1
|
Hogan VA, Harmon J, Cid-Rosas M, Hall LR, Johnson WE. Conserved residues of the immunosuppressive domain of MLV are essential for regulating the fusion-critical SU-TM disulfide bond. J Virol 2024:e0098924. [PMID: 39470209 DOI: 10.1128/jvi.00989-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
The Env protein of murine leukemia virus (MLV) is the prototype of a large clade of retroviral fusogens, collectively known as gamma-type Envs. Gamma-type Envs are found in retroviruses and endogenous retroviruses (ERVs) representing a broad range of vertebrate hosts. All gamma-type Envs contain a highly conserved stretch of 26-residues in the transmembrane subunit (TM) comprising two motifs, a putative immunosuppressive domain (ISD) and a CX6CC motif. Extraordinary conservation of the ISD and its invariant association with the CX6CC suggests a fundamental contribution to Env function. To investigate ISD function, we characterized several mutants with single amino acid substitutions at conserved positions in the MLV ISD. A majority abolished infectivity, although we did not observe a corresponding loss in intrinsic ability to mediate membrane fusion. Ratios of the surface subunit (SU) to capsid protein (CA) in virions were diminished for a majority of the ISD mutants, while TM:CA ratios were similar to wild type. Specific loss of SU reflected premature isomerization of the labile disulfide bond that links SU and TM prior to fusion. Indeed, all non-infectious mutants displayed significantly lower disulfide stability than wild-type Env. These results reveal a role for ISD positions 2, 3, 4, 7, and 10 in regulating a late step in entry after fusion peptide insertion but prior to creation of the fusion pore. This implies that the ISD is part of a larger domain, comprising the ISD and CX6CC motifs, that is critical for the formation and regulation of the metastable, intersubunit disulfide bond.IMPORTANCEThe gamma-type Env is a prevalent viral fusogen, found within retroviruses and endogenous retroviruses across vertebrate species and in filoviruses such as Ebolavirus. The fusion mechanism of gamma-type Envs is unique from other Class I fusogens such as those of influenza A virus and HIV-1. Gamma-type Envs contain a hallmark feature known as the immunosuppressive domain (ISD) that has been the subject of some controversy in the literature surrounding its putative immunosuppressive effects. Despite the distinctive conservation of the ISD, little has been done to investigate the role of this region for the function of this widespread fusogen. Our work demonstrates the importance of the ISD for the function of gamma-type Envs in infection, particularly in regulating the intermediate steps of membrane fusion. Understanding the fusion mechanism of gamma-type Envs has broad implications for understanding the entry of extant viruses and aspects of host biology connected to co-opted endogenous gamma-type Envs.
Collapse
Affiliation(s)
- Victoria A Hogan
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Julia Harmon
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Miguel Cid-Rosas
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Laura R Hall
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Welkin E Johnson
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| |
Collapse
|
2
|
Rishi V, Cole-Filipiak NC, Ramasesha K, McCaslin LM. Excited state electronic structure of dimethyl disulfide involved in photodissociation at ∼200 nm. Phys Chem Chem Phys 2024; 26:23986-23997. [PMID: 39240347 DOI: 10.1039/d4cp02505a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Dimethyl disulfide (DMDS), one of the smallest organic molecules with an S-S bond, serves as a model system for understanding photofragmentation in polypeptides and proteins. Prior studies of DMDS photodissociation excited at ∼266 nm and ∼248 nm have elucidated the mechanisms of S-S and C-S bond cleavage, which involve the lowest excited electronic states S1 and S2. Far less is known about the dissociation mechanisms and electronic structure of relevant excited states of DMDS excited at ∼200 nm. Herein we present calculations of the electronic structure and properties of electronic states S1-S6 accessed when DMDS is excited at ∼200 nm. Our analysis includes a comparison of theoretical and experimental UV spectra, as well as theoretically predicted one-dimensional cuts through the singlet and triplet potential energy surfaces along the S-S and C-S bond dissociation coordinates. Finally, we present calculations of spin-orbit coupling constants at the Franck-Condon geometry to assess the likelihood of ultrafast intersystem crossing. We show that choosing an accurate yet computationally efficient electronic structure method for calculating the S0-S6 potential energy surfaces along relevant dissociation coordinates is challenging due to excited states with doubly excited character and/or mixed Rydberg-valence character. Our findings demonstrate that the extended multi-state complete active space second-order perturbation theory (XMS-CASPT2) balances this computational efficiency and accuracy, as it captures both the Rydberg character of states in the Franck-Condon region and multiconfigurational character toward the bond-dissociation limits. We compare the performance of XMS-CASPT2 to a new variant of equation of motion coupled cluster theory with single, double, and perturbative triple corrections, EOM-CCSD(T)(a)*, finding that EOM-CCSD(T)(a)* significantly improves the treatment of doubly excited states compared to EOM-CCSD, but struggles to quantitatively capture asymptotic energies along bond dissociation coordinates for these states.
Collapse
Affiliation(s)
- Varun Rishi
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA.
| | - Neil C Cole-Filipiak
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA.
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA.
| | - Laura M McCaslin
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA.
| |
Collapse
|
3
|
Sinha S, Das S, Ray KK, Maity S, Roymahapatra G, Giri S. In silico investigation on the separation of disulfide bonds by N-heterocyclic carbene. Phys Chem Chem Phys 2024; 26:23073-23079. [PMID: 39176465 DOI: 10.1039/d4cp02672a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Herein, the separation of a disulfide bond using different nucleophilic agents like tri-methyl phosphine (TMP), tris (2-carboxyethyl) phosphine (TCEP), and N-heterocyclic carbene (NHC) has been investigated. Both TMP and TCEP have demonstrated their ability to break disulfide bonds through the SN2 mechanism. However, it is worth noting that these reactions are endothermic. While searching for a suitable nucleophile, it was observed that the NHC-mediated reaction was exothermic. The natural bond orbital (NBO), principal interacting orbital (PIO) and extended transition state-natural orbitals for chemical valence (ETS-NOCV) studies help understand the electron transfer process between interacting orbitals during the chemical reactions.
Collapse
Affiliation(s)
- Swapan Sinha
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia, 721657, India.
- Maulana Abul Kalam Azad University of Technology, Haringhata, 741249, India
| | - Subhra Das
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia, 721657, India.
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, 736101, India
| | - Kritish Kumar Ray
- Department of Chemistry, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Sibaprasad Maity
- Sagardighi Kamada Kinkar Smriti Mahavidyalaya, Murshidabad, West Bengal, 742226, India
| | - Gourisankar Roymahapatra
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia, 721657, India.
| | - Santanab Giri
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia, 721657, India.
| |
Collapse
|
4
|
He X, Wang L, Tao J, Han L, Wang H, Zhao X, Zuo J, Zheng Y. High‑oxygen-modified atmospheric packaging delays flavor and quality deterioration in fresh-cut broccoli. Food Chem 2024; 450:139517. [PMID: 38703670 DOI: 10.1016/j.foodchem.2024.139517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The purpose of this study was to investigate the impact of high‑oxygen-modified atmospheric packaging (HOMAP) on aroma changes in fresh-cut broccoli during storage and to explore its regulatory mechanisms. The results showed that HOMAP reduced the levels of undesirable aroma substances hexanoic acid, isobutyric acid, cyclopentanone and increased glucosinolate accumulation by inhibiting the expression of arogenate/prephenate dehydratase (ADT), bifunctional aspartate aminotransferase and glutamate/aspartate-prephenate aminotransferase (PAT), thiosulfate/3-mercaptopyruvate Transferase (TST) to reduce the odor of fresh-cut broccoli. HOMAP inhibited the expression of respiratory metabolism related genes 6-phosphate fructokinase 1 (PFK), pyruvate kinase (PK), and NADH-ubiquinone oxidoreductase chain 6 (ND6). In HOMAP group, the low expression of phospholipase C (PLC), phospholipase A1 (PLA1), linoleate 9S-lipoxygenase 1 (LOX1) related to lipid metabolism and the high expression of naringenin 3-dioxygenase (F3H), trans-4-Hydroxycinnamate (C4H), glutaredoxin 3 (GRX3), and thioredoxin 1 (TrX1) in the antioxidant system maintained membrane stability while reducing the occurrence of membrane lipid peroxidation.
Collapse
Affiliation(s)
- Xuelian He
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056107, China
| | - Lihong Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056107, China
| | - Jiejie Tao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Lichun Han
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056107, China
| | - Hongwei Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Jinhua Zuo
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| |
Collapse
|
5
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
6
|
Kalinina E. Glutathione-Dependent Pathways in Cancer Cells. Int J Mol Sci 2024; 25:8423. [PMID: 39125992 PMCID: PMC11312684 DOI: 10.3390/ijms25158423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The most abundant tripeptide-glutathione (GSH)-and the major GSH-related enzymes-glutathione peroxidases (GPxs) and glutathione S-transferases (GSTs)-are highly significant in the regulation of tumor cell viability, initiation of tumor development, its progression, and drug resistance. The high level of GSH synthesis in different cancer types depends not only on the increasing expression of the key enzymes of the γ-glutamyl cycle but also on the changes in transport velocity of its precursor amino acids. The ability of GPxs to reduce hydroperoxides is used for cellular viability, and each member of the GPx family has a different mechanism of action and site for maintaining redox balance. GSTs not only catalyze the conjugation of GSH to electrophilic substances and the reduction of organic hydroperoxides but also take part in the regulation of cellular signaling pathways. By catalyzing the S-glutathionylation of key target proteins, GSTs are involved in the regulation of major cellular processes, including metabolism (e.g., glycolysis and the PPP), signal transduction, transcription regulation, and the development of resistance to anticancer drugs. In this review, recent findings in GSH synthesis, the roles and functions of GPxs, and GST isoforms in cancer development are discussed, along with the search for GST and GPx inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Elena Kalinina
- T.T. Berezov Department of Biochemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
7
|
Wang Y, He J, Lian S, Zeng Y, He S, Xu J, Luo L, Yang W, Jiang J. Targeting Metabolic-Redox Nexus to Regulate Drug Resistance: From Mechanism to Tumor Therapy. Antioxidants (Basel) 2024; 13:828. [PMID: 39061897 PMCID: PMC11273443 DOI: 10.3390/antiox13070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Drug resistance is currently one of the biggest challenges in cancer treatment. With the deepening understanding of drug resistance, various mechanisms have been revealed, including metabolic reprogramming and alterations of redox balance. Notably, metabolic reprogramming mediates the survival of tumor cells in harsh environments, thereby promoting the development of drug resistance. In addition, the changes during metabolic pattern shift trigger reactive oxygen species (ROS) production, which in turn regulates cellular metabolism, DNA repair, cell death, and drug metabolism in direct or indirect ways to influence the sensitivity of tumors to therapies. Therefore, the intersection of metabolism and ROS profoundly affects tumor drug resistance, and clarifying the entangled mechanisms may be beneficial for developing drugs and treatment methods to thwart drug resistance. In this review, we will summarize the regulatory mechanism of redox and metabolism on tumor drug resistance and highlight recent therapeutic strategies targeting metabolic-redox circuits, including dietary interventions, novel chemosynthetic drugs, drug combination regimens, and novel drug delivery systems.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Jingqiu He
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Shan Lian
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Sheng He
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Jue Xu
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chong-Qing Medical University, Chengdu 610041, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| |
Collapse
|
8
|
Yang-Jensen KC, Jørgensen SM, Chuang CY, Davies MJ. Modification of extracellular matrix proteins by oxidants and electrophiles. Biochem Soc Trans 2024; 52:1199-1217. [PMID: 38778764 PMCID: PMC11346434 DOI: 10.1042/bst20230860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The extracellular matrix (ECM) is critical to biological architecture and determines cellular properties, function and activity. In many situations it is highly abundant, with collagens and elastin being some of the most abundant proteins in mammals. The ECM comprises of multiple different protein species and sugar polymers, with both different isoforms and post-translational modifications (PTMs) providing a large variety of microenvironments that play a key role in determining tissue structure and health. A number of the PTMs (e.g. cross-links) present in the ECM are critical to integrity and function, whereas others are deleterious to both ECM structure and associated cells. Modifications induced by reactive oxidants and electrophiles have been reported to accumulate in some ECM with increasing age. This accumulation can be exacerbated by disease, and in particular those associated with acute or chronic inflammation, obesity and diabetes. This is likely to be due to higher fluxes of modifying agents in these conditions. In this focused review, the role and effects of oxidants and other electrophiles on ECM are discussed, with a particular focus on the artery wall and atherosclerotic cardiovascular disease. Modifications generated on ECM components are reviewed, together with the effects of these species on cellular properties including adhesion, proliferation, migration, viability, metabolic activity, gene expression and phenotype. Increasing data indicates that ECM modifications are both prevalent in human and mammalian tissues and play an important role in disease development and progression.
Collapse
Affiliation(s)
- Karen C. Yang-Jensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sara M. Jørgensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y. Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Höfs L, Geißler-Lösch D, Wunderlich KM, Szegö EM, Van den Haute C, Baekelandt V, Hoyer W, Falkenburger BH. Evaluation of the Effect of β-Wrapin AS69 in a Mouse Model Based on Alpha-Synuclein Overexpression. Biomolecules 2024; 14:756. [PMID: 39062470 PMCID: PMC11274363 DOI: 10.3390/biom14070756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Aggregation of the protein α-Synuclein (αSyn) is a hallmark of Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple systems atrophy, and alleviating the extent of αSyn pathology is an attractive strategy against neurodegeneration. The engineered binding protein β-wrapin AS69 binds monomeric αSyn. AS69 reduces primary and secondary nucleation as well as fibril elongation in vitro. It also mitigates aSyn pathology in a mouse model based on intrastriatal injection of aSyn pre-formed fibrils (PFFs). Since the PFF-based model does not represent all aspects of PD, we tested here whether AS69 can reduce neurodegeneration resulting from αSyn overexpression. Human A53T-αSyn was overexpressed in the mouse Substantia nigra (SN) by using recombinant adeno-associated viral vector (rAAV). AS69 was also expressed by rAAV transduction. Behavioral tests and immunofluorescence staining were used as outcomes. Transduction with rAAV-αSyn resulted in αSyn pathology as reported by phospho-αSyn staining and caused degeneration of dopaminergic neurons in the SN. The co-expression of rAAV-AS69 did not reduce αSyn pathology or the degeneration of dopaminergic neurons. We conclude that αSyn monomer binding by rAAV-AS69 was insufficient to protect from aSyn pathology resulting from αSyn overexpression.
Collapse
Affiliation(s)
- Lennart Höfs
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany (D.G.-L.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 01307 Dresden, Germany
| | - David Geißler-Lösch
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany (D.G.-L.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 01307 Dresden, Germany
| | - Kristof M. Wunderlich
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany (D.G.-L.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 01307 Dresden, Germany
| | - Eva M. Szegö
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany (D.G.-L.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 01307 Dresden, Germany
| | - Chris Van den Haute
- Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Björn H. Falkenburger
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany (D.G.-L.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 01307 Dresden, Germany
| |
Collapse
|
10
|
Zhao S, Li J, Duan S, Liu C, Wang H, Lu J, Zhao N, Sheng X, Wu Y, Li Y, Sun B, Liu L. UBQLN1 links proteostasis and mitochondria function to telomere maintenance in human embryonic stem cells. Stem Cell Res Ther 2024; 15:180. [PMID: 38902824 PMCID: PMC11191273 DOI: 10.1186/s13287-024-03789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Telomeres consist of repetitive DNA sequences at the chromosome ends to protect chromosomal stability, and primarily maintained by telomerase or occasionally by alternative telomere lengthening of telomeres (ALT) through recombination-based mechanisms. Additional mechanisms that may regulate telomere maintenance remain to be explored. Simultaneous measurement of telomere length and transcriptome in the same human embryonic stem cell (hESC) revealed that mRNA expression levels of UBQLN1 exhibit linear relationship with telomere length. METHODS In this study, we first generated UBQLN1-deficient hESCs and compared with the wild-type (WT) hESCs the telomere length and molecular change at RNA and protein level by RNA-seq and proteomics. Then we identified the potential interacting proteins with UBQLN1 using immunoprecipitation-mass spectrometry (IP-MS). Furthermore, the potential mechanisms underlying the shortened telomeres in UBQLN1-deficient hESCs were analyzed. RESULTS We show that Ubiquilin1 (UBQLN1) is critical for telomere maintenance in human embryonic stem cells (hESCs) via promoting mitochondrial function. UBQLN1 deficiency leads to oxidative stress, loss of proteostasis, mitochondria dysfunction, DNA damage, and telomere attrition. Reducing oxidative damage and promoting mitochondria function by culture under hypoxia condition or supplementation with N-acetylcysteine partly attenuate the telomere attrition induced by UBQLN1 deficiency. Moreover, UBQLN1 deficiency/telomere shortening downregulates genes for neuro-ectoderm lineage differentiation. CONCLUSIONS Altogether, UBQLN1 functions to scavenge ubiquitinated proteins, preventing their overloading mitochondria and elevated mitophagy. UBQLN1 maintains mitochondria and telomeres by regulating proteostasis and plays critical role in neuro-ectoderm differentiation.
Collapse
Affiliation(s)
- Shuang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Songqi Duan
- Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Jiangtao Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Nannan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xiaoyan Sheng
- Experimental Animal Center, Nankai University, Tianjin, 300350, China
| | - Yiwei Wu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yanjun Li
- Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
- Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China.
- Experimental Animal Center, Nankai University, Tianjin, 300350, China.
- Tianjin Union Medical Center, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
11
|
Peng L, Gao Y, Cao Z, Pang Y. Identification of a disulfidptosis-related prognostic signature for prediction of the effect of treatment in patients with endometrial carcinoma. CANCER INNOVATION 2024; 3:e120. [PMID: 38947753 PMCID: PMC11212335 DOI: 10.1002/cai2.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 07/02/2024]
Abstract
Background Disulfide, an essential compounds family, has diverse biological activity and can affect the dynamic balance between physiological and pathological states. A recently published study found that aberrant accumulation of disulfide had a lethal effect on cells. This mechanism of cell death, named disulfidptosis, differs from other known cell death mechanisms, including cuproptosis, apoptosis, necroptosis, and pyroptosis. The relationship between disulfidptosis and development of cancer, in particular endometrial carcinoma, remains unclear. Methods To address this knowledge gap, we performed a preliminary analysis of samples from The Cancer Genome Atlas database. The samples were divided equally into a training group and a test group. A total of 2308 differentially expressed genes were extracted, and 11 were used to construct a prognostic model. Results Based on the risk score calculated using the prognostic model, the samples were divided into a high-risk group and a low-risk group. Survival time, tumor mutation burden, and microsatellite instability scores differed significantly between the two groups. Furthermore, a between-group difference in treatment effect was predicted. Comparison with other models in the literature indicated that this prognostic model had better predictive anility. Conclusion The results of this study provide a general framework for understanding the relationship between disulfidptosis and endometrial cancer that could be used for clinical evaluation and selection of appropriate personalized treatment strategies.
Collapse
Affiliation(s)
- Lu Peng
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinanChina
- Department of Clinical MedicineMedical School of Shandong UniversityJinanChina
| | - Yuan Gao
- Department of Clinical MedicineMedical School of Shandong UniversityJinanChina
| | - Zifeng Cao
- Medical Integration and Practice CenterMedical School of Shandong UniversityJinanChina
| | - Yingxin Pang
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
12
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int J Mol Sci 2024; 25:6099. [PMID: 38892287 PMCID: PMC11172677 DOI: 10.3390/ijms25116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
13
|
Anjo SI, He Z, Hussain Z, Farooq A, McIntyre A, Laughton CA, Carvalho AN, Finelli MJ. Protein Oxidative Modifications in Neurodegenerative Diseases: From Advances in Detection and Modelling to Their Use as Disease Biomarkers. Antioxidants (Basel) 2024; 13:681. [PMID: 38929122 PMCID: PMC11200609 DOI: 10.3390/antiox13060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidation-reduction post-translational modifications (redox-PTMs) are chemical alterations to amino acids of proteins. Redox-PTMs participate in the regulation of protein conformation, localization and function, acting as signalling effectors that impact many essential biochemical processes in the cells. Crucially, the dysregulation of redox-PTMs of proteins has been implicated in the pathophysiology of numerous human diseases, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This review aims to highlight the current gaps in knowledge in the field of redox-PTMs biology and to explore new methodological advances in proteomics and computational modelling that will pave the way for a better understanding of the role and therapeutic potential of redox-PTMs of proteins in neurodegenerative diseases. Here, we summarize the main types of redox-PTMs of proteins while providing examples of their occurrence in neurodegenerative diseases and an overview of the state-of-the-art methods used for their detection. We explore the potential of novel computational modelling approaches as essential tools to obtain insights into the precise role of redox-PTMs in regulating protein structure and function. We also discuss the complex crosstalk between various PTMs that occur in living cells. Finally, we argue that redox-PTMs of proteins could be used in the future as diagnosis and prognosis biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra I. Anjo
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-517 Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Zhicheng He
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zohaib Hussain
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aruba Farooq
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alan McIntyre
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Charles A. Laughton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mattéa J. Finelli
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
14
|
Gu Q, An Y, Xu M, Huang X, Chen X, Li X, Shan H, Zhang M. Disulfidptosis, A Novel Cell Death Pathway: Molecular Landscape and Therapeutic Implications. Aging Dis 2024:AD.2024.0083. [PMID: 38739940 DOI: 10.14336/ad.2024.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Programmed cell death is pivotal for several physiological processes, including immune defense. Further, it has been implicated in the pathogenesis of developmental disorders and the onset of numerous diseases. Multiple modes of programmed cell death, including apoptosis, pyroptosis, necroptosis, and ferroptosis, have been identified, each with their own unique characteristics and biological implications. In February 2023, Liu Xiaoguang and his team discovered "disulfidptosis," a novel pathway of programmed cell death. Their findings demonstrated that disulfidptosis is triggered in glucose-starved cells exhibiting high expression of a protein called SLC7A11. Furthermore, disulfidptosis is marked by a drastic imbalance in the NADPH/NADP+ ratio and the abnormal accumulation of disulfides like cystine. These changes ultimately lead to the destabilization of the F-actin network, causing cell death. Given that high SLC7A11 expression is a key feature of certain cancers, these findings indicate that disulfidptosis could serve as the basis of innovative anti-cancer therapies. Hence, this review delves into the discovery of disulfidptosis, its underlying molecular mechanisms and metabolic regulation, and its prospective applications in disease treatment.
Collapse
Affiliation(s)
- Qiuyang Gu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Mingyuan Xu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xueshi Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xianzhe Li
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
15
|
Chen J, Ma B, Yang Y, Wang B, Hao J, Zhou X. Disulfidptosis decoded: a journey through cell death mysteries, regulatory networks, disease paradigms and future directions. Biomark Res 2024; 12:45. [PMID: 38685115 PMCID: PMC11059647 DOI: 10.1186/s40364-024-00593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Cell death is an important part of the life cycle, serving as a foundation for both the orderly development and the maintenance of physiological equilibrium within organisms. This process is fundamental, as it eliminates senescent, impaired, or aberrant cells while also promoting tissue regeneration and immunological responses. A novel paradigm of programmed cell death, known as disulfidptosis, has recently emerged in the scientific circle. Disulfidptosis is defined as the accumulation of cystine by cancer cells with high expression of the solute carrier family 7 member 11 (SLC7A11) during glucose starvation. This accumulation causes extensive disulfide linkages between F-actins, resulting in their contraction and subsequent detachment from the cellular membrane, triggering cellular death. The RAC1-WRC axis is involved in this phenomenon. Disulfidptosis sparked growing interest due to its potential applications in a variety of pathologies, particularly oncology, neurodegenerative disorders, and metabolic anomalies. Nonetheless, the complexities of its regulatory pathways remain elusive, and its precise molecular targets have yet to be definitively identified. This manuscript aims to meticulously dissect the historical evolution, molecular underpinnings, regulatory frameworks, and potential implications of disulfidptosis in various disease contexts, illuminating its promise as a groundbreaking therapeutic pathway and target.
Collapse
Affiliation(s)
- Jinyu Chen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Boyuan Ma
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yubiao Yang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Bitao Wang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jian Hao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Xianhu Zhou
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
16
|
Zhao Z, Laps S, Gichtin JS, Metanis N. Selenium chemistry for spatio-selective peptide and protein functionalization. Nat Rev Chem 2024; 8:211-229. [PMID: 38388838 DOI: 10.1038/s41570-024-00579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
The ability to construct a peptide or protein in a spatio-specific manner is of great interest for therapeutic and biochemical research. However, the various functional groups present in peptide sequences and the need to perform chemistry under mild and aqueous conditions make selective protein functionalization one of the greatest synthetic challenges. The fascinating paradox of selenium (Se) - being found in both toxic compounds and also harnessed by nature for essential biochemical processes - has inspired the recent exploration of selenium chemistry for site-selective functionalization of peptides and proteins. In this Review, we discuss such approaches, including metal-free and metal-catalysed transformations, as well as traceless chemical modifications. We report their advantages, limitations and applications, as well as future research avenues.
Collapse
Affiliation(s)
- Zhenguang Zhao
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Shay Laps
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacob S Gichtin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
17
|
Amason ME, Li L, Harvest CK, Lacey CA, Miao EA. Validation of the Intermolecular Disulfide Bond in Caspase-2. BIOLOGY 2024; 13:49. [PMID: 38248479 PMCID: PMC10813798 DOI: 10.3390/biology13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Caspases are a family of proteins involved in cell death. Although several caspase members have been well characterized, caspase-2 remains enigmatic. Caspase-2 has been implicated in several phenotypes, but there has been no consensus in the field about its upstream activating signals or its downstream protein targets. In addition, the unique ability of caspase-2 to form a disulfide-bonded dimer has not been studied in depth. Herein, we investigate the disulfide bond in the context of inducible dimerization, showing that disulfide bond formation is dimerization dependent. We also explore and review several stimuli published in the caspase-2 field, test ferroptosis-inducing stimuli, and study in vivo infection models. We hypothesize that the disulfide bond will ultimately prove to be essential for the evolved function of caspase-2. Proving this will require the discovery of cell death phenotypes where caspase-2 is definitively essential.
Collapse
Affiliation(s)
- Megan E. Amason
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lupeng Li
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carissa K. Harvest
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carolyn A. Lacey
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Edward A. Miao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
18
|
Lin H, Suzuki K, Smith N, Li X, Nalbach L, Fuentes S, Spigelman AF, Dai XQ, Bautista A, Ferdaoussi M, Aggarwal S, Pepper AR, Roma LP, Ampofo E, Li WH, MacDonald PE. A role and mechanism for redox sensing by SENP1 in β-cell responses to high fat feeding. Nat Commun 2024; 15:334. [PMID: 38184650 PMCID: PMC10771529 DOI: 10.1038/s41467-023-44589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Pancreatic β-cells respond to metabolic stress by upregulating insulin secretion, however the underlying mechanisms remain unclear. Here we show, in β-cells from overweight humans without diabetes and mice fed a high-fat diet for 2 days, insulin exocytosis and secretion are enhanced without increased Ca2+ influx. RNA-seq of sorted β-cells suggests altered metabolic pathways early following high fat diet, where we find increased basal oxygen consumption and proton leak, but a more reduced cytosolic redox state. Increased β-cell exocytosis after 2-day high fat diet is dependent on this reduced intracellular redox state and requires the sentrin-specific SUMO-protease-1. Mice with either pancreas- or β-cell-specific deletion of this fail to up-regulate exocytosis and become rapidly glucose intolerant after 2-day high fat diet. Mechanistically, redox-sensing by the SUMO-protease requires a thiol group at C535 which together with Zn+-binding suppresses basal protease activity and unrestrained β-cell exocytosis, and increases enzyme sensitivity to regulation by redox signals.
Collapse
Affiliation(s)
- Haopeng Lin
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Xi Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Lisa Nalbach
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Sonia Fuentes
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Mourad Ferdaoussi
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Saloni Aggarwal
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Leticia P Roma
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Wen-Hong Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
19
|
Feng X, Cen K, Yu X, Huang C, Yang W, Yang Y, Tang X. Quinoa protein Pickering emulsion improves the freeze-thaw stability of myofibrillar protein gel: Maintaining protein composition, structure, conformation and digestibility and slowing down protein oxidation. Int J Biol Macromol 2023; 253:126682. [PMID: 37666398 DOI: 10.1016/j.ijbiomac.2023.126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
In this work, the effects of quinoa protein Pickering emulsion (QPPE) on protein oxidation, structure and gastrointestinal digestion property of myofibrillar protein gels (MPGs) after freeze-thaw (F-T) cycles are revealed. SDS-PAGE results indicated that 5.0 %-10.0 % QPPE addition slowed down the protein degradation. Meanwhile, 5.0 %-7.5 % QPPE maintained the stability of the protein secondary and tertiary structure of MPGs after F-T cycles. The sulfhydryl group, disulfide bond and dityrosine content increased with QPPE supplementation. The conformations of disulfide bond changed from g-g-t and t-g-t to g-g-g after F-T cycles, and 5.0 %-7.5 % QPPE stabilized the changes of t-g-t conformation. Furthermore, the increase of dityrosine content after F-T cycles was significantly reduced with 7.5 % QPPE addition, indicating its effect to slow down protein oxidation of MPGs. In addition, MPGs with 5.0 % and 7.5 % QPPE showed noticeably higher zeta potential values than other groups, indicating the enhanced electrostatic repulsion and weakened aggregation caused by F-T damage. This work showed that 7.5 % QPPE improved the F-T stability of MPGs and reduced the protein denaturation and oxidation caused by F-T treatments, exerting no side effect on the digestion property of MPGs. QPPE can be used as a green and effective antifreeze in meat industry.
Collapse
Affiliation(s)
- Xiao Feng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Kaiyue Cen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau 999078, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Yang
- Quality and Technology Center, Hainan Xiangtai Fishery Co., Ltd., Chengmai 571924, China
| | - Yuling Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
20
|
Lee J, Im D, Liu Y, Fang J, Tian X, Kim M, Zhang WB, Seo J. Distinguishing Protein Chemical Topologies Using Supercharging Ion Mobility Spectrometry-Mass Spectrometry. Angew Chem Int Ed Engl 2023; 62:e202314980. [PMID: 37937859 DOI: 10.1002/anie.202314980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
A technique combining ion mobility spectrometry-mass spectrometry (IMS-MS) and supercharging electrospray ionization (ESI) has been demonstrated to differentiate protein chemical topology effectively. Incorporating as many charges as possible into proteins via supercharging ESI allows the protein chains to be largely unfolded and stretched, revealing their hidden chemical topology. Different chemical topologies result in differing geometrical sizes of the unfolded proteins due to constraints in torsional rotations in cyclic domains. By introducing new topological indices, such as the chain-length-normalized collision cross-section (CCS) and the maximum charge state (zM ) in the extensively unfolded state, we were able to successfully differentiate various protein chemical topologies, including linear chains, ring-containing topologies (lasso, tadpole, multicyclics, etc.), and mechanically interlocked rings, like catenanes.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| | - Dahye Im
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| | - Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xibao Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Minsu Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| |
Collapse
|
21
|
Evic V, Soic R, Mocibob M, Kekez M, Houser J, Wimmerová M, Matković-Čalogović D, Gruic-Sovulj I, Kekez I, Rokov-Plavec J. Evolutionarily conserved cysteines in plant cytosolic seryl-tRNA synthetase are important for its resistance to oxidation. FEBS Lett 2023; 597:2975-2992. [PMID: 37804069 DOI: 10.1002/1873-3468.14748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
We have previously identified a unique disulfide bond in the crystal structure of Arabidopsis cytosolic seryl-tRNA synthetase involving cysteines evolutionarily conserved in all green plants. Here, we discovered that both cysteines are important for protein stability, but with opposite effects, and that their microenvironment may promote disulfide bond formation in oxidizing conditions. The crystal structure of the C244S mutant exhibited higher rigidity and an extensive network of noncovalent interactions correlating with its higher thermal stability. The activity of the wild-type showed resistance to oxidation with H2 O2 , while the activities of cysteine-to-serine mutants were impaired, indicating that the disulfide link may enable the protein to function under oxidative stress conditions which can be beneficial for an efficient plant stress response.
Collapse
Affiliation(s)
- Valentina Evic
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ruzica Soic
- Division of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Marko Mocibob
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mario Kekez
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Josef Houser
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Wimmerová
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Dubravka Matković-Čalogović
- Division of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ita Gruic-Sovulj
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ivana Kekez
- Division of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Jasmina Rokov-Plavec
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
22
|
Kim DY, Kandalaft H, Lowden MJ, Yang Q, Rossotti MA, Robotham A, Kelly JF, Hussack G, Schrag JD, Henry KA, Tanha J. Sequence tolerance of immunoglobulin variable domain framework regions to noncanonical intradomain disulfide linkages. J Biol Chem 2023; 299:105278. [PMID: 37742917 PMCID: PMC10641266 DOI: 10.1016/j.jbc.2023.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Most immunoglobulin (Ig) domains bear only a single highly conserved canonical intradomain, inter-β-sheet disulfide linkage formed between Cys23-Cys104, and incorporation of rare noncanonical disulfide linkages at other locations can enhance Ig domain stability. Here, we exhaustively surveyed the sequence tolerance of Ig variable (V) domain framework regions (FRs) to noncanonical disulfide linkages. Starting from a destabilized VH domain lacking a Cys23-Cys104 disulfide linkage, we generated and screened phage-displayed libraries of engineered VHs, bearing all possible pairwise combinations of Cys residues in neighboring β-strands of the Ig fold FRs. This approach identified seven novel Cys pairs in VH FRs (Cys4-Cys25, Cys4-Cys118, Cys5-Cys120, Cys6-Cys119, Cys22-Cys88, Cys24-Cys86, and Cys45-Cys100; the international ImMunoGeneTics information system numbering), whose presence rescued domain folding and stability. Introduction of a subset of these noncanonical disulfide linkages (three intra-β-sheet: Cys4-Cys25, Cys22-Cys88, and Cys24-Cys86, and one inter-β-sheet: Cys6-Cys119) into a diverse panel of VH, VL, and VHH domains enhanced their thermostability and protease resistance without significantly impacting expression, solubility, or binding to cognate antigens. None of the noncanonical disulfide linkages identified were present in the natural human VH repertoire. These data reveal an unexpected permissiveness of Ig V domains to noncanonical disulfide linkages at diverse locations in FRs, absent in the human repertoire, whose presence is compatible with antigen recognition and improves domain stability. Our work represents the most complete assessment to date of the role of engineered noncanonical disulfide bonding within FRs in Ig V domain structure and function.
Collapse
Affiliation(s)
- Dae Young Kim
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Hiba Kandalaft
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Michael J Lowden
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Qingling Yang
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Martin A Rossotti
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anna Robotham
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - John F Kelly
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Greg Hussack
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Joseph D Schrag
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Quebec, Canada
| | - Kevin A Henry
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jamshid Tanha
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
23
|
Gao Q, Grzyb K, Gamon LF, Ogilby PR, Pędziński T, Davies MJ. The structure of model and peptide disulfides markedly affects their reactivity and products formed with singlet oxygen. Free Radic Biol Med 2023; 207:320-329. [PMID: 37633403 DOI: 10.1016/j.freeradbiomed.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Disulfide bonds are critical structural elements in proteins and stabilize folded structures. Modification of these linkages is associated with a loss of structure and function. Previous studies have reported large variations in the rate of disulfide oxidation by hypohalous acids, due to stabilization of reaction intermediates. In this study we hypothesized that considerable variation (and hence selective oxidation) would occur with singlet oxygen (1O2), a key intermediate in photo-oxidation reactions. The kinetics of disulfide-mediated 1O2 removal were monitored using the time-resolved 1270 nm phosphorescence of 1O2. Stern-Volmer plots of these data showed a large variation (∼103) in the quenching rate constants kq (from 2 × 107 for α-lipoic acid to 3.6 × 104 M-1s-1 for cystamine). The time course of disulfide loss and product formation (determined by LC-MS) support a role for 1O2, with mono- and di-oxygenated products detected. Elevated levels of these latter species were generated in D2O- compared to H2O buffers, which is consistent with solvent effects on the 1O2 lifetime. These data are interpreted in terms of the intermediacy of a zwitterion [-S+(OO-)-S-], which either isomerizes to a thiosulfonate [-S(O)2-S-] or reacts with another parent molecule to give two thiosulfinates [-S(O)-S-]. The variation in quenching rates and product formation are ascribed to zwitterion stabilization by neighboring, or remote, lone pairs of electrons. These data suggest that some disulfides, including some present within or attached to proteins (e.g., α-lipoic acid), may be selectively modified, and undergo subsequent cleavage, with adverse effects on protein structure and function.
Collapse
Affiliation(s)
- Qing Gao
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Katarzyna Grzyb
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznań, Poland
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, DK-8000, Aarhus, Denmark
| | - Tomasz Pędziński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznań, Poland
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
24
|
Rustagi V, Gupta SRR, Bajaj M, Singh A, Singh IK. PepAnalyzer: predicting peptide properties using its sequence. Amino Acids 2023; 55:1371-1379. [PMID: 37668712 DOI: 10.1007/s00726-023-03317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Peptides are short linear molecules consisting of amino acids that play an essential role in most biological processes. They can treat diseases by working as a vaccine or antimicrobial agent and serves as a cancer molecule to deliver the drug to the target site for the treatment of cancer. They have the potential to solve the drawbacks of current medications and can be industrially produced in large quantities at low cost. However, poor chemical and physical stability, short circulating plasma half-life, and solubility are some issues that need solutions before they can be used as therapeutics. PepAnalyzer tool is a user-friendly tool that predicts 15 different properties such as binding potential, half-life, transmembrane patterns, test tube stability, charge, isoelectric point, molecular weights, and molar extinction coefficients only using the sequence. The tool is designed using BioPython utility and has even results with standard tools, such as Expasy, EBI, Genecorner, and Geneinfinity. The tool assists students, researchers, and the pharmaceutical sector. The PepAnalyzer tool's online platform is accessible at the link: http://www.iksmbrlabdu.in/peptool .
Collapse
Affiliation(s)
- Vanshika Rustagi
- Molecular Biology Research Lab., Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Shradheya R R Gupta
- Molecular Biology Research Lab., Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Monika Bajaj
- Department of Computer Science, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India.
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab., Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.
- DBC i4 Centre, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.
- Norris Comprehensive Cancer Centre, Division of Medical Oncology, University of Southern California, Los Angeles, CA, 90033-9173, USA.
- Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
25
|
Marques E, Alves Teixeira M, Nguyen C, Terzi F, Gallazzini M. Lipocalin-2 induces mitochondrial dysfunction in renal tubular cells via mTOR pathway activation. Cell Rep 2023; 42:113032. [PMID: 37624695 DOI: 10.1016/j.celrep.2023.113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial dysfunction is a critical process in renal epithelial cells upon kidney injury. While its implication in kidney disease progression is established, the mechanisms modulating it remain unclear. Here, we describe the role of Lipocalin-2 (LCN2), a protein expressed in injured tubular cells, in mitochondrial dysfunction. We show that LCN2 expression decreases mitochondrial mass and function and induces mitochondrial fragmentation. Importantly, while LCN2 expression favors DRP1 mitochondrial recruitment, DRP1 inhibition antagonizes LCN2's effect on mitochondrial shape. Remarkably, LCN2 promotes mitochondrial fragmentation independently of its secretion or transport iron activity. Mechanistically, intracellular LCN2 expression increases mTOR activity, and rapamycin inhibits LCN2's effect on mitochondrial shape. In vivo, Lcn2 gene inactivation prevents mTOR activation and mitochondrial length decrease observed upon ischemia-reperfusion-induced kidney injury (IRI) in Lcn2+/+ mice. Our data identify LCN2 as a key regulator of mitochondrial dynamics and further elucidate the mechanisms leading to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Eloïse Marques
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Institut Necker Enfants Malades, 160 Rue de Vaugirard, 75015 Paris, France
| | - Maraiza Alves Teixeira
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Institut Necker Enfants Malades, 160 Rue de Vaugirard, 75015 Paris, France
| | - Clément Nguyen
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Institut Necker Enfants Malades, 160 Rue de Vaugirard, 75015 Paris, France
| | - Fabiola Terzi
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Institut Necker Enfants Malades, 160 Rue de Vaugirard, 75015 Paris, France
| | - Morgan Gallazzini
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Institut Necker Enfants Malades, 160 Rue de Vaugirard, 75015 Paris, France.
| |
Collapse
|
26
|
Wzgarda-Raj K, Dominikowska J, Husik N, Rybarczyk-Pirek AJ. 2,2'-Dithiobispyrazine: about the disulfide bond. Acta Crystallogr C Struct Chem 2023; 79:374-380. [PMID: 37642977 DOI: 10.1107/s2053229623007416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
X-ray diffraction studies reveal that pyrazine-2-thiol undergoes condensation to 2,2'-dithiobispyrazine [systematic name: 2-(pyrazin-2-yldisulfanyl)pyrazine], C8H6N4S2 (I), under aerial conditions. In the molecule of I, the pyrazine rings are arranged in an almost perpendicular manner, with an absolute value of the C-S-S-C torsion angle of -91.45 (6)°. A search in the Cambridge Structural Database confirmed that such a conformation is typical for disulfide compounds. Three different rotamers of disulfide I were studied using quantum theoretical studies. The rotamer of lowest energy was observed in the crystalline state in the structure stabilized by hydrogen-bond, chalcogen-bond and stacking interactions. Further quantum chemical computations confirm that 2,2'-dithiobispyrazine can react according to the SN2 mechanism.
Collapse
Affiliation(s)
- Kinga Wzgarda-Raj
- Department of Physical Chemistry, University of Łódź, Pomorska 163/165, Łódź 91-236, Poland
| | - Justyna Dominikowska
- Department of Physical Chemistry, University of Łódź, Pomorska 163/165, Łódź 91-236, Poland
| | - Natallia Husik
- Department of Physical Chemistry, University of Łódź, Pomorska 163/165, Łódź 91-236, Poland
| | | |
Collapse
|
27
|
Ferrero E, Di Gregorio E, Ferrero M, Ortolan E, Moon YA, Di Campli A, Pavinato L, Mancini C, Tripathy D, Manes M, Hoxha E, Costanzi C, Pozzi E, Rossi Sebastiano M, Mitro N, Tempia F, Caruso D, Borroni B, Basso M, Sallese M, Brusco A. Spinocerebellar ataxia 38: structure-function analysis shows ELOVL5 G230V is proteotoxic, conformationally altered and a mutational hotspot. Hum Genet 2023; 142:1055-1076. [PMID: 37199746 PMCID: PMC10449689 DOI: 10.1007/s00439-023-02572-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Fatty acid elongase ELOVL5 is part of a protein family of multipass transmembrane proteins that reside in the endoplasmic reticulum where they regulate long-chain fatty acid elongation. A missense variant (c.689G>T p.Gly230Val) in ELOVL5 causes Spinocerebellar Ataxia subtype 38 (SCA38), a neurodegenerative disorder characterized by autosomal dominant inheritance, cerebellar Purkinje cell demise and adult-onset ataxia. Having previously showed aberrant accumulation of p.G230V in the Golgi complex, here we further investigated the pathogenic mechanisms triggered by p.G230V, integrating functional studies with bioinformatic analyses of protein sequence and structure. Biochemical analysis showed that p.G230V enzymatic activity was normal. In contrast, SCA38-derived fibroblasts showed reduced expression of ELOVL5, Golgi complex enlargement and increased proteasomal degradation with respect to controls. By heterologous overexpression, p.G230V was significantly more active than wild-type ELOVL5 in triggering the unfolded protein response and in decreasing viability in mouse cortical neurons. By homology modelling, we generated native and p.G230V protein structures whose superposition revealed a shift in Loop 6 in p.G230V that altered a highly conserved intramolecular disulphide bond. The conformation of this bond, connecting Loop 2 and Loop 6, appears to be elongase-specific. Alteration of this intramolecular interaction was also observed when comparing wild-type ELOVL4 and the p.W246G variant which causes SCA34. We demonstrate by sequence and structure analyses that ELOVL5 p.G230V and ELOVL4 p.W246G are position-equivalent missense variants. We conclude that SCA38 is a conformational disease and propose combined loss of function by mislocalization and gain of toxic function by ER/Golgi stress as early events in SCA38 pathogenesis.
Collapse
Affiliation(s)
- Enza Ferrero
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Eleonora Di Gregorio
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy
| | - Marta Ferrero
- Experimental Zooprophylactic Institute of Piedmont, Liguria and Aosta Valley, Turin, Italy
| | - Erika Ortolan
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Antonella Di Campli
- Institute of Protein Biochemistry, Italian National Research Council, Naples, Italy
- Department of Innovative Technologies in Medicine and Dentistry, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Cecilia Mancini
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Marta Manes
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | | | - Elisa Pozzi
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Matteo Rossi Sebastiano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michele Sallese
- Centre for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy.
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy.
| |
Collapse
|
28
|
Kalinina EV, Novichkova MD. S-Glutathionylation and S-Nitrosylation as Modulators of Redox-Dependent Processes in Cancer Cell. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:924-943. [PMID: 37751864 DOI: 10.1134/s0006297923070064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 09/28/2023]
Abstract
Development of oxidative/nitrosative stress associated with the activation of oncogenic pathways results from the increase in the generation of reactive oxygen and nitrogen species (ROS/RNS) in tumor cells, where they can have a dual effect. At high concentrations, ROS/RNS cause cell death and limit tumor growth at certain phases of its development, while their low amounts promote oxidative/nitrosative modifications of key redox-dependent residues in regulatory proteins. The reversibility of such modifications as S-glutathionylation and S-nitrosylation that proceed through the electrophilic attack of ROS/RNS on nucleophilic Cys residues ensures the redox-dependent switch in the activity of signaling proteins, as well as the ability of these compounds to control cell proliferation and programmed cell death. The content of S-glutathionylated and S-nitrosylated proteins is controlled by the balance between S-glutathionylation/deglutathionylation and S-nitrosylation/denitrosylation, respectively, and depends on the cellular redox status. The extent of S-glutathionylation and S-nitrosylation of protein targets and their ratio largely determine the status and direction of signaling pathways in cancer cells. The review discusses the features of S-glutathionylation and S-nitrosylation reactions and systems that control them in cancer cells, as well as their relationship with redox-dependent processes and tumor growth.
Collapse
|
29
|
Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Adv Healthc Mater 2023; 12:e2203148. [PMID: 36802199 PMCID: PMC10330013 DOI: 10.1002/adhm.202203148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Gelatin is a widely utilized bioprinting biomaterial due to its cell-adhesive and enzymatically cleavable properties, which improve cell adhesion and growth. Gelatin is often covalently cross-linked to stabilize bioprinted structures, yet the covalently cross-linked matrix is unable to recapitulate the dynamic microenvironment of the natural extracellular matrix (ECM), thereby limiting the functions of bioprinted cells. To some extent, a double network bioink can provide a more ECM-mimetic, bioprinted niche for cell growth. More recently, gelatin matrices are being designed using reversible cross-linking methods that can emulate the dynamic mechanical properties of the ECM. This review analyzes the progress in developing gelatin bioink formulations for 3D cell culture, and critically analyzes the bioprinting and cross-linking techniques, with a focus on strategies to optimize the functions of bioprinted cells. This review discusses new cross-linking chemistries that recapitulate the viscoelastic, stress-relaxing microenvironment of the ECM, and enable advanced cell functions, yet are less explored in engineering the gelatin bioink. Finally, this work presents the perspective on the areas of future research and argues that the next generation of gelatin bioinks should be designed by considering cell-matrix interactions, and bioprinted constructs should be validated against currently established 3D cell culture standards to achieve improved therapeutic outcomes.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
| | - Tanveer A. Tabish
- Cardiovascular Division, Radcliff Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Usman Liaqat
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Pakistan
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics, Penn State, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State, Hershey, PA 16802, USA
- Department of Medical Oncology, Cukurova University, Adana 01330, Turkey
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
- Health Research Institute, Michigan Technological University, Houghton, MI, 49931 USA
| |
Collapse
|
30
|
Liu Y, Zhao X, Jian J, Hasan S, Liu C. Interaction with ERp57 is required for progranulin protection against Type 2 Gaucher disease. Biosci Trends 2023; 17:126-135. [PMID: 36889696 PMCID: PMC10514708 DOI: 10.5582/bst.2023.01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Gaucher disease (GD), one of the most common lysosomal storage diseases, is caused by GBA1 mutations resulting in defective glucocerebrosidase (GCase) and consequent accumulation of its substrates β-glucosylceramide (β-GlcCer). We reported progranulin (PGRN), a secretary growth factor-like molecule and an intracellular lysosomal protein was a crucial co-factor of GCase. PGRN binds to GCase and recruits Heat Shock Protein 70 (Hsp70) to GCase through its C-terminal Granulin (Grn) E domain, termed as ND7. In addition, both PGRN and ND7 are therapeutic against GD. Herein we found that both PGRN and its derived ND7 still displayed significant protective effects against GD in Hsp70 deficient cells. To delineate the molecular mechanisms underlying PGRN's Hsp70-independent regulation of GD, we performed a biochemical co-purification and mass spectrometry with His-tagged PGRN and His-tagged ND7 in Hsp70 deficient cells, which led to the identification of ERp57, also referred to as protein disulfide isomerase A3 (PDIA3), as a protein that binds to both PGRN and ND7. Within type 2 neuropathic GD patient fibroblasts L444P, bearing GBA1 L444P mutation, deletion of ERp57 largely abolished the therapeutic effects of PGRN and ND7, as manifested by loss of effects on lysosomal storage, GCase activity, and β-GlcCer accumulation. Additionally, recombinant ERp57 effectively restored the therapeutic effects of PGRN and ND7 in ERp57 knockout L444P fibroblasts. Collectively, this study reports ERp57 as a previously unrecognized binding partner of PGRN that contributes to PGRN regulation of GD.
Collapse
Affiliation(s)
- Yuzhao Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangli Zhao
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Jinlong Jian
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Sadaf Hasan
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
31
|
Kisty EA, Saart EC, Weerapana E. Identifying Redox-Sensitive Cysteine Residues in Mitochondria. Antioxidants (Basel) 2023; 12:992. [PMID: 37237858 PMCID: PMC10215197 DOI: 10.3390/antiox12050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The mitochondrion is the primary energy generator of a cell and is a central player in cellular redox regulation. Mitochondrial reactive oxygen species (mtROS) are the natural byproducts of cellular respiration that are critical for the redox signaling events that regulate a cell's metabolism. These redox signaling pathways primarily rely on the reversible oxidation of the cysteine residues on mitochondrial proteins. Several key sites of this cysteine oxidation on mitochondrial proteins have been identified and shown to modulate downstream signaling pathways. To further our understanding of mitochondrial cysteine oxidation and to identify uncharacterized redox-sensitive cysteines, we coupled mitochondrial enrichment with redox proteomics. Briefly, differential centrifugation methods were used to enrich for mitochondria. These purified mitochondria were subjected to both exogenous and endogenous ROS treatments and analyzed by two redox proteomics methods. A competitive cysteine-reactive profiling strategy, termed isoTOP-ABPP, enabled the ranking of the cysteines by their redox sensitivity, due to a loss of reactivity induced by cysteine oxidation. A modified OxICAT method enabled a quantification of the percentage of reversible cysteine oxidation. Initially, we assessed the cysteine oxidation upon treatment with a range of exogenous hydrogen peroxide concentrations, which allowed us to differentiate the mitochondrial cysteines by their susceptibility to oxidation. We then analyzed the cysteine oxidation upon inducing reactive oxygen species generation via the inhibition of the electron transport chain. Together, these methods identified the mitochondrial cysteines that were sensitive to endogenous and exogenous ROS, including several previously known redox-regulated cysteines and uncharacterized cysteines on diverse mitochondrial proteins.
Collapse
|
32
|
Yao Z, Geng B, Marcon E, Pu S, Tang H, Merluza J, Bello A, Snider J, Lu P, Wood H, Stagljar I. Omicron Spike Protein Is Vulnerable to Reduction. J Mol Biol 2023; 435:168128. [PMID: 37100168 PMCID: PMC10125213 DOI: 10.1016/j.jmb.2023.168128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
SARS-CoV-2 virus spike (S) protein is an envelope protein responsible for binding to the ACE2 receptor, driving subsequent entry into host cells. The existence of multiple disulfide bonds in the S protein makes it potentially susceptible to reductive cleavage. Using a tri-part split luciferase-based binding assay, we evaluated the impacts of chemical reduction on S proteins from different virus variants and found that those from the Omicron family are highly vulnerable to reduction. Through manipulation of different Omicron mutations, we found that alterations in the receptor binding module (RBM) are the major determinants of this vulnerability. Specifically we discovered that Omicron mutations facilitate the cleavage of C480-C488 and C379-C432 disulfides, which consequently impairs binding activity and protein stability. The vulnerability of Omicron S proteins suggests a mechanism that can be harnessed to treat specific SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Betty Geng
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Hua Tang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - John Merluza
- Zoonotic Diseases and Special Pathogens division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Alexander Bello
- Zoonotic Diseases and Special Pathogens division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ping Lu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Heidi Wood
- Zoonotic Diseases and Special Pathogens division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište 45, HR-21000 Split, Croatia.
| |
Collapse
|
33
|
Azemin WA, Alias N, Ali AM, Shamsir MS. In silico analysis prediction of HepTH1-5 as a potential therapeutic agent by targeting tumour suppressor protein networks. J Biomol Struct Dyn 2023; 41:1141-1167. [PMID: 34935583 DOI: 10.1080/07391102.2021.2017349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Many studies reported that the activation of tumour suppressor protein, p53 induced the human hepcidin expression. However, its expression decreased when p53 was silenced in human hepatoma cells. Contrary to Tilapia hepcidin TH1-5, HepTH1-5 was previously reported to trigger the p53 activation through the molecular docking approach. The INhibitor of Growth (ING) family members are also shown to directly interact with p53 and promote cell cycle arrest, senescence, apoptosis and participate in DNA replication and DNA damage responses to suppress the tumour initiation and progression. However, the interrelation between INGs and HepTH1-5 remains unknown. Therefore, this study aims to identify the mechanism and their protein interactions using in silico approaches. The finding revealed that HepTH1-5 and its ligands had interacted mostly on hotspot residues of ING proteins which involved in histone modifications via acetylation, phosphorylation, and methylation. This proves that HepTH1-5 might implicate in an apoptosis signalling pathway and preserve the protein structure and function of INGs by reducing the perturbation of histone binding upon oxidative stress response. This study would provide theoretical guidance for the design and experimental studies to decipher the role of HepTH1-5 as a potential therapeutic agent for cancer therapy. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia.,Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Nadiawati Alias
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Malaysia
| |
Collapse
|
34
|
Norman MP, Edwards MJ, White GF, Burton JAJ, Butt JN, Richardson DJ, Louro RO, Paquete CM, Clarke TA. A Cysteine Pair Controls Flavin Reduction by Extracellular Cytochromes during Anoxic/Oxic Environmental Transitions. mBio 2023; 14:e0258922. [PMID: 36645302 PMCID: PMC9973256 DOI: 10.1128/mbio.02589-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/19/2022] [Indexed: 01/17/2023] Open
Abstract
Many bacteria of the genus Shewanella are facultative anaerobes able to reduce a broad range of soluble and insoluble substrates, including Fe(III) mineral oxides. Under anoxic conditions, the bacterium Shewanella oneidensis MR-1 uses a porin-cytochrome complex (Mtr) to mediate extracellular electron transfer (EET) across the outer membrane to extracellular substrates. However, it is unclear how EET prevents generating harmful reactive oxygen species (ROS) when exposed to oxic environments. The Mtr complex is expressed under anoxic and oxygen-limited conditions and contains an extracellular MtrC subunit. This has a conserved CX8C motif that inhibits aerobic growth when removed. This inhibition is caused by an increase in ROS that kills the majority of S. oneidensis cells in culture. To better understand this effect, soluble MtrC isoforms with modified CX8C were isolated. These isoforms produced increased concentrations of H2O2 in the presence of flavin mononucleotide (FMN) and greatly increased the affinity between MtrC and FMN. X-ray crystallography revealed that the molecular structure of MtrC isoforms was largely unchanged, while small-angle X-ray scattering suggested that a change in flexibility was responsible for controlling FMN binding. Together, these results reveal that FMN reduction in S. oneidensis MR-1 is controlled by the redox-active disulfide on the cytochrome surface. In the presence of oxygen, the disulfide forms, lowering the affinity for FMN and decreasing the rate of peroxide formation. This cysteine pair consequently allows the cell to respond to changes in oxygen level and survive in a rapidly transitioning environment. IMPORTANCE Bacteria that live at the oxic/anoxic interface have to rapidly adapt to changes in oxygen levels within their environment. The facultative anaerobe Shewanella oneidensis MR-1 can use EET to respire in the absence of oxygen, but on exposure to oxygen, EET could directly reduce extracellular oxygen and generate harmful reactive oxygen species that damage the bacterium. By modifying an extracellular cytochrome called MtrC, we show how preventing a redox-active disulfide from forming causes the production of cytotoxic concentrations of peroxide. The disulfide affects the affinity of MtrC for the redox-active flavin mononucleotide, which is part of the EET pathway. Our results demonstrate how a cysteine pair exposed on the surface controls the path of electron transfer, allowing facultative anaerobic bacteria to rapidly adapt to changes in oxygen concentration at the oxic/anoxic interface.
Collapse
Affiliation(s)
- Michael P. Norman
- Babraham Institute, Babraham Research Campus, Babraham, Cambridge, United Kingdom
| | - Marcus J. Edwards
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Gaye F. White
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Joshua A. J. Burton
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Julea N. Butt
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - David J. Richardson
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Ricardo O. Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Catarina M. Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Thomas A. Clarke
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
35
|
Zhang Y, Jin J, Wu H, Huang J, Ye S, Qiu J, Ouyang G, Wu T, Liu F, Liu Y. Periostin Protects Against Alcohol-related Liver Disease by Activating Autophagy by Interacting With Protein Disulfide Isomerase. Cell Mol Gastroenterol Hepatol 2023; 15:1475-1504. [PMID: 36801449 PMCID: PMC10149225 DOI: 10.1016/j.jcmgh.2023.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND & AIMS The matricellular protein periostin plays a critical role in liver inflammation, fibrosis, and even carcinoma. Here, the biological function of periostin in alcohol-related liver disease (ALD) was investigated. METHODS We used wild-type (WT), Postn-null (Postn-/-) mice and Postn-/- mice with periostin recovery to investigate the biological function of periostin in ALD. Proximity-dependent biotin identification analysis identified the protein that interacted with periostin, and coimmunoprecipitation analysis validated the interaction between protein disulfide isomerase (PDI) and periostin. Pharmacological intervention and genetic knockdown of PDI were used to investigate the functional correlation between periostin and PDI in ALD development. RESULTS Periostin was markedly upregulated in the livers of mice that were fed ethanol. Interestingly, periostin deficiency severely aggravated ALD in mice, whereas the recovery of periostin in the livers of Postn-/- mice significantly ameliorated ALD. Mechanistic studies showed that the upregulation of periostin alleviated ALD by activating autophagy through inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) pathway, which was verified in murine models treated with the mTOR inhibitor rapamycin and the autophagy inhibitor MHY1485. Furthermore, a protein interaction map of periostin was generated by proximity-dependent biotin identification analysis. Interaction profile analysis identified PDI as a key protein that interacted with periostin. Intriguingly, periostin-mediated enhancement of autophagy by inhibiting the mTORC1 pathway in ALD depended on its interaction with PDI. Moreover, alcohol-induced periostin overexpression was regulated by transcription factor EB. CONCLUSIONS Collectively, these findings clarify a novel biological function and mechanism of periostin in ALD and the periostin-PDI-mTORC1 axis is a critical determinant of ALD.
Collapse
Affiliation(s)
- Yanfei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiayu Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Heming Wu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Jingwen Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shuting Ye
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jinhua Qiu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tiantian Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Fan Liu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China.
| | - Yingfu Liu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
36
|
Regulation of Mitochondrial Hydrogen Peroxide Availability by Protein S-glutathionylation. Cells 2022; 12:cells12010107. [PMID: 36611901 PMCID: PMC9818751 DOI: 10.3390/cells12010107] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND It has been four decades since protein S-glutathionylation was proposed to serve as a regulator of cell metabolism. Since then, this redox-sensitive covalent modification has been identified as a cell-wide signaling platform required for embryonic development and regulation of many physiological functions. SCOPE OF THE REVIEW Mitochondria use hydrogen peroxide (H2O2) as a second messenger, but its availability must be controlled to prevent oxidative distress and promote changes in cell behavior in response to stimuli. Experimental data favor the function of protein S-glutathionylation as a feedback loop for the inhibition of mitochondrial H2O2 production. MAJOR CONCLUSIONS The glutathione pool redox state is linked to the availability of H2O2, making glutathionylation an ideal mechanism for preventing oxidative distress whilst playing a part in desensitizing mitochondrial redox signals. GENERAL SIGNIFICANCE The biological significance of glutathionylation is rooted in redox status communication. The present review critically evaluates the experimental evidence supporting its role in negating mitochondrial H2O2 production for cell signaling and prevention of electrophilic stress.
Collapse
|
37
|
Narayan M. The Non-native Disulfide-Bond-Containing Landscape Orthogonal to the Oxidative Protein-Folding Trajectory: A Necessary Evil? J Phys Chem B 2022; 126:10273-10284. [PMID: 36472840 DOI: 10.1021/acs.jpcb.2c04648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative protein folding describes the process by which disulfide-bond-containing proteins mature from their ribosomal, fully reduced and unfolded, origins. Over the past 40 years, a number of exemplar proteins including bovine pancreatic ribonuclease A (RNaseA), bovine pancreatic trypsin inhibitor (BPTI), and hen egg-white lysozyme (HEWL), among others, have provided rich insight into the nature of the intermolecular interactions that drive the formation of the native, biologically active fold. In this Review Article, we revisit the oxidative folding process of RNase A with a focus on reconciling the role of non-native disulfide-bond-containing species that populate the oxidative folding landscape. Toward gaining such an understanding, we project the regeneration pathway onto a Cartesian coordinate system. This helps not only to recognize the magnitude of the seemingly "fruitless", non-native disulfide-bond-containing species that lie orthogonal to the "native-protein-forming" reaction progress but also to reconcile a role for their existence in the regenerative trajectory. Finally, we superimpose the folding funnel onto the regeneration trajectory to draw parallels between oxidative folders and conformational folders (proteins that lack disulfide bonds). The overall objective is to provide the reader with a semi-quantitative description of oxidative protein folding and the barriers to successful regeneration while underscoring a role of seemingly fruitless intermediates.
Collapse
Affiliation(s)
- Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
38
|
Jiang H, Thapa P, Hao Y, Ding N, Alshahrani A, Wei Q. Protein Disulfide Isomerases Function as the Missing Link Between Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1191-1205. [PMID: 36000195 PMCID: PMC9805878 DOI: 10.1089/ars.2022.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
Significance: Diabetes has long been recognized as an independent risk factor for cancer, but there is insufficient mechanistic understanding of biological mediators that bridge two disorders together. Understanding the pathogenic association between diabetes and cancer has become the focus of many studies, and findings are potentially valuable for the development of effective preventive or therapeutic strategies for both disorders. Recent Advances: A summary of literature reveals a possible connection between diabetes and cancer through the family of protein disulfide isomerase (PDI). Historical as well as the most recent findings on the structure, biochemistry, and biology of the PDI family were summarized in this review. Critical Issues: PDIs in general function as redox enzymes and protein chaperones to control the quality of proteins by correcting or otherwise eliminating misfolded proteins in conditions of oxidative stress and endoplasmic reticulum stress, respectively. However, individual members of the PDI family may contribute uniquely to the pathogenesis of diabetes and cancer. Studies of exemplary members such as protein disulfide isomerase-associated (PDIA) 1, PDIA6, and PDIA15 were reviewed to highlight their contributions in the pathogenesis of diabetes and cancer and how they can be potential links bridging the two disorders through the cross talk of signaling pathways. Future Directions: Apparently ubiquitous presence of the PDIs creates difficulties and challenges for scientific community to develop targeted therapeutics for the treatment of diabetes and cancer simultaneously. Understanding molecular contribution of individual PDI in the context of specific disease may provide some insights into the development of mechanism-based target-directed therapeutics. Antioxid. Redox Signal. 37, 1191-1205.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
39
|
Han Y, Cao Y, Lei H. Dynamic Covalent Hydrogels: Strong yet Dynamic. Gels 2022; 8:577. [PMID: 36135289 PMCID: PMC9498565 DOI: 10.3390/gels8090577] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrogels are crosslinked polymer networks with time-dependent mechanical response. The overall mechanical properties are correlated with the dynamics of the crosslinks. Generally, hydrogels crosslinked by permanent chemical crosslinks are strong but static, while hydrogels crosslinked by physical interactions are weak but dynamic. It is highly desirable to create synthetic hydrogels that possess strong mechanical stability yet remain dynamic for various applications, such as drug delivery cargos, tissue engineering scaffolds, and shape-memory materials. Recently, with the introduction of dynamic covalent chemistry, the seemingly conflicting mechanical properties, i.e., stability and dynamics, have been successfully combined in the same hydrogels. Dynamic covalent bonds are mechanically stable yet still capable of exchanging, dissociating, or switching in response to external stimuli, empowering the hydrogels with self-healing properties, injectability and suitability for postprocessing and additive manufacturing. Here in this review, we first summarize the common dynamic covalent bonds used in hydrogel networks based on various chemical reaction mechanisms and the mechanical strength of these bonds at the single molecule level. Next, we discuss how dynamic covalent chemistry makes hydrogel materials more dynamic from the materials perspective. Furthermore, we highlight the challenges and future perspectives of dynamic covalent hydrogels.
Collapse
Affiliation(s)
- Yueying Han
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
40
|
Smardz P, Sieradzan AK, Krupa P. Mechanical Stability of Ribonuclease A Heavily Depends on the Redox Environment. J Phys Chem B 2022; 126:6240-6249. [PMID: 35975925 PMCID: PMC9421896 DOI: 10.1021/acs.jpcb.2c04718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Disulfide bonds are covalent bonds that connect nonlocal fragments of proteins, and they are unique post-translational modifications of proteins. They require the oxidizing environment to be stable, which occurs for example during oxidative stress; however, in a cell the reductive environment is maintained, lowering their stability. Despite many years of research on disulfide bonds, their role in the protein life cycle is not fully understood and seems to strictly depend on a system or process in which they are involved. In this article, coarse-grained UNited RESidue (UNRES), and all-atom Assisted Model Building with Energy Refinement (AMBER) force fields were applied to run a series of steered molecular dynamics (SMD) simulations of one of the most studied, but still not fully understood, proteins─ribonuclease A (RNase A). SMD simulations were performed to study the mechanical stability of RNase A in different oxidative-reductive environments. As disulfide bonds (and any other covalent bonds) cannot break/form in any classical all-atom force field, we applied additional restraints between sulfur atoms of reduced cysteines which were able to mimic the breaking of the disulfide bonds. On the other hand, the coarse-grained UNRES force field enables us to study the breaking/formation of the disulfide bonds and control the reducing/oxidizing environment owing to the presence of the designed distance/orientation-dependent potential. This study reveals that disulfide bonds have a strong influence on the mechanical stability of RNase A only in a highly oxidative environment. However, the local stability of the secondary structure seems to play a major factor in the overall stability of the protein. Both our thermal unfolding and mechanical stretching studies show that the most stable disulfide bond is Cys65-Cys72. The breaking of disulfide bonds Cys26-Cys84 and Cys58-Cys110 is associated with large force peaks. They are structural bridges, which are mostly responsible for stabilizing the RNase A conformation, while the presence of the remaining two bonds (Cys65-Cys72 and Cys40-Cys95) is most likely connected with the enzymatic activity rather than the structural stability of RNase A in the cytoplasm. Our results prove that disulfide bonds are indeed stabilizing fragments of the proteins, but their role is strongly redox environment-dependent.
Collapse
Affiliation(s)
- Pamela Smardz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Paweł Krupa
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
41
|
Metabolic Profiling of Inga Species with Antitumor Activity. Molecules 2022; 27:molecules27154695. [PMID: 35897874 PMCID: PMC9331837 DOI: 10.3390/molecules27154695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
This work evaluated the metabolic profiling of Inga species with antitumor potential. In addition, we described the antigenotoxicity of polyphenols isolated from I. laurina and a proteomic approach using HepG2 cells after treatment with these metabolites. The in vitro cytotoxic activity against HepG2, HT-29 and T98G cancer cell lines was investigated. The assessment of genotoxic damage was carried out through the comet assay. The ethanolic extract from I. laurina seeds was subjected to bioassay-guided fractionation and the most active fractions were characterized. One bioactive fraction with high cytotoxicity against HT-29 human colon cancer cells (IC50 = 4.0 µg mL−1) was found, and it was characterized as a mixture of p-hydroxybenzoic acid and 4-vinyl-phenol. The I. edulis fruit peel (IC50 = 18.6 µg mL−1) and I. laurina seed (IC50 = 15.2 µg mL−1) extracts had cytotoxic activity against the cell line T98G, and its chemical composition showed a variety of phenolic acids. The chemical composition of this species indicated a wide variety of aromatic acids, flavonoids, tannins, and carotenoids. The high concentration (ranging from 5% to 30%) of these polyphenols in the bioactive extract may be responsible for the antitumor potential. Regarding the proteomic approach, we detected proteins directly related to the elimination of ROS, DNA repair, expression of tumor proteins, and apoptosis.
Collapse
|
42
|
How Aging and Oxidative Stress Influence the Cytopathic and Inflammatory Effects of SARS-CoV-2 Infection: The Role of Cellular Glutathione and Cysteine Metabolism. Antioxidants (Basel) 2022; 11:antiox11071366. [PMID: 35883857 PMCID: PMC9311797 DOI: 10.3390/antiox11071366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/26/2022] Open
Abstract
SARS-CoV-2 infection can cause a severe respiratory distress syndrome with inflammatory and thrombotic complications, the severity of which increases with patients’ age and presence of comorbidity. The reasons for an age-dependent increase in the risk of severe COVID-19 could be many. These include defects in the homeostatic processes that control the cellular redox and its pivotal role in sustaining the immuno-inflammatory response to the host and the protection against oxidative stress and tissue degeneration. Pathogens may take advantage of such age-dependent abnormalities. Alterations of the thiol redox balance in the lung tissue and lining fluids may influence the risk of infection, and the host capability to respond to pathogens and to avoid severe complications. SARS-CoV-2, likewise other viruses, such as HIV, influenza, and HSV, benefits in its replication cycle of pro-oxidant conditions that the same viral infection seems to induce in the host cell with mechanisms that remain poorly understood. We recently demonstrated that the pro-oxidant effects of SARS-CoV-2 infection are associated with changes in the cellular metabolism and transmembrane fluxes of Cys and GSH. These appear to be the consequence of an increased use of Cys in viral protein synthesis and to ER stress pathway activation that interfere with transcription factors, as Nrf2 and NFkB, important to coordinate the metabolism of GSH with other aspects of the stress response and with the pro-inflammatory effects of this virus in the host cell. This narrative review article describes these cellular and molecular aspects of SARS-CoV-2 infection, and the role that antivirals and cytoprotective agents such as N-acetyl cysteine may have to limit the cytopathic effects of this virus and to recover tissue homeostasis after infection.
Collapse
|
43
|
The Power of Touch: Type 4 Pili, the von Willebrand A Domain, and Surface Sensing by Pseudomonas aeruginosa. J Bacteriol 2022; 204:e0008422. [PMID: 35612303 PMCID: PMC9210963 DOI: 10.1128/jb.00084-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Most microbes in the biosphere are attached to surfaces, where they experience mechanical forces due to hydrodynamic flow and cell-to-substratum interactions. These forces likely serve as mechanical cues that influence bacterial physiology and eventually drive environmental adaptation and fitness. Mechanosensors are cellular components capable of sensing a mechanical input and serve as part of a larger system for sensing and transducing mechanical signals. Two cellular components in bacteria that have emerged as candidate mechanosensors are the type IV pili (TFP) and the flagellum. Current models posit that bacteria transmit and convert TFP- and/or flagellum-dependent mechanical force inputs into biochemical signals, including cAMP and c-di-GMP, to drive surface adaptation. Here, we discuss the impact of force-induced changes on the structure and function of two eukaryotic proteins, titin and the human von Willebrand factor (vWF), and these proteins’ relevance to bacteria. Given the wealth of understanding about these eukaryotic mechanosensors, we can use them as a framework to understand the effect of force on Pseudomonas aeruginosa during the early stages of biofilm formation, with a particular emphasis on TFP and the documented surface-sensing mechanosensors PilY1 and FimH. We also discuss the importance of disulfide bonds in mediating force-induced conformational changes, which may modulate mechanosensing and downstream biochemical signaling. We conclude by sharing our perspective on the state of the field and what we deem exciting frontiers in studying bacterial mechanosensing to better understand the mechanisms whereby bacteria transition from a planktonic to a biofilm lifestyle.
Collapse
|
44
|
Mora M, Board S, Languin-Cattoën O, Masino L, Stirnemann G, Garcia-Manyes S. A Single-Molecule Strategy to Capture Non-native Intramolecular and Intermolecular Protein Disulfide Bridges. NANO LETTERS 2022; 22:3922-3930. [PMID: 35549281 PMCID: PMC9136921 DOI: 10.1021/acs.nanolett.2c00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/23/2022] [Indexed: 05/04/2023]
Abstract
Non-native disulfide bonds are dynamic covalent bridges that form post-translationally between two cysteines within the same protein (intramolecular) or with a neighboring protein (intermolecular), frequently due to changes in the cellular redox potential. The reversible formation of non-native disulfides is intimately linked to alterations in protein function; while they can provide a mechanism to protect against cysteine overoxidation, they are also involved in the early stages of protein multimerization, a hallmark of several protein aggregation diseases. Yet their identification using current protein chemistry technology remains challenging, mainly because of their fleeting reactivity. Here, we use single-molecule spectroscopy AFM and molecular dynamics simulations to capture both intra- and intermolecular disulfide bonds in γD-crystallin, a cysteine-rich, structural human lens protein involved in age-related eye cataracts. Our approach showcases the power of mechanical force as a conformational probe in dynamically evolving proteins and presents a platform to detect non-native disulfide bridges with single-molecule resolution.
Collapse
Affiliation(s)
- Marc Mora
- Department
of Physics, Randall Centre for Cell and Molecular Biophysics and London
Centre for Nanotechnology, King’s
College London, Strand, WC2R 2LS London, United Kingdom
- Single
Molecule Mechanobiology Laboratory, The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, London United
Kingdom
| | - Stephanie Board
- Department
of Physics, Randall Centre for Cell and Molecular Biophysics and London
Centre for Nanotechnology, King’s
College London, Strand, WC2R 2LS London, United Kingdom
- Single
Molecule Mechanobiology Laboratory, The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, London United
Kingdom
| | - Olivier Languin-Cattoën
- CNRS
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Diderot,
Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Laura Masino
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, 1 Midland Road London, NW1 1AT, United Kingdom
| | - Guillaume Stirnemann
- CNRS
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Diderot,
Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sergi Garcia-Manyes
- Department
of Physics, Randall Centre for Cell and Molecular Biophysics and London
Centre for Nanotechnology, King’s
College London, Strand, WC2R 2LS London, United Kingdom
- Single
Molecule Mechanobiology Laboratory, The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, London United
Kingdom
| |
Collapse
|
45
|
Wang L, Ding MY, Wang J, Gao JG, Liu RM, Li HT. Effects of Site-Directed Mutagenesis of Cysteine on the Structure of Sip Proteins. Front Microbiol 2022; 13:805325. [PMID: 35572629 PMCID: PMC9100928 DOI: 10.3389/fmicb.2022.805325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus thuringiensis, a gram-positive bacteria, has three insecticidal proteins: Vip (vegetative insecticidal protein), Cry (crystal), and Sip (secreted insecticidal protein). Of the three, Sip proteins have insecticidal activity against larvae of Coleoptera. However, the Sip1Aa protein has little solubility in the supernatant because of inclusion bodies. This makes it more difficult to study, and thus research on Sip proteins is limited, which hinders the study of their mechanistic functions and insecticidal mechanisms. This highlights the importance of further investigation of the Sip1Aa protein. Disulfide bonds play an important role in the stability and function of proteins. Here, we successfully constructed mutant proteins with high insecticidal activity. The tertiary structure of the Sip1Aa protein was analyzed with homologous modeling and bioinformatics to predict the conserved domain of the protein. Cysteine was used to replace amino acids via site-directed mutagenesis. We successfully constructed Sip149-251, Sip153-248, Sip158-243, and Sip178-314 mutant proteins with higher solubility than Sip1Aa. Sip153-248 and Sip158-243 were the most stable compared to Sip1Aa, followed by Sip149-251 and Sip178-314. The insecticidal activity of Sip153-248 (Sip158-243) was 2.76 (2.26) times higher than that of Sip1Aa. The insecticidal activity of Sip149-251 and Sip178-314 did not differ significantly from that of Sip1Aa. Basic structural properties, physicochemical properties, and the spatial structure of the mutation site of Sip1Aa and the mutant proteins were analyzed. These results provide a molecular basis for using Sip1Aa to control Coleopteran insects and contribute to the study of the Sip1Aa insecticidal mechanism.
Collapse
Affiliation(s)
- Lin Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Ming-Yue Ding
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jing Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Ji-Guo Gao
- College of Life Science, Northeast Agricultural University, Harbin, China
- *Correspondence: Ji-Guo Gao,
| | - Rong-Mei Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Hai-Tao Li
- College of Life Science, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Hai-Tao Li,
| |
Collapse
|
46
|
Hwang S, Iram S, Jin J, Choi I, Kim J. Analysis of S-glutathionylated proteins during adipocyte differentiation using eosin-glutathione and glutaredoxin 1. BMB Rep 2022. [PMID: 34743784 PMCID: PMC8972134 DOI: 10.5483/bmbrep.2022.55.3.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Protein S-glutathionylation is a reversible post-translational modification on cysteine residues forming a mixed disulfide with glutathione. S-glutathionylation, not only protects proteins from oxidation but also regulates the functions of proteins involved in various cellular signaling pathways. In this study, we developed a method for the detection of S-glutathionylated proteins (ProSSG) using eosin-glutathione (E-GSH) and mouse glutaredoxin 1 (mGrx1). ProSSG was efficiently and specifically labeled with E-GSH to form ProSSG-E via thiol-disulfide exchange. ProSSG-E was readily luminescent allowing the detection of ProSSG with semi-quantitative determination. In addition, a deglutathionylation enzyme mGrx1 specifically released E-GSH from ProSSG-E, which increased fluorescence allowing a sensitive determination of ProSSG levels. Application of the method to the adipocyte differentiation of 3T3-L1 cells showed specific detection of ProSSG and its increase upon differentiation induction, which was consistent with the result obtained by conventional immunoblot analysis, but with greater specificity and sensitivity.
Collapse
Affiliation(s)
- Sungwon Hwang
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Sana Iram
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Juno Jin
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Inho Choi
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Jihoe Kim
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
47
|
Sikdar S, Banerjee M, Vemparala S. Role of Disulphide Bonds in Membrane Partitioning of a Viral Peptide. J Membr Biol 2022; 255:129-142. [PMID: 35218393 PMCID: PMC8881898 DOI: 10.1007/s00232-022-00218-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/02/2022] [Indexed: 01/22/2023]
Abstract
The importance of disulphide bond in mediating viral peptide entry into host cells is well known. In the present work, we elucidate the role of disulphide (SS) bond in partitioning mechanism of membrane-active Hepatitis A Virus-2B (HAV-2B) peptide, which harbours three cysteine residues promoting formation of multiple SS-bonded states. The inclusion of SS-bond not only results in a compact conformation but also induces distorted α-helical hairpin geometry in comparison to SS-free state. Owing to these, the hydrophobic residues get buried, restricting the insertion of SS-bonded HAV-2B peptide into lipid packing defects and thus the partitioning of the peptide is completely or partly abolished. In this way, the disulphide bond can potentially regulate the partitioning of HAV-2B peptide such that the membrane remodelling effects of this viral peptide are significantly reduced. The current findings may have potential implications in drug designing, targeting the HAV-2B protein by promoting disulphide bond formation within its membrane-active region.
Collapse
Affiliation(s)
- Samapan Sikdar
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, 600113, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, 600113, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
48
|
Chichiarelli S, Altieri F, Paglia G, Rubini E, Minacori M, Eufemi M. ERp57/PDIA3: new insight. Cell Mol Biol Lett 2022; 27:12. [PMID: 35109791 PMCID: PMC8809632 DOI: 10.1186/s11658-022-00315-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
The ERp57/PDIA3 protein is a pleiotropic member of the PDIs family and, although predominantly located in the endoplasmic reticulum (ER), has indeed been found in other cellular compartments, such as the nucleus or the cell membrane. ERp57/PDIA3 is an important research target considering it can be found in various subcellular locations. This protein is involved in many different physiological and pathological processes, and our review describes new data on its functions and summarizes some ligands identified as PDIA3-specific inhibitors.
Collapse
Affiliation(s)
- Silvia Chichiarelli
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.
| | - Fabio Altieri
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Giuliano Paglia
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.,Enrico Ed Enrica Sovena" Foundation, Rome, Italy
| | - Marco Minacori
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Margherita Eufemi
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| |
Collapse
|
49
|
Kaya ZZ, Tuzuner MB, Sahin B, Akgun E, Aksungar F, Koca S, Serdar M, Sahin S, Cinar N, Karsidag S, Hanagasi HA, Kilercik M, Serteser M, K Baykal AT. Kappa/Lambda light-chain typing in Alzheimer's Disease. Curr Alzheimer Res 2022; 19:84-93. [PMID: 35100957 DOI: 10.2174/1567205019666220131101334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease is a progressive neurodegenerative disorder characterized by memory loss and cognitive impairment. The diagnosis of Alzheimer's disease according to symptomatic events is still a puzzling task. Developing a biomarker-based, low-cost, and high-throughput test, readily applicable in clinical laboratories, dramatically impacts the rapid and reliable detection of the disease. OBJECTIVE This study aimed to develop an accurate, sensitive, and reliable screening tool for diagnosing Alzheimer's disease, which can significantly reduce the cost and time of existing methods. METHODS We have employed a MALDI-TOF-MS-based methodology combined with a microaffinity chromatogra Results: We observed a statistically significant difference in the kappa light chain over lambda light chain (κLC/LC) ratios between patients with AD and controls (% 95 CI: -0.547 to -0.269, p<0.001). Our method demonstrated higher sensitivity (100.00%) and specificity (71.43%) for discrimination between AD and controls. CONCLUSION We have developed a high-throughput screening test with a novel sample enrichment method for determining κLC/LC ratios associated with AD diagnosis. Following further validation, we believe our test has a potential for clinical laboratories.
Collapse
Affiliation(s)
- Zelal Zuhal Kaya
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Betul Sahin
- cibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Emel Akgun
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- cibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Fehime Aksungar
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- cibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Sebile Koca
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Muhittin Serdar
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Sevki Sahin
- Maltepe University, School of Medicine, Department of Neurology, Istanbul, Turkey
| | - Nilgun Cinar
- Maltepe University, School of Medicine, Department of Neurology, Istanbul, Turkey
| | - Sibel Karsidag
- Maltepe University, School of Medicine, Department of Neurology, Istanbul, Turkey
| | - Hasmet Ayhan Hanagasi
- istanbul University, Istanbul Medical Faculty, Department of Neurology, Istanbul, Turkey
| | - Meltem Kilercik
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- cibadem Labmed Clinical Laboratories, Istanbul, Turkey; 3 Maltepe University, School of Medicine, Department of Neurology, Istanbul, Turkey
| | - Mustafa Serteser
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- cibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Ahmet Tari K Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- cibadem Labmed Clinical Laboratories, Istanbul, Turkey
| |
Collapse
|
50
|
Ghasemitarei M, Privat-Maldonado A, Yusupov M, Rahnama S, Bogaerts A, Ejtehadi MR. Effect of Cysteine Oxidation in SARS-CoV-2 Receptor-Binding Domain on Its Interaction with Two Cell Receptors: Insights from Atomistic Simulations. J Chem Inf Model 2022; 62:129-141. [PMID: 34965734 PMCID: PMC8751020 DOI: 10.1021/acs.jcim.1c00853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 12/15/2022]
Abstract
Binding of the SARS-CoV-2 S-glycoprotein to cell receptors is vital for the entry of the virus into cells and subsequent infection. ACE2 is the main cell receptor for SARS-CoV-2, which can attach to the C-terminal receptor-binding domain (RBD) of the SARS-CoV-2 S-glycoprotein. The GRP78 receptor plays an anchoring role, which attaches to the RBD and increases the chance of other RBDs binding to ACE2. Although high levels of reactive oxygen and nitrogen species (RONS) are produced during viral infections, it is not clear how they affect the RBD structure and its binding to ACE2 and GRP78. In this research, we apply molecular dynamics simulations to study the effect of oxidation of the highly reactive cysteine (Cys) amino acids of the RBD on its binding to ACE2 and GRP78. The interaction energy of both ACE2 and GRP78 with the whole RBD, as well as with the RBD main regions, is compared in both the native and oxidized RBDs. Our results show that the interaction energy between the oxidized RBD and ACE2 is strengthened by 155 kJ/mol, increasing the binding of the RBD to ACE2 after oxidation. In addition, the interaction energy between the RBD and GRP78 is slightly increased by 8 kJ/mol after oxidation, but this difference is not significant. Overall, these findings highlight the role of RONS in the binding of the SARS-CoV-2 S-glycoprotein to host cell receptors and suggest an alternative mechanism by which RONS could modulate the entrance of viral particles into the cells.
Collapse
Affiliation(s)
- Maryam Ghasemitarei
- Department
of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Angela Privat-Maldonado
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Maksudbek Yusupov
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
- Laboratory
of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma
and Laser Technologies, Academy of Sciences
of Uzbekistan, Durmon
yuli str. 33, 100125 Tashkent, Uzbekistan
| | - Shadi Rahnama
- Institute
for Nanoscience & Nanotechnology (INST), Sharif University of Technology, Azadi Avenue, Tehran 14588-89694, Iran
| | - Annemie Bogaerts
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | |
Collapse
|