With all the advantages, Fe3O4@mSiO2-TSG displayed remarkable size-exclusion effect and considerable reusability. Moreover, combined with nano-LC-MS/MS, the glycopeptidome of serum from breast cancer patients was analyzed comprehensively, which showed noteworthy difference from healthy serum through gene ontology analysis, indicating great potential of the approach for glycopeptidomics research.
Collapse
Affiliation(s)
- Zixing Xu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yonglei Wu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Zhiqiang Deng
- First People's Hospital of Fuzhou, Jiangxi, 344000, China
| | - Jian Long
- First People's Hospital of Fuzhou, Jiangxi, 344000, China.
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunhui Deng
- Department of Chemistry, Fudan University, Shanghai, 200433, China; Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
10
|
Li J, Huan W, Xu K, Wang B, Zhang J, Zhu B, Wu M, Wang J. Gold nanoparticle-glutathione-functionalized porous graphene oxide-based hydrophilic beads for the selective enrichment of N-linked glycopeptides. Mikrochim Acta 2020; 187:518. [PMID: 32851535 DOI: 10.1007/s00604-020-04519-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
A three-dimensional structured porous graphene oxide-polyethylenimine bead (pGP) is synthesized for immobilizing gold nanoparticles and modifying glutathione molecules (denoted as pGP/AuG). The pGP/AuG has open pore structure, honeycomb-like channels, and excellent hydrophilicity. By taking advantages of the porous structure, abundant binding sites, and multivalent interactions between glycopeptides and both glutathione molecules and free amino groups, the pGP/AuG is adopted to the selective enrichment of N-linked glycopeptides with low limit of detection (2 fmol), high enrichment selectivity (1:500), binding capacity (333.3 mg/g), recovery yield (91.3 ± 2.1%), and repeatability (< 6.0% RSD) using matrix-assisted laser desorption/ionization time of flight mass spectrometry detection method. Furthermore, the practical applicability of pGP/AuG is evaluated, in which 209 N-glycosylated peptides corresponding to 128 N-glycosylated proteins are identified from 1 μL human serum in three independent analysis procedures, suggesting the great potential for application in glycoproteome fields.Graphical abstract Schematic presentation of preparation for porous graphene oxide-based hydrophilic beads (pGP/AuG) with honeycomb-like microstructure. The pGP/AuG was successfully used for enriching and identifying glycopeptides from actual biological sample.
Collapse
Affiliation(s)
- Jie Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A& F University, Lin'an, Hangzhou, 311300, China.
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A& F University, Lin'an, Hangzhou, 311300, China
| | - Kaiwei Xu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| | - Buchuan Wang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A& F University, Lin'an, Hangzhou, 311300, China
| | - Jingshu Zhang
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Binbin Zhu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| | - Minjie Wu
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A& F University, Lin'an, Hangzhou, 311300, China
| | - Jianhua Wang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
11
|
Yang SS, Wang C, Yu X, Shang W, Chen DDY, Gu ZY. A hydrophilic two-dimensional titanium-based metal-organic framework nanosheets for specific enrichment of glycopeptides. Anal Chim Acta 2020; 1119:60-67. [DOI: 10.1016/j.aca.2020.04.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 11/29/2022]
|
12
|
Liu B, Wang B, Yan Y, Tang K, Ding CF. Postsynthesis of zwitterionic hydrophilic composites for enhanced enrichment of N-linked glycopeptides from human serum. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8607. [PMID: 31657490 DOI: 10.1002/rcm.8607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Glycosylation of proteins plays an important role in life activities, but the concentration of naturally occurring glycopeptides is usually relatively low, and glycosylation has microfacies heterogeneity, so direct mass spectrometry is not feasible. Therefore, selective enrichment of glycopeptides before mass spectrometry has turned into an urgent problem to be resolved. METHODS Herein, the zwitterionic L-cysteine functionalized hydrophilic graphene oxide composite (GO@PDA@MIL-125-NH2 @Au@L-Cys) was prepared via a postsynthetic method. The obtained material was used for glycopeptide enrichment. The enriched peptides were then detected using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) to demonstrate the enrichment performance of the material. RESULTS In the actual enrichment process, GO@PDA@MIL-125-NH2 @Au@L-Cys nanomaterials exhibited high selectivity (1:1000), outstanding sensitivity (0.5 fmol), and excellent repeatability for the enrichment of glycopeptides. In addition, the proposed material showed good performance in the enrichment of glycopeptides from complex biosamples; 56 glycopeptides were detected from 2 μL of human serum using MALDI-TOFMS. CONCLUSIONS The experimental results showed that GO@PDA@MIL-125-NH2 @Au@L-Cys exhibited excellent performance on glycopeptide analysis. It has great potential in the enrichment of glycopeptides and provides new ideas for synthetic materials with better enrichment properties in the future.
Collapse
Affiliation(s)
- Bin Liu
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Baichun Wang
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Keqi Tang
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Chuan-Fan Ding
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Qing G, Yan J, He X, Li X, Liang X. Recent advances in hydrophilic interaction liquid interaction chromatography materials for glycopeptide enrichment and glycan separation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Lu J, Luan J, Li Y, He X, Chen L, Zhang Y. Hydrophilic maltose-modified magnetic metal-organic framework for highly efficient enrichment of N-linked glycopeptides. J Chromatogr A 2020; 1615:460754. [DOI: 10.1016/j.chroma.2019.460754] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/09/2023]
|
15
|
Zhang H, Lv Y, Du J, Shao W, Jiao F, Xia C, Gao F, Yu Q, Liu Y, Zhang W, Zhang Y, Qin W, Qian X. A GSH Functionalized Magnetic Ultra-thin 2D-MoS2 nanocomposite for HILIC-based enrichment of N-glycopeptides from urine exosome and serum proteins. Anal Chim Acta 2020; 1098:181-189. [DOI: 10.1016/j.aca.2019.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 01/04/2023]
|
16
|
Saleem S, Sajid MS, Hussain D, Jabeen F, Najam-ul-Haq M, Saeed A. Boronic acid functionalized MOFs as HILIC material for N-linked glycopeptide enrichment. Anal Bioanal Chem 2020; 412:1509-1520. [DOI: 10.1007/s00216-020-02427-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 01/25/2023]
|
17
|
Magnetic metal-organic frameworks containing abundant carboxylic groups for highly effective enrichment of glycopeptides in breast cancer serum. Talanta 2019; 204:446-454. [DOI: 10.1016/j.talanta.2019.06.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 12/14/2022]
|
18
|
Zhang Y, Jing H, Meng B, Qian X, Ying W. L-cysteine functionalized straticulate C 3N 4 for the selective enrichment of glycopeptides. J Chromatogr A 2019; 1610:460545. [PMID: 31551124 DOI: 10.1016/j.chroma.2019.460545] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 02/05/2023]
Abstract
The facile enrichment of glycopeptides or glycoproteins poses great challenges for glycoproteomic research. In this study, a novel hydrophilic material, named zwitterionic hydrophilic L-cysteine derivatized straticulate-C3N4 composites (LCAC), were synthesized and evaluated for the enrichment of N-glycopeptides. LCAC exhibited good biocompatibility, excellent hydrophilicity and selectivity, by virtue of the large surface of C3N4 and the zwitterionic property offered by cysteine. LCAC demonstrated excellent performance for N-glycopeptide enrichment with the sensitivity of 0.033 fmol/µL, selectivity of 1:100, and high recovery rate (∼85%). The performance of LCAC was demonstrated by the identification of 35 N-glycopeptides from IgG, as well as capturing 1809 human urine N-glycopeptides corresponding to 876 N-glycoproteins. Comparing the LCAC with our developed phenylboronic acid functionalized material showed a certain complementary due to the different binding mechanism. The simple production and enhanced hydrophilic properties make the material a promising choice for glycoproteomics researches.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China; Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyu Jing
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Bo Meng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
19
|
Wang Z, Wang J, Sun N, Deng C. A promising nanoprobe based on hydrophilic interaction liquid chromatography and immobilized metal affinity chromatography for capture of glycopeptides and phosphopeptides. Anal Chim Acta 2019; 1067:1-10. [DOI: 10.1016/j.aca.2019.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 01/06/2023]
|
20
|
Facile fabrication of zwitterionic magnetic composites by one-step distillation-precipitation polymerization for highly specific enrichment of glycopeptides. Anal Chim Acta 2019; 1053:43-53. [DOI: 10.1016/j.aca.2018.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 11/22/2022]
|
21
|
Chen Y, Sheng Q, Hong Y, Lan M. Hydrophilic Nanocomposite Functionalized by Carrageenan for the Specific Enrichment of Glycopeptides. Anal Chem 2019; 91:4047-4054. [DOI: 10.1021/acs.analchem.8b05578] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
l-cysteine-modified metal-organic frameworks as multifunctional probes for efficient identification of N-linked glycopeptides and phosphopeptides in human crystalline lens. Anal Chim Acta 2019; 1061:110-121. [PMID: 30926029 DOI: 10.1016/j.aca.2019.01.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/27/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
Highly selective enrichment of N-linked glycopeptides and phosphopeptides from complex biological samples is extremely important prior to mass spectrometry analysis due to their low abundance as well as numerous extrinsic interferences. In this work, l-cysteine (L-Cys)-modified multifunctional metal-organic frameworks denoted as Fe3O4@PDA@MIL-125@Au@L-Cys (mMIL-125@Au@L-Cys) were prepared by modifications step by step. By combining hydrophilic interaction chromatography (HILIC) with metal oxide affinity chromatography (MOAC), the as-prepared material was firstly utilized to identify N-linked glycopeptides and phosphopeptides from tryptic digests of horseradish peroxidase (HRP) and beta-casein (β-casein), respectively, with the help of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and exhibited outstanding sensitivity (0.1 fmol μL-1), great reusability (5 circles) and high selectivity (1: 100). Based on this, it was further applied into the enrichment of glycopeptides and phosphopeptides from tryptic digests of 100 μg human crystalline lens proteins. In the end, 81 N-linked glycopeptides corresponding to 35 glycoproteins and 175 phosphopeptides ascribed to 55 phosphorylated proteins were identified, respectively. The remarkable results were benefitted from the merits of improved hydrophilicity from L-Cys, strong affinity of TiO centers, numerous reaction sites on the large surface of MOFs and superparamagnetism from Fe3O4 cores. The design of mMIL-125@Au@L-Cys not only served as a multifunctional probe for efficient identification of N-linked glycopeptides and phosphopeptides in human crystalline lens, but also set a precedent for fabricating more MOFs with post-modifications for further proteomics research.
Collapse
|
23
|
Recent advances in metal-organic frameworks for separation and enrichment in proteomics analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Sun N, Wu H, Chen H, Shen X, Deng C. Advances in hydrophilic nanomaterials for glycoproteomics. Chem Commun (Camb) 2019; 55:10359-10375. [PMID: 31414669 DOI: 10.1039/c9cc04124a] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Owing to the formidable challenge posed by microheterogeneities in glycosylation sites, macroheterogeneity of the modification number of glycans, and low abundance and ionization efficiency of glycosylation, the crucial premise for conducting in-depth profiling of the glycoproteome is to develop highly efficient technology for separation and enrichment. The appearance of hydrophilic interaction chromatography (HILIC) has considerably accelerated the progress in glycoproteomics. In particular, additional hydrophilic nanomaterials have been developed for glycoproteomics research in the recent years. In this review, we mainly summarize the recent progresses made in the design and synthesis of different hydrophilic nanomaterials, as well as their applications in glycoproteomics, according to the classification of the main hydrophilic functional molecules on the surface. Further, we briefly illustrate the potential retention mechanism of the HILIC mode and discuss the limits and barriers of hydrophilic nanomaterials in glycoproteomics, as well as propose their possible development trends in the future.
Collapse
Affiliation(s)
- Nianrong Sun
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| | | | | | | | | |
Collapse
|
25
|
Liu Q, Deng CH, Sun N. Hydrophilic tripeptide-functionalized magnetic metal-organic frameworks for the highly efficient enrichment of N-linked glycopeptides. NANOSCALE 2018; 10:12149-12155. [PMID: 29920571 DOI: 10.1039/c8nr03174f] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) is a useful tool in glycoproteomic analysis. Glutathione (GSH) is a well-known zwitterionic tripeptide with great hydrophilicity and biocompatibility and is ubiquitous in biological activities. In this study, a hydrophilic metal-organic framework (denoted as mMOF@Au@GSH) was synthesized by grafting glutathione on Au-immobilized magnetic MOFs via the affinity between the thiol group in glutathione and Au. Endowed with the high hydrophilicity of glutathione, the large surface area of the MOF and strong magnetic responsiveness of magnetic nanoparticles, the as-prepared mMOF@Au@GSH exhibited high selectivity (1 : 100) and great sensitivity (0.5 fmol μL-1) towards glycopeptides. Furthermore, it also achieved outstanding performance in enriching glycopeptides from complex biological samples. In all, 273 glycopeptides corresponding to 94 glycoproteins were identified from only 2 μL human serum.
Collapse
Affiliation(s)
- Qianjing Liu
- Department of Chemistry, The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200433, China.
| | | | | |
Collapse
|
26
|
Núñez C, Chantada-Vázquez MDP, Bravo SB, Vázquez-Estévez S. Novel functionalized nanomaterials for the effective enrichment of proteins and peptides with post-translational modifications. J Proteomics 2018; 181:170-189. [DOI: 10.1016/j.jprot.2018.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
|
27
|
Xia C, Jiao F, Gao F, Wang H, Lv Y, Shen Y, Zhang Y, Qian X. Two-Dimensional MoS 2-Based Zwitterionic Hydrophilic Interaction Liquid Chromatography Material for the Specific Enrichment of Glycopeptides. Anal Chem 2018; 90:6651-6659. [PMID: 29742898 DOI: 10.1021/acs.analchem.8b00461] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS)-based glycoproteomics research requires highly efficient sample preparation to eliminate interference from non-glycopeptides and to improve the efficiency of glycopeptide detection. In this work, a novel MoS2/Au-NP (gold nanoparticle)-L-cysteine nanocomposite was prepared for glycopeptide enrichment. The two-dimensional (2D) structured MoS2 nanosheets served as a matrix that could provide a large surface area for immobilizing hydrophilic groups (such as L-cysteine) with low steric hindrance between the materials and the glycopeptides. As a result, the novel nanomaterial possessed an excellent ability to capture glycopeptides. Compared to commercial zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) materials, the novel nanomaterials exhibited excellent enrichment performance with ultrahigh selectivity and sensitivity (approximately 10 fmol), high binding capacity (120 mg g-1), high enrichment recovery (more than 93%), satisfying batch-to-batch reproducibility, and good universality for glycopeptide enrichment. In addition, its outstanding specificity and efficiency for glycopeptide enrichment was confirmed by the detection of glycopeptides from an human serum immunoglobulin G (IgG) tryptic digest in quantities as low as a 1:1250 molar ratio of IgG tryptic digest to bovine serum albumin tryptic digest. The novel nanocomposites were further used for the analysis of complex samples, and 1920 glycopeptide backbones from 775 glycoproteins were identified in three replicate analyses of 50 μg of proteins extracted from HeLa cell exosomes. The resulting highly informative mass spectra indicated that this multifunctional nanomaterial-based enrichment method could be used as a promising tool for the in-depth and comprehensive characterization of glycoproteomes in MS-based glycoproteomics.
Collapse
Affiliation(s)
- Chaoshuang Xia
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China.,State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| | - Fenglong Jiao
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| | - Fangyuan Gao
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| | - Heping Wang
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China.,School of Chemistry and Chemical Engineering , Ankang University , Ankang , Shaanxi 725000 , China
| | - Yayao Lv
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| |
Collapse
|
28
|
Wang Z, Wu R, Chen H, Sun N, Deng C. Synthesis of zwitterionic hydrophilic magnetic mesoporous silica materials for endogenous glycopeptide analysis in human saliva. NANOSCALE 2018; 10:5335-5341. [PMID: 29508869 DOI: 10.1039/c7nr08613j] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel zwitterionic hydrophilic magnetic mesoporous silica was prepared for endogenous glycopeptide enrichment prior to MS analysis. For the first time, the material was successfully applied in capturing endogenous glycopeptides from human saliva, indicating great potential of this strategy for glycopeptidome analysis.
Collapse
Affiliation(s)
- Zidan Wang
- Department of Chemistry, The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200433, P. R. China.
| | | | | | | | | |
Collapse
|
29
|
Feng X, Deng C, Gao M, Yan G, Zhang X. Novel synthesis of glucose functionalized magnetic graphene hydrophilic nanocomposites via facile thiolation for high-efficient enrichment of glycopeptides. Talanta 2018; 179:377-385. [DOI: 10.1016/j.talanta.2017.11.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/30/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
|
30
|
Xie Y, Liu Q, Li Y, Deng C. Core-shell structured magnetic metal-organic framework composites for highly selective detection of N-glycopeptides based on boronic acid affinity chromatography. J Chromatogr A 2018; 1540:87-93. [PMID: 29429745 DOI: 10.1016/j.chroma.2018.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/17/2023]
Abstract
Boronic acid affinity chromatography (BAAC) is one of the most significant methods in glycoproteomics research due to its low bias towards glycopeptides and easy enrichment process. In this work, core-shell structured magnetic metal-organic framework (MOF) composites with abundant boronic acid groups were designed and synthesized for selective glycopeptide enrichment based on BAAC. The as-prepared core-shell structured magnetic MOF composites (denoted as Fe3O4@PVP/PEI@MOF (B)) inherited strong magnetic responsiveness from the Fe3O4 core as well as ultrahigh surface area and abundant boronic acid sites from the MOF shell. The affinity between boronic acid and cis-diols groups endowed the composites with improved sensitivity (0.5 fmol/μL) and selectivity (1:100) towards glycopeptides, achieving remarkable results in glycopeptides detection from standard glycoprotein digests as well as complex bio-samples. As a result, a total of 209 N-glycosylation peptides from 89 different glycoproteins were identified from human serum digests, indicating its broad prospect in glycoproteome study.
Collapse
Affiliation(s)
- Yiqin Xie
- The Fifth People's Hospital of Shanghai, Department of Chemistry, Institutes of Biomedical Sciences, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China
| | - Qianjing Liu
- The Fifth People's Hospital of Shanghai, Department of Chemistry, Institutes of Biomedical Sciences, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China
| | - Yan Li
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai, 201206, China.
| | - Chunhui Deng
- The Fifth People's Hospital of Shanghai, Department of Chemistry, Institutes of Biomedical Sciences, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
31
|
Che D, Cheng J, Ji Z, Zhang S, Li G, Sun Z, You J. Recent advances and applications of polydopamine-derived adsorbents for sample pretreatment. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Liu Q, Xie Y, Deng C, Li Y. One-step synthesis of carboxyl-functionalized metal-organic framework with binary ligands for highly selective enrichment of N-linked glycopeptides. Talanta 2017; 175:477-482. [DOI: 10.1016/j.talanta.2017.07.067] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 12/13/2022]
|
33
|
Li Y, Wang J, Sun N, Deng CH. Glucose-6-Phosphate-Functionalized Magnetic Microsphere as Novel Hydrophilic Probe for Specific Capture of N-Linked Glycopeptides. Anal Chem 2017; 89:11151-11158. [PMID: 28945362 DOI: 10.1021/acs.analchem.7b03708] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Developing cost-effective approaches based on hydrophilic interaction liquid chromatography (HILIC) has been the main tendency for low-abundance glycopeptides capture before LC-MS/MS analysis. Carbohydrates with outstanding biocompatibility and hydrophilicity are ubiquitous in the kingdoms of animal and plant and could be a wonderful choice as functional groups for glycopeptides enrichment. In this work, glucose-6-phosphate, as one of the indispensable cogs in pivotal metabolic wheels of life, was chosen as functionalized groups to be grafted onto the surface of Fe3O4 microspheres via one-step surface fabrication strategy. The acquired hydrophilic Fe3O4@G6P microspheres showed superior enrichment performance for glycopeptides with high sensitivity (0.5 fmol/μL) and high selectivity (1:100) and good repeatability (10 times at least). Furthermore, the Fe3O4@G6P microspheres also exhibited enrichment ability for glycopeptides in different biosamples. A total of 243 glycopeptides assigned to 92 glycoproteins and 183 glycopeptides corresponding to 74 different glycoproteins was identified from merely 2 μL of serum and saliva, respectively.
Collapse
Affiliation(s)
- Yilin Li
- Department of Chemistry and Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University , Shanghai, 200433, China
| | - Jiawen Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University , Shanghai, 200433, China
| | - Nianrong Sun
- Department of Chemistry and Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University , Shanghai, 200433, China
| | - Chun-Hui Deng
- Department of Chemistry and Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University , Shanghai, 200433, China
| |
Collapse
|
34
|
Facile and easily popularized synthesis of l-cysteine-functionalized magnetic nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides. Anal Bioanal Chem 2017; 410:989-998. [DOI: 10.1007/s00216-017-0602-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/15/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
|
35
|
Wang J, Li J, Gao M, Zhang X. Self-assembling covalent organic framework functionalized magnetic graphene hydrophilic biocomposites as an ultrasensitive matrix for N-linked glycopeptide recognition. NANOSCALE 2017; 9:10750-10756. [PMID: 28715013 DOI: 10.1039/c7nr02932b] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of additional functions and applications of covalent organic framework (COF)-derived materials still remains highly desired. In our work, a novel COF-functionalized magnetic graphene biocomposite (MagG@COF-5) was first developed as an ultrasensitive hydrophilic matrix via a facile self-assembly method for efficiently recognizing N-linked glycopeptides. By integrating the characteristics of the magnetic graphene and COF-5 layer, the MagG@COF-5 owns features of an outstanding magnetic response, a high specific area, strong hydrophilic properties and a unique size-exclusion effect. Accordingly, the MagG@COF-5 biocomposite showed excellent performance in N-linked glycopeptide analysis with a low detection limit (0.5 fmol μL-1), an excellent size-exclusion effect (HRP digests/BSA, 1 : 600), good recyclability and reusability. More excitingly, the practical applicability of the biocomposite was evaluated by treatment with human serum (1 μL), in which 232 N-linked glycopeptides from 85 glycoproteins were detected. All the results demonstrate that the as-synthesized MagG@COF-5 biocomposite has huge potential for use in glycoproteome and clinical diagnosis fields. It will also open up new phases for application of COF-based materials.
Collapse
Affiliation(s)
- Jiaxi Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | | | | | | |
Collapse
|
36
|
Wang J, Yao J, Sun N, Deng C. Facile synthesis of thiol-polyethylene glycol functionalized magnetic titania nanomaterials for highly efficient enrichment of N-linked glycopeptides. J Chromatogr A 2017; 1512:1-8. [DOI: 10.1016/j.chroma.2017.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
|
37
|
Synthesis of hydrazide-functionalized hydrophilic polymer hybrid graphene oxide for highly efficient N -glycopeptide enrichment and identification by mass spectrometry. Talanta 2017; 171:124-131. [DOI: 10.1016/j.talanta.2017.04.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 01/01/2023]
|
38
|
Lin H, Yuan K, Deng C. Preparation of a TiO 2-NH 2 modified MALDI plate for on-plate simultaneous enrichment of phosphopeptides and glycopeptides. Talanta 2017; 175:427-434. [PMID: 28842012 DOI: 10.1016/j.talanta.2017.07.078] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 01/21/2023]
Abstract
In this work, a TiO2 film was prepared on a MALDI plate by atomic layer deposition (ALD) technique and then modified with -NH2. The obtained TiO2-NH2 modified plate was applied for on-plate simultaneous enrichment of phosphopeptides and glycopeptides. The ALD TiO2 film displayed quite uniform morphology, and attached firmly to the MALDI plate with rather stable physical and chemical properties, which resulted in fine stability of the plate in performance. The -NH2 groups offered the film better hydrophilicity and affinity toward glycopeptides. The on-plate simultaneous enrichment performance of the TiO2-NH2 modified plate was investigated by β-casein digests, HRP digests and human serum.
Collapse
Affiliation(s)
- Haizhu Lin
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Kaiping Yuan
- State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, China
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200433, China.
| |
Collapse
|
39
|
Xie Y, Deng C, Li Y. Designed synthesis of ultra-hydrophilic sulfo-functionalized metal-organic frameworks with a magnetic core for highly efficient enrichment of the N-linked glycopeptides. J Chromatogr A 2017; 1508:1-6. [PMID: 28602507 DOI: 10.1016/j.chroma.2017.05.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
Abstract
Highly efficient extraction and enrichment of the N-linked glycopeptides from complex biological samples before mass spectrometry analysis remains important but challenging, due to the low abundance and suppression by proteins and salts. Herein, a facile route to an ultra-hydrophilic metal-organic frameworks (MOFs)-functionalized magnetic nanoparticle (Fe3O4@PDA@Zr-SO3H) was proposed. The as-prepared MOFs was endowed with excellent and unique properties, such as excellent hydrophilicity, ultrahigh surface area, and strong magnetic responsiveness. By virtue of these properties and based on hydrophilic interaction, Fe3O4@PDA@Zr-SO3H exhibited outstanding sensitivity and selectivity, remarkable recyclability and stability towards N-linked glycopeptide enrichment. In deep, a total of 177 N-linked glycopeptides, assigned to 85 different glycoproteins, were identified from the healthy human serum after treated with the Fe3O4@PDA@Zr-SO3H. These results confirmed that our strategy offered a promising platform for preparing hydrophilic metal-organic framework-functionalized magnetic nanoparticles for glycosylation analysis by mass spectrometry analysis.
Collapse
Affiliation(s)
- Yiqin Xie
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200433, China.
| | - Yan Li
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
40
|
Zhao Y, Chen Y, Xiong Z, Sun X, Zhang Q, Gan Y, Zhang L, Zhang W. Synthesis of magnetic zwitterionic–hydrophilic material for the selective enrichment of N-linked glycopeptides. J Chromatogr A 2017; 1482:23-31. [DOI: 10.1016/j.chroma.2016.12.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/17/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022]
|
41
|
Banazadeh A, Veillon L, Wooding KM, Zabet-Moghaddam M, Mechref Y. Recent advances in mass spectrometric analysis of glycoproteins. Electrophoresis 2016; 38:162-189. [PMID: 27757981 DOI: 10.1002/elps.201600357] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 12/13/2022]
Abstract
Glycosylation is one of the most common posttranslational modifications of proteins that plays essential roles in various biological processes, including protein folding, host-pathogen interaction, immune response, and inflammation and aberrant protein glycosylation is a well-known event in various disease states including cancer. As a result, it is critical to develop rapid and sensitive methods for the analysis of abnormal glycoproteins associated with diseases. Mass spectrometry (MS) in conjunction with different separation methods, such as capillary electrophoresis (CE), ion mobility (IM), and high performance liquid chromatography (HPLC) has become a popular tool for glycoprotein analysis, providing highly informative fragments for structural identification of glycoproteins. This review provides an overview of the developments and accomplishments in the field of glycomics and glycoproteomics reported between 2014 and 2016.
Collapse
Affiliation(s)
- Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kerry M Wooding
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.,Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
42
|
Wang J, Li J, Wang Y, Gao M, Zhang X, Yang P. Development of Versatile Metal-Organic Framework Functionalized Magnetic Graphene Core-Shell Biocomposite for Highly Specific Recognition of Glycopeptides. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27482-27489. [PMID: 27681085 DOI: 10.1021/acsami.6b08218] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Protein N-glycosylation is a ubiquitous and important post-translational modification that has been involved in the development and progression of a series of human-related diseases. Until recently, the highly selective capturing of glycopeptides from complex biosamples was still significant and challenging work due to their changeable structures, ultralow abundance, and strong ion-suppressing effect. Here we first report the preparation and characterization of a novel, hydrophilic, porous biocomposite composed of magnetic graphene functionalized with metal-organic frameworks (MOFs) (MG@Zn-MOFs) able to recognize glycopeptides. Thanks to its strong magnetic responsiveness, large specific surface area, excellent biocompatibility, and unique size-exclusion effect, the MG@Zn-MOFs showed outstanding sensitivity and selectivity and good recyclability in glycopeptides analysis. More excitingly, in practical application, 517 N-glycopeptides within 151 unique glycoproteins were clearly identified from human serum (1 μL) treated with the MG@Zn-MOFs, which is the best result among published reports so far. All the results demonstrate the promising commercialized usage of the biocomposite for the enrichment of glycopeptides in complex samples through a convenient and efficient process. Furthermore, it is anticipated that our strategy may offer promising guidance to develop new biocomposites functionalized with bio-MOFs for glycoproteomic applications.
Collapse
Affiliation(s)
- Jiaxi Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University , Shanghai 200433, China
| | - Jie Li
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University , Shanghai 200433, China
| | - Yanan Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University , Shanghai 200433, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University , Shanghai 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University , Shanghai 200433, China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University , Shanghai 200433, China
| |
Collapse
|
43
|
Sun X, Dong J, Li J, Ye M, Ou J, Zhang L, Zhang W. Au–cysteine modified macroporous adsorption resin: preparation and highly selective enrichment and identification of N-linked glycopeptides from the complex biological sample. RSC Adv 2016. [DOI: 10.1039/c6ra24236g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cysteine functionalized macroporous adsorption resin/gold nanoparticle was synthesized and applied to the highly selective enrichment and identification of N-linked glycopeptides.
Collapse
Affiliation(s)
- Xudong Sun
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jing Dong
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
- P. R. China
| | - Jinan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
- P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
- P. R. China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
- P. R. China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|