1
|
Ding C, Shen Z, Xu R, Liu Y, Xu M, Fan C, Hu D, Xing T. Exosomes derived from periodontitis induce hepatic steatosis through the SCD-1/AMPK signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167343. [PMID: 38986822 DOI: 10.1016/j.bbadis.2024.167343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
AIM To investigate the impact of exosomes released by Porphyromonas gingivalis-Lipopolysaccharide activated THP-1 macrophages and human periodontal ligament fibroblasts on hepatocyte fat metabolism. RESULTS The liver of rats with experimental periodontitis showed obvious steatosis and inflammation compared with control rats. The culture supernatant of macrophages and human periodontal ligament fibroblasts (hPDLFs), when stimulated with Pg-LPS, induced lipogenesis in HepG2 cells. Furthermore, the lipid-promoting effect was effectively inhibited by the addition of the exosome inhibitor GW4869. Subsequently, we isolated exosomes from cells associated with periodontitis. Exosomes released by Pg-LPS-stimulated macrophages and hPDLFs are taken up by hepatocytes, causing mRNA expression related to fat synthesis, promoting triglyceride synthesis, and aggravating NAFLD progression. Finally, two sets of exosomes were injected into mice through the tail vein. In vivo experiments have also demonstrated that periodontitis-associated exosomes promote the development of hepatic injury and steatosis, upregulate SCD-1 expression and inhibit the AMPK signaling pathway. CONCLUSIONS In conclusion, we found that exosomes associated with periodontitis promote hepatocyte adipogenesis by increasing the expression of SCD-1 and suppressing the AMPK pathway, which indicates that close monitoring of the progression of stomatopathy associated extra-oral disorders is important and establishes a theoretical foundation for the prevention and management of fatty liver disease linked to periodontitis.
Collapse
Affiliation(s)
- Chunmeng Ding
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Zhenguo Shen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Ruonan Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yajing Liu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Mengyue Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Chenyu Fan
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Dongyue Hu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Tian Xing
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| |
Collapse
|
2
|
Gong T, Zhang X, Liu X, Ye Y, Tian Z, Yin S, Zhang M, Tang J, Liu Y. Exosomal Tenascin-C primes macrophage pyroptosis amplifying aberrant inflammation during sepsis-induced acute lung injury. Transl Res 2024; 270:66-80. [PMID: 38604333 DOI: 10.1016/j.trsl.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is a serious complication of sepsis and the predominant cause of death. Exosomes released by lung tissue cells critically influence the progression of ALI during sepsis by modulating the inflammatory microenvironment. However, the molecular mechanisms by which exosome-mediated intercellular signaling exacerbates ALI in septic infection remain undefined. Our study found increased levels of exosomal Tenascin-C (TNC) in the plasma of both patients and mice with ALI, showing a strong association with disease progression. By integrating exosomal proteomics with transcriptome sequencing and experimental validation, we elucidated that LPS induce unresolved endoplasmic reticulum stress (ERs) in alveolar epithelial cells (AECs), ultimately leading to the release of exosomal TNC through the activation of PERK-eIF2α and the transcription factor CHOP. In the sepsis mouse model with TNC knockout, we noted a marked reduction in macrophage pyroptosis. Our detailed investigations found that exosomal TNC binds to TLR4 on macrophages, resulting in an augmented production of ROS, subsequent mitochondrial damage, activation of the NF-κB signaling pathway, and induction of DNA damage response. These interconnected events culminate in macrophage pyroptosis, thereby amplifying the release of inflammatory cytokines. Our findings demonstrate that exosomal Tenascin-C, released from AECs under unresolved ER stress, exacerbates acute lung injury by intensifying sepsis-associated inflammatory responses. This research provides new insights into the complex cellular interactions underlying sepsis-induced ALI.
Collapse
Affiliation(s)
- Ting Gong
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Xuedi Zhang
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaolei Liu
- Department of Anaesthetics, Affiliated Hospital of Guangdong Medical University, No.57 People Avenue South, Zhanjiang, 524001, Guangdong, China
| | - Yinfeng Ye
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhiyuan Tian
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shuang Yin
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Min Zhang
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jing Tang
- Department of Anaesthetics, Affiliated Hospital of Guangdong Medical University, No.57 People Avenue South, Zhanjiang, 524001, Guangdong, China.
| | - Youtan Liu
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Hushmandi K, Saadat SH, Raei M, Aref AR, Reiter RJ, Nabavi N, Taheriazam A, Hashemi M. The science of exosomes: Understanding their formation, capture, and role in cellular communication. Pathol Res Pract 2024; 259:155388. [PMID: 38850846 DOI: 10.1016/j.prp.2024.155388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Extracellular vesicles (EVs) serve as a crucial method for transferring information among cells, which is vital in multicellular organisms. Among these vesicles, exosomes are notable for their small size, ranging from 20 to 150 nm, and their role in cell-to-cell communication. They carry lipids, proteins, and nucleic acids between cells. The creation of exosomes begins with the inward budding of the cell membrane, which then encapsulates various macromolecules as cargo. Once filled, exosomes are released into the extracellular space and taken up by target cells via endocytosis and similar processes. The composition of exosomal cargo varies, encompassing diverse macromolecules with specific functions. Because of their significant roles, exosomes have been isolated from various cell types, including cancer cells, endothelial cells, macrophages, and mesenchymal cells, with the aim of harnessing them for therapeutic applications. Exosomes influence cellular metabolism, and regulate lipid, glucose, and glutamine pathways. Their role in pathogenesis is determined by their cargo, which can manipulate processes such as apoptosis, proliferation, inflammation, migration, and other molecular pathways in recipient cells. Non-coding RNA transcripts, a common type of cargo, play a pivotal role in regulating disease progression. Exosomes are implicated in numerous biological and pathological processes, including inflammation, cancer, cardiovascular diseases, diabetes, wound healing, and ischemic-reperfusion injury. As a result, they hold significant potential in the treatment of both cancerous and non-cancerous conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Wang G, Ma X, Huang W, Wang S, Lou A, Wang J, Tu Y, Cui W, Zhou W, Zhang W, Li Y, Geng S, Meng Y, Li X. Macrophage biomimetic nanoparticle-targeted functional extracellular vesicle micro-RNAs revealed via multiomics analysis alleviate sepsis-induced acute lung injury. J Nanobiotechnology 2024; 22:362. [PMID: 38910259 PMCID: PMC11194988 DOI: 10.1186/s12951-024-02597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Patients who suffer from sepsis typically experience acute lung injury (ALI). Extracellular vesicles (EVs) contain miRNAs, which are potentially involved in ALI. However, strategies to screen more effective EV-miRNAs as therapeutic targets are yet to be elucidated. In this study, functional EV-miRNAs were identified based on multiomics analysis of single-cell RNA sequencing of targeted organs and serum EV (sEV) miRNA profiles in patients with sepsis. The proportions of neutrophils and macrophages were increased significantly in the lungs of mice receiving sEVs from patients with sepsis compared with healthy controls. Macrophages released more EVs than neutrophils. MiR-125a-5p delivery by sEVs to lung macrophages inhibited Tnfaip3, while miR-221-3p delivery to lung neutrophils inhibited Fos. Macrophage membrane nanoparticles (MM NPs) loaded with an miR-125a-5p inhibitor or miR-221-3p mimic attenuated the response to lipopolysaccharide (LPS)-induced ALI. Transcriptome profiling revealed that EVs derived from LPS-stimulated bone marrow-derived macrophages (BMDMs) induced oxidative stress in neutrophils. Blocking toll-like receptor, CXCR2, or TNFα signaling in neutrophils attenuated the oxidative stress induced by LPS-stimulated BMDM-EVs. This study presents a novel method to screen functional EV-miRNAs and highlights the pivotal role of macrophage-derived EVs in ALI. MM NPs, as delivery systems of key sEV-miRNA mimics or inhibitors, alleviated cellular responses observed in sepsis-induced ALI. This strategy can be used to reduce septic organ damage, particularly lung damage, by targeting EVs.
Collapse
Affiliation(s)
- Guozhen Wang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Xiaoxin Ma
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Weichang Huang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shuanghu Wang
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Anni Lou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingfeng Tu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Wanfu Cui
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangmei Zhou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenyong Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue Li
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command, Southern Medical University, Guangzhou 510515, China
| | - Shiyu Geng
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ying Meng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
5
|
Hao X, Wang S, Wang L, Li J, Li Y, Liu J. Exosomes as drug delivery systems in glioma immunotherapy. J Nanobiotechnology 2024; 22:340. [PMID: 38890722 PMCID: PMC11184820 DOI: 10.1186/s12951-024-02611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024] Open
Abstract
Recently, the significant benefits of cancer immunotherapy for most cancers have been demonstrated in clinical and preclinical studies. However, the efficacy of these immunotherapies for gliomas is limited, owing to restricted drug delivery and insufficient immune activation. As drug carriers, exosomes offer the advantages of low toxicity, good biocompatibility, and intrinsic cell targeting, which could enhance glioma immunotherapy efficacy. However, a review of exosome-based drug delivery systems for glioma immunotherapy has not been presented. This review introduces the current problems in glioma immunotherapy and the role of exosomes in addressing these issues. Meanwhile, preparation and application strategies of exosome-based drug delivery systems for glioma immunotherapy are discussed, especially for enhancing immunogenicity and reversing the immunosuppressive tumor microenvironment. Finally, we briefly describe the challenges of exosome-based drug delivery systems in clinical translation. We anticipate that this review will guide the use of exosomes as drug carriers for glioma immunotherapy.
Collapse
Affiliation(s)
- Xinqing Hao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China
| | - Shiming Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China
| | - Jiaqi Li
- Reproductive Medicine Center, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, China
| | - Ying Li
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China.
| |
Collapse
|
6
|
Liu Z, Yuan X, Huang Y, Gu Z, Xue L, Xue S, Wang J. The Role of Interferon-Induced Proteins with Tetratricopeptide Repeats 1 and 2 in Sepsis-Induced Acute Liver Injury. Infect Drug Resist 2024; 17:2337-2349. [PMID: 38882652 PMCID: PMC11180434 DOI: 10.2147/idr.s459838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024] Open
Abstract
Background Sepsis refers to a life-threatening organ dysfunction which can be resulted from the infection-induced dysregulated host response. A large number of inflammatory cytokines are released to act on the liver, making the liver one of the common target organs for the development of multiple organ dysfunction syndrome (MODS) in patients with sepsis. Sepsis-induced acute liver injury (SALI) can aggravate systemic disease. As a result, it is of great clinical significance to comprehend the molecular biological mechanism of SALI and to identify the markers for evaluating SALI. Interferon-induced proteins with tetratricopeptide repeats 1 and 2 (IFIT1, IFIT2) have been recognized as the anti-inflammatory factors that are widely expressed in various organs. The present study was aimed at clarifying the roles of IFIT1 and IFIT2 in the development of SALI. Methods A two-sample Mendelian randomization (MR) analysis was employed. Summary statistics datas were obtained from GWAS for inflammatory factors [tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6)], IFIT2, and sepsis as well as liver injury. Independent SNPs were selected as instrumental variables (IVs). Inverse variance weighted (IVW) in the MR analysis was adopted as the primary method for estimating the causal associations of inflammatory factors and IFIT2 with two diseases, and the associations of inflammatory factors with IFIT2. Additionally, weighted median method, MR-Egger and sensitivity analyses were applied in assessing the robustness of the results and ensure the result reliability. Subsequently, 119 healthy volunteers, 116 patients with sepsis and 116 SALI patients were recruited. The ELISA method was employed to quantify the expression levels of TNF-α, IL-1β, and IL-6. Additionally, qRT-PCR was conducted to measure the expression of IFIT1 and IFIT2. Furthermore, the correlations of IFIT1 and IFIT2 with inflammatory factors, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were explored. Results As shown by the MR analysis, the genetically predisposed sepsis was significantly associated with the risk of IL-1β, with an odds ratio (OR) of 1.069 (95% confidence interval (CI), 1.015-1.127, p = 0.0119), and negatively associated with the risk of IL-6, with an OR of 0.880 (95% CI: 0.792-0.979, p= 0.0184). Meanwhile, there were positive causal effects of IL-6 (OR = 1.269, 95% CI: 1.032-1.561, p= 0.0238), IL-1β (OR = 1.106, 95% CI: 1.010-1.211, p = 0.0299) and IFIT2 (OR = 1.191, 95% CI: 1.045-1.359, p = 0.0090) on liver injury. Additionally, there was a positive causal effect of IFIT2 (OR = 1.164, 95% CI: 1.035-1.309, p= 0.0110) on IL-1β. Upon sensitivity analyses, there was weak evidence of such effects, indicating that the findings of this study were robust and reliable. Our results revealed the elevated levels of TNF-α, IL-1β, and IL-6 in the blood samples of sepsis and SALI patients (p < 0.0001). Conversely, IFIT1 and IFIT2 demonstrated the significantly decreased levels in peripheral blood mononuclear cells (PBMCs) of SALI patients (p < 0.0001). Furthermore, the expression levels of IFIT1 and IFIT2 were both negatively correlated with ALT activity (r = -0.3426, p = 0.0002; r = -0.3069, p = 0.0008) and AST activity (r = -0.2483, p = 0.0072; r = -0.3261, p = 0.0004), respectively. Moreover, the expression of IFIT1 and IFIT2 was both negatively related to the levels of TNF-α (r = -0.5027, p < 0.0001; r = -0.4218, p < 0.0001), IL-1β (r = -0.3349, p = 0.0002; r = -0.4070, p < 0.0001) and IL-6 (r = -0.2734, p = 0.0030; r = -0.3536, p < 0.0001), respectively. Conclusion IFIT1 and IFIT2 can serve as the diagnostic markers for sepsis-related liver injury, and IFIT1 and IFIT2 may participate in the pathological process of sepsis-related liver injury by regulating inflammation and liver function.
Collapse
Affiliation(s)
- Zhipeng Liu
- Information Department, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Xinyu Yuan
- Emergency Department, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Yan Huang
- Medical College, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zihan Gu
- Nanjing University of Finance & Economics, Nanjing, 210023, People's Republic of China
| | - Lu Xue
- Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Shanshan Xue
- Institute of Clinical Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Jun Wang
- Emergency Department, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| |
Collapse
|
7
|
Gong T, Liu YT, Fan J. Exosomal mediators in sepsis and inflammatory organ injury: unraveling the role of exosomes in intercellular crosstalk and organ dysfunction. Mil Med Res 2024; 11:24. [PMID: 38644472 PMCID: PMC11034107 DOI: 10.1186/s40779-024-00527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Sepsis, a severe systemic inflammatory response to infection, remains a leading cause of morbidity and mortality worldwide. Exosomes, as mediators of intercellular communication, play a pivotal role in the pathogenesis of sepsis through modulating immune responses, metabolic reprogramming, coagulopathy, and organ dysfunction. This review highlights the emerging significance of exosomes in these processes. Initially, it provides an in-depth insight into exosome biogenesis and characterization, laying the groundwork for understanding their diverse and intricate functions. Subsequently, it explores the regulatory roles of exosomes in various immune cells such as neutrophils, macrophages, dendritic cells, T cells, and B cells. This analysis elucidates how exosomes are pivotal in modulating immune responses, thus contributing to the complexity of sepsis pathophysiology. Additionally, this review delves into the role of exosomes in the regulation of metabolism and subsequent organ dysfunction in sepsis. It also establishes a connection between exosomes and the coagulation cascade, which affects endothelial integrity and promotes thrombogenesis in sepsis. Moreover, the review discusses the dual role of exosomes in the progression and resolution of sepsis, exploring their complex involvement in inflammation and healing processes. Furthermore, it underscores their potential as biomarkers and therapeutic targets. Understanding these mechanisms presents new opportunities for novel interventions to mitigate the severe outcomes of sepsis, emphasizing the therapeutic promise of exosome research in critical care settings.
Collapse
Affiliation(s)
- Ting Gong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangzhou, 518110, China.
| | - You-Tan Liu
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangzhou, 518110, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
8
|
Lou K, Luo H, Jiang X, Feng S. Applications of emerging extracellular vesicles technologies in the treatment of inflammatory diseases. Front Immunol 2024; 15:1364401. [PMID: 38545101 PMCID: PMC10965547 DOI: 10.3389/fimmu.2024.1364401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024] Open
Abstract
The emerging extracellular vesicles technologies is an advanced therapeutic approach showing promising potential for addressing inflammatory diseases. These techniques have been proven to have positive effects on immune modulation and anti-inflammatory responses. With these advancements, a comprehensive review and update on the role of extracellular vesicles in inflammatory diseases have become timely. This review aims to summarize the research progress of extracellular vesicle technologies such as plant-derived extracellular vesicles, milk-derived extracellular vesicles, mesenchymal stem cell-derived extracellular vesicles, macrophage-derived extracellular vesicles, etc., in the treatment of inflammatory diseases. It elucidates their potential significance in regulating inflammation, promoting tissue repair, and treating diseases. The goal is to provide insights for future research in this field, fostering the application and development of extracellular vesicle technology in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kecheng Lou
- Department of Urology, Lanxi People’s Hospital, Jinhua, Zhejiang, China
| | - Hui Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinghua Jiang
- Department of Urology, Jingdezhen Second People’s Hospital, Jingdezhen, Jiangxi, China
| | - Shangzhi Feng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
9
|
Wang G, Jiang Z, Song Y, Xing Y, He S, Boomi P. Gut microbiota contribution to selenium deficiency-induced gut-liver inflammation. Biofactors 2024; 50:311-325. [PMID: 37676478 DOI: 10.1002/biof.2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
There is limited knowledge about the factors that drive gut-liver axis changes after selenium (Se) deficiency-induced gut or liver injuries. Thus, we tested Se deficiency in mice to determine its effects on intestinal bacterial balance and whether it induced liver injury. Serum Se concentration, lipopolysaccharide (LPS) level, and liver injury biomarkers were tested using a biochemical method, while pathological changes in the liver and jejunum were observed via hematoxylin and eosin stain, and a fluorescence spectrophotometer was used to evaluate intestinal permeability. Tight junction (TJ)-related and toll-like receptor (TLR) signaling-related pathway genes and proteins were tested using quantitative polymerase chain reaction, western blotting, immunohistochemistry, and 16S ribosomal ribonucleic acid gene-targeted sequencing of jejunum microorganisms. Se deficiency significantly decreased glutathione peroxidase activity and disrupted the intestinal flora, with the most significant effect being a decrease in Lactobacillus reuteri. The expression of TJ-related genes and proteins decreased significantly with increased treatment time, whereas supplementation with Se, fecal microbiota transplantation, or L. reuteri reversed these decreases. Signs of liver injury and LPS content were significantly increased after intestinal flora imbalance or jejunum injury, and the levels of TLR signaling-related genes were significantly increased. The results indicated that Se deficiency disrupted the microbiota balance, decreased the expression of intestinal TJ factors, and increased intestinal permeability. By contrast, LPS increased due to a bacterial imbalance, which may induce inflammatory liver injury via the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Guodong Wang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Zhihui Jiang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Yuwei Song
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Yueteng Xing
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Simin He
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - P Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
10
|
Miron RJ, Zhang Y. Understanding exosomes: Part 1-Characterization, quantification and isolation techniques. Periodontol 2000 2024; 94:231-256. [PMID: 37740431 DOI: 10.1111/prd.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/24/2023]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with a diameter in the range of 30-150 nm. Their use has gained great momentum recently due to their ability to be utilized as diagnostic tools with a vast array of therapeutic applications. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be investigated. This review article first focuses on understanding exosomes, including their cellular origin, biogenesis, function, and characterization. Thereafter, overviews of the quantification methods and isolation techniques are given with discussion over their potential use as novel therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
11
|
Luz IS, Takaya R, Ribeiro DG, Castro MS, Fontes W. Proteomics: Unraveling the Cross Talk Between Innate Immunity and Disease Pathophysiology, Diagnostics, and Treatment Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:221-242. [PMID: 38409424 DOI: 10.1007/978-3-031-50624-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Inflammation is crucial in diseases, and proteins play a key role in the interplay between innate immunity and pathology. This review explores how proteomics helps understanding this relationship, focusing on diagnosis and treatment. We explore the dynamic innate response and the significance of proteomic techniques in deciphering the complex network of proteins involved in prevalent diseases, including infections, cancer, autoimmune and neurodegenerative disorders. Proteomics identifies key proteins in host-pathogen interactions, shedding light on infection mechanisms and inflammation. These discoveries hold promise for diagnostic tools, therapies, and vaccines. In cancer research, proteomics reveals innate signatures associated with tumor development, immune evasion, and therapeutic response. Additionally, proteomic analysis has unveiled autoantigens and dysregulation of the innate immune system in autoimmunity, offering opportunities for early diagnosis, disease monitoring, and new therapeutic targets. Moreover, proteomic analysis has identified altered protein expression patterns in neurodegenerative diseases like Alzheimer's and Parkinson's, providing insights into potential therapeutic strategies. Proteomics of the innate immune system provides a comprehensive understanding of disease mechanisms, identifies biomarkers, and enables effective interventions in various diseases. Despite still in its early stages, this approach holds great promise to revolutionize innate immunity research and significantly improve patient outcomes across a wide range of diseases.
Collapse
Affiliation(s)
- Isabelle Souza Luz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Raquel Takaya
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Daiane Gonzaga Ribeiro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Mariana S Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil.
| |
Collapse
|
12
|
Saleh NA, Rode MP, Cisilotto J, Silva AH, Prigol AN, da Luz Efe F, Winter E, Filippin-Monteiro FB, Creczynski-Pasa TB. MicroRNA-Mediated Antiproliferative Effects of M1 Macrophage-Derived Extracellular Vesicles on Melanoma Cells. Immunol Invest 2024; 53:70-89. [PMID: 37981469 DOI: 10.1080/08820139.2023.2278774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Research in tumor treatment has shown promising results using extracellular vesicles (EVs) derived from immune cells. EVs derived from M1 macrophages (proinflammatory), known as M1-EVs, have properties that suppress tumor growth, making them a promising treatment tool for immune susceptible tumors such as melanoma. Here, small unaltered M1-EVs (M1-sEVs) were employed in a 3D mouse melanoma model (melanospheres) to evaluate such activity. METHODS Macrophages were polarized and EVs were isolated by ultracentrifugation. The EVs obtained were characterized based on size, with measurements performed by dynamic light scattering and electron microscopy, and the expression profiles of microRNAs were analyzed by microarray and PCR. Melanospheres were used to evaluate the cytotoxicity of M1-sEVs. Pondering a possible future transposition from the animal model to the human, human melanoma cells were transfected with a specific miRNA, and the impact on cell proliferation was evaluated. RESULTS The isolated EVs showed a size distribution between 50-400 nm in diameter, but preeminently in a range of 70-90 nm. M1-sEVs demonstrated a remarkable ability to reduce cell proliferation and viability in the melanospheres, leading to a decrease in their volume. M1-sEVs contained unique miRNAs, including miR-29a-3p, which exhibited significant antitumor activities according to bioinformatics analysis. Validation of the antitumor effects of miR-29a-3p was obtained by a functional evaluation, i.e., by inducing miRNA overexpression in human melanoma cells (SK-MEL-28). CONCLUSION Although further research would be advisable, the study provides evidence supporting the potential of M1-sEVs and their miRNA load as a possible targeted immune therapy for melanoma.
Collapse
Affiliation(s)
- Najla Adel Saleh
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Michele Patrícia Rode
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Júlia Cisilotto
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Adny Henrique Silva
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Anne Natalie Prigol
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Fernanda da Luz Efe
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Evelyn Winter
- Department of Agriculture, Biodiversity and Forest, Federal University of Santa Catarina, Curitibanos, Brazil
| | - Fabíola Branco Filippin-Monteiro
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
13
|
Huang W, Zhang Y, Zheng B, Ling X, Wang G, Li L, Wang W, Pan M, Li X, Meng Y. GBP2 upregulated in LPS-stimulated macrophages-derived exosomes accelerates septic lung injury by activating epithelial cell NLRP3 signaling. Int Immunopharmacol 2023; 124:111017. [PMID: 37812968 DOI: 10.1016/j.intimp.2023.111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Macrophages infiltration is a crucial factor causing Sepsis-associated acute lung injury (ALI). Accumulating evidence suggests macrophages-alveolar epithelial cells communication is proven to be critical in ALI. However, little is known regarding how activated macrophages regulated sepsis-associated ALI. To explore the role of macrophages-alveolar epithelial cells communication in the ALI process, our data revealed that Lipopolysaccharides-induced macrophages-derived exosomes (L-Exo) induced sepsis-associated ALI and caused alveolar epithelial cells damage. Moreover, Guanylate-binding protein 2 (GBP2) was significantly upregulated in L-Exo, and NLRP3 inflammasomes was the direct target of GBP2. Further experimentation showed that GBP2 inhibition in vitro and in vivo reserves L-Exo effects, while GBP2 overexpression in vitro and in vivo promotes L-Exo effects. These results demonstrated that L-Exo contains excessive GBP2 and promotes inflammation through targeting NLRP3 inflammasomes, which induced alveolar epithelial cells dysfunction and pyroptosis. These findings demonstrate that L-Exo exerted a deleterious effect on ALI by regulating the GBP2/NLRP3 axis, which might provide new insight on ALI prevention and treatment.
Collapse
Affiliation(s)
- Wenhui Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bojun Zheng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuguang Ling
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhen Wang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Li
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miaoxia Pan
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| | - Ying Meng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Zheng L, Ling W, Zhu D, Li Z, Li Y, Zhou H, Kong L. Roquin-1 resolves sepsis-associated acute liver injury by regulating inflammatory profiles via miRNA cargo in extracellular vesicles. iScience 2023; 26:107295. [PMID: 37554446 PMCID: PMC10405074 DOI: 10.1016/j.isci.2023.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 01/05/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Sepsis-associated acute liver injury (SALI) is an independent risk for sepsis-induced death orchestrated by innate and adaptive immune responses. Here, we found that Roquin-1 was decreased during SALI and expressed mainly in monocyte-derived macrophages. Meanwhile, Roquin-1 was correlated with the inflammatory profiles in humans and mice. Mechanically, Roquin-1 in macrophages promoted Ago2-K258-ubiquitination and inhibited Ago2-S387/S828-phosphorylation. Ago2-S387-phosphorylation inhibited Ago2-miRNA's complex location in multivesicular bodies and sorting in macrophages-derived extracellular vesicles (MDEVs), while Ago2-S828-phosphorylation modulated the binding between Ago2 and miRNAs by special miRNAs-motifs. Then, the anti-inflammatory miRNAs in MDEVs decreased TSC22D2 expression directly, upregulated Tregs-differentiation via TSC22D2-STAT3 signaling, and inhibited M1-macrophage-polarization by TSC22D2-AMPKα-mTOR pathway. Furthermore, WT MDEVs in mice alleviated SALI by increasing Tregs ratio and decreasing M1-macrophage frequency synchronously. Our study showed that Roquin-1 in macrophages increased Tregs-differentiation and decreased M1-macrophage-polarization simultaneously via miRNA in MDEVs, suggesting Roquin-1 can be used as a potential tool for SALI treatment and MDEVs engineering.
Collapse
Affiliation(s)
- Lei Zheng
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao-tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Wei Ling
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Deming Zhu
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Zhi Li
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao-tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Haoming Zhou
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Lianbao Kong
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| |
Collapse
|
15
|
Meng M, Lu M, Feng J, Zhou X, Meng P, Chen L, Zou X, Liu X, Liu L, Gao X, Zhang Y. Exosomal PPARγ derived from macrophages suppresses LPS-induced peritonitis by negative regulation of CD14/TLR4 axis. Inflamm Res 2023; 72:1567-1581. [PMID: 37438583 DOI: 10.1007/s00011-023-01765-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Intercellular communication between macrophages and peritoneal mesothelial cells (PMCs) has been suggested as a key factor regulating peritonitis development. Here, we explored whether PPARγ (peroxisome proliferator-activated receptor gamma) can be packaged into macrophage exosomes to mediate intercellular communication and regulate peritonitis. METHODS Macrophage exosomes were isolated by ultracentrifugation and identified by nanoparticle tracking analysis and transmission electron microscopy. Proteomic analysis of macrophage-derived exosomes was performed using mass spectrometry. Co-culture models of supernatants or exosomes with PMCs, as well as a mouse peritonitis model induced by lipopolysaccharide (LPS), were employed. RESULTS In this study, using stable Raw264.7 cells overexpressing GFP-FLAG-PPARγ (OE-PPARγ), we found that PPARγ inhibited LPS-induced inflammatory responses in Raw264.7 cells and that PPARγ was incorporated into macrophage exosomes during this process. Overexpression of PPARγ mainly regulated the secretion of differentially expressed exosomal proteins involved in the biological processes of protein transport, lipid metabolic process, cell cycle, apoptotic process, DNA damage stimulus, as well as the KEGG pathway of salmonella infection. Using co-culture models and mouse peritonitis model, we showed that exosomes from Raw264.7 cells overexpressing PPARγ inhibited LPS-induced inflammation in co-cultured human PMCs and in mice through downregulating CD14 and TLR4, two key regulators of the salmonella infection pathway. Pretreatment of the PPARγ inhibitor GW9662 abolished the anti-inflammatory effect of exosomes from Raw264.7 OE-PPARγ cells on human PMCs. CONCLUSIONS These results suggested that overexpression of PPARγ largely altered the proteomic profile of macrophage exosomes and that exosomal PPARγ from macrophages acted as a regulator of intercellular communication to suppress LPS-induced inflammatory responses in vitro and in vivo via negatively regulating the CD14/TLR4 axis.
Collapse
Affiliation(s)
- Meng Meng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Meizhi Lu
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Junxia Feng
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Xiaoying Zhou
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Ping Meng
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Luxuan Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xunliang Zou
- Department of Nephrology, The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, 519100, China
| | - Xiaohui Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Langxia Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Yunfang Zhang
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Chen Y, Gong H, Tang D, Yu L, Long S, Zheng B, Luo D, Cai A. Liver proteomic analysis reveals the key proteins involved in host immune response to sepsis. PeerJ 2023; 11:e15294. [PMID: 37255592 PMCID: PMC10226476 DOI: 10.7717/peerj.15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/04/2023] [Indexed: 06/01/2023] Open
Abstract
Background Sepsis is a serious infection-induced response in the host, which can result in life-threatening organ dysfunction. It is of great importance to unravel the relationship between sepsis and host immune response and its mechanisms of action. Liver is one of the most vulnerable organs in sepsis, however, the specific pathogenesis of septic liver injury has not been well understood at the protein level. Methods A total of 12 healthy Sprague-Dawley (SD) male rats aged from 6 to 8 weeks were adaptively housed in individual cages in the specific pathogen free animal room. These lab rats were grouped into two groups: treatment (N = 9) and control (N = 3) groups; only three mice from the treatment group survived and were used for subsequent experiments. A TMT-based proteomic analysis for liver tissue was performed in the septic rat model. Results A total of 37,012 unique peptides were identified, and then 6,166 proteins were determined, among which 5,701 were quantifiable. Compared to the healthy control group, the septic rat group exhibited 162 upregulated and 103 downregulated differentially expressed proteins (DEPs). The upregulated and downregulated DEPs were the most significantly enriched into the complement and coagulation cascades and metabolic pathways. Protein-protein interaction (PPI) analysis further revealed that the upregulated and downregulated DEPs each clustered in a PPI network. Several highly connected upregulated and downregulated DEPs were also enriched into the complement and coagulation cascades pathways and metabolic pathways, respectively. The parallel reaction monitoring (PRM) results of the selected DEPs were consistent with the results of the TMT analysis, supporting the proteomic data. Conclusion Our findings highlight the roles of complement and coagulation cascades and metabolic pathways that may play vital roles in the host immune response. The DEPs may serve as clinically potential treatment targets for septic liver injury.
Collapse
Affiliation(s)
- Yingying Chen
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Hui Gong
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Lan Yu
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shoubin Long
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Bao Zheng
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Dixian Luo
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Anji Cai
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
17
|
Wei X, Liu S, Cao Y, Wang Z, Chen S. Polymers in Engineering Extracellular Vesicle Mimetics: Current Status and Prospective. Pharmaceutics 2023; 15:pharmaceutics15051496. [PMID: 37242738 DOI: 10.3390/pharmaceutics15051496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The maintenance of a high delivery efficiency by traditional nanomedicines during cancer treatment is a challenging task. As a natural mediator for short-distance intercellular communication, extracellular vesicles (EVs) have garnered significant attention owing to their low immunogenicity and high targeting ability. They can load a variety of major drugs, thus offering immense potential. In order to overcome the limitations of EVs and establish them as an ideal drug delivery system, polymer-engineered extracellular vesicle mimics (EVMs) have been developed and applied in cancer therapy. In this review, we discuss the current status of polymer-based extracellular vesicle mimics in drug delivery, and analyze their structural and functional properties based on the design of an ideal drug carrier. We anticipate that this review will facilitate a deeper understanding of the extracellular vesicular mimetic drug delivery system, and stimulate the progress and advancement of this field.
Collapse
Affiliation(s)
- Xinyue Wei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifeng Cao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Electronic Chemicals, Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhen Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang Sundoc Pharmaceutical Science and Tech Co., Ltd., Hangzhou 310051, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Duan C, Wang Y, Wang Q, Li J, Xie J, Liu S, Yang J, Huang Y, Zhao W, Yin W. Gram-negative bacterial infection causes aggravated innate immune response in sepsis: Studies from clinical samples and cellular models. Biochem Biophys Res Commun 2023; 650:137-144. [PMID: 36801697 DOI: 10.1016/j.bbrc.2023.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Bacterial infection is the most common cause for sepsis. The purpose of this study was to evaluate the impact of different bacterial infection on sepsis based on human samples and cellular experiments. Physiological indexes and prognostic information of 121 sepsis patients were analysed based on whether they had a gram-positive or gram-negative bacterial infection. Moreover, murine RAW264.7 macrophages were treated with lipopolysaccharide (LPS) or peptidoglycan (PG) to simulate infection with gram-negative or gram-positive bacteria in sepsis, respectively. Exosomes derived from the macrophages were extracted for transcriptome sequencing. In patients with sepsis, most gram-positive bacterial infections were Staphylococcus aureus, and gram-negative infections were Escherichia coli. Gram-negative bacterial infection was significantly associated with high neutrophil and interleukin (IL)-6 levels in blood and shorter prothrombin (PT) and activated partial thromboplastin time (APTT). Intriguingly, the survival prognosis of sepsis patients was not affected by the type of bacterial infection, but it was significantly related to fibrinogen. Protein transcriptome sequencing of the macrophage-derived exosomes showed that differentially expressed proteins were significantly enriched in megakaryocyte differentiation, leukocyte and lymphocyte-mediated immunity, and complement and coagulation cascade pathways. The complement and coagulation-related proteins were significantly upregulated after LPS induction, which explained the shortened PT and APTT in gram-negative bacterial sepsis. Bacterial infection did not affect mortality in sepsis but did alter the host response. The immune disorder induced by gram-negative infection was more severe than that produced by gram-positive infection. This study provides references for the rapid identification and molecular research of different bacterial infections in sepsis.
Collapse
Affiliation(s)
- Chujun Duan
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yutong Wang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Qianmei Wang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Junjie Li
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jiangang Xie
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shanshou Liu
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jing Yang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yang Huang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wei Zhao
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
19
|
Holbrook EM, Zambrano CA, Wright CTO, Dubé EM, Stewart JR, Sanders WJ, Frank MG, MacDonald AS, Reber SO, Lowry CA. Mycobacterium vaccae NCTC 11659, a Soil-Derived Bacterium with Stress Resilience Properties, Modulates the Proinflammatory Effects of LPS in Macrophages. Int J Mol Sci 2023; 24:ijms24065176. [PMID: 36982250 PMCID: PMC10049321 DOI: 10.3390/ijms24065176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Inflammatory conditions, including allergic asthma and conditions in which chronic low-grade inflammation is a risk factor, such as stress-related psychiatric disorders, are prevalent and are a significant cause of disability worldwide. Novel approaches for the prevention and treatment of these disorders are needed. One approach is the use of immunoregulatory microorganisms, such as Mycobacterium vaccae NCTC 11659, which have anti-inflammatory, immunoregulatory, and stress-resilience properties. However, little is known about how M. vaccae NCTC 11659 affects specific immune cell targets, including monocytes, which can traffic to peripheral organs and the central nervous system and differentiate into monocyte-derived macrophages that, in turn, can drive inflammation and neuroinflammation. In this study, we investigated the effects of M. vaccae NCTC 11659 and subsequent lipopolysaccharide (LPS) challenge on gene expression in human monocyte-derived macrophages. THP-1 monocytes were differentiated into macrophages, exposed to M. vaccae NCTC 11659 (0, 10, 30, 100, 300 µg/mL), then, 24 h later, challenged with LPS (0, 0.5, 2.5, 250 ng/mL), and assessed for gene expression 24 h following challenge with LPS. Exposure to M. vaccae NCTC 11659 prior to challenge with higher concentrations of LPS (250 ng/mL) polarized human monocyte-derived macrophages with decreased IL12A, IL12B, and IL23A expression relative to IL10 and TGFB1 mRNA expression. These data identify human monocyte-derived macrophages as a direct target of M. vaccae NCTC 11659 and support the development of M. vaccae NCTC 11659 as a potential intervention to prevent stress-induced inflammation and neuroinflammation implicated in the etiology and pathophysiology of inflammatory conditions and stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Evan M. Holbrook
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Cristian A. Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Caelan T. O. Wright
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Elizabeth M. Dubé
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jessica R. Stewart
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - William J. Sanders
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew G. Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
- Center for Neuroscience and Center for Microbial Exploration, University of Colorado, Boulder, CO 80309, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA
- Senior Fellow, inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ 07093, USA
- Correspondence: ; Tel.: +1-303-492-6029; Fax: +1-303-492-0811
| |
Collapse
|
20
|
Yang L, Hao Y, Boeckmans J, Rodrigues RM, He Y. Immune cells and their derived microRNA-enriched extracellular vesicles in nonalcoholic fatty liver diseases: Novel therapeutic targets. Pharmacol Ther 2023; 243:108353. [PMID: 36738973 DOI: 10.1016/j.pharmthera.2023.108353] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Despite extensive research and multiple clinical trials, there are still no FDA-approved therapies to treat the most severe forms of NAFLD. This is largely due to its complicated etiology and pathogenesis, which involves visceral obesity, insulin resistance, gut dysbiosis, etc. Although inflammation is generally believed to be one of the critical factors that drive the progression of simple steatosis to nonalcoholic steatohepatitis (NASH), the exact type of inflammation and how it contributes to NASH pathogenesis remain largely unknown. Liver inflammation is accompanied by the elevation of inflammatory mediators, including cytokines and chemokines and consequently intrahepatic infiltration of multiple types of immune cells. Recent studies revealed that extracellular vesicles (EVs) derived from inflammatory cells and hepatocytes play an important role in controlling liver inflammation during NASH. In this review, we highlight the roles of innate and adaptive immune cells and their microRNA-enriched EVs during NAFLD development and discuss potential drugs that target inflammatory pathways for the treatment of NAFLD.
Collapse
Affiliation(s)
- Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yawen Hao
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Zhang H, Wang S, Sun M, Cui Y, Xing J, Teng L, Xi Z, Yang Z. Exosomes as smart drug delivery vehicles for cancer immunotherapy. Front Immunol 2023; 13:1093607. [PMID: 36733388 PMCID: PMC9888251 DOI: 10.3389/fimmu.2022.1093607] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Exosomes (Exos) as drug delivery vehicles have been widely used for cancer immunotherapy owing to their good biocompatibility, low toxicity, and low immunogenicity. Some Exos-based cancer immunotherapy strategies such as tuning of immunosuppressive tumor microenvironment, immune checkpoint blockades, and cancer vaccines have also been investigated in recent years, which all showed excellent therapeutic effects for malignant tumor. Furthermore, some Exos-based drug delivery systems (DDSs) for cancer immunotherapy have also undergone clinic trails, indicating that Exos are a promising drug delivery carrier. In this review, in order to promote the development of Exos-based DDSs in cancer immunotherapy, the biogenesis and composition of Exos, and Exos as drug delivery vehicles for cancer immunotherapy are summarized. Meanwhile, their clinical translation and challenges are also discussed. We hope this review will provide a good guidance for Exos as drug delivery vehicles for cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Simiao Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Man Sun
- School of Life Sciences, Jilin University, Changchun, China
| | - Yaxin Cui
- School of Life Sciences, Jilin University, Changchun, China
| | - Jianming Xing
- School of Life Sciences, Jilin University, Changchun, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Zhifang Xi
- School of Horticulture and Food, Guangdong Eco-Engineering Polytechnic, Guangzhou, China,*Correspondence: Zhifang Xi, ; Zhaogang Yang,
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, China,*Correspondence: Zhifang Xi, ; Zhaogang Yang,
| |
Collapse
|
22
|
Xue T, Yam JWP. Role of Small Extracellular Vesicles in Liver Diseases: Pathogenesis, Diagnosis, and Treatment. J Clin Transl Hepatol 2022; 10:1176-1185. [PMID: 36381103 PMCID: PMC9634776 DOI: 10.14218/jcth.2022.00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/08/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicular bodies that bud off from the cell membrane or are secreted virtually by all cell types. Small EVs (sEVs or exosomes) are key mediators of cell-cell communication by delivering their cargo, including proteins, lipids, or RNAs, to the recipient cells where they induce changes in signaling pathways and phenotypic properties. Tangible findings have revealed the pivotal involvement of sEVs in the pathogenesis of various diseases. On the bright side, they are rich sources of biomarkers for diagnosis, prognosis, treatment response, and disease monitoring. sEVs have high stability, biocompatibility, targetability, low toxicity, and are immunogenic in nature. Their intrinsic properties make sEVs an ideal delivery vehicle to be loaded with cargo for therapeutic interventions. Liver diseases are a major global health problem. This review aims to focus on the roles and mechanisms of sEVs in the pathogenesis of liver diseases, liver injury, liver failure, and liver cancer. sEVs are released not only by hepatocytes but also by stromal and immune cells in the microenvironment. Early detection of liver disease determines the chance for curative treatment and high survival of patients. This review focuses on the potential of circulating sEV cargo as specific and sensitive noninvasive biomarkers for the early detection and prognosis of liver diseases. In addition, the therapeutic use of sEVs derived from various cell types is discussed. Although sEVs hold promise for clinical applications, there are still challenges to be overcome by further research to bring utilization of sEVs into clinical practice.
Collapse
Affiliation(s)
- Tingmao Xue
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Judy Wai Ping Yam
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence to: Judy Wai Ping Yam, Department of Pathology, 7/F Block T, Queen Mary Hospital, Pokfulam, Hong Kong, China. ORCID: https://orcid.org/0000-0002-5637-121X. Tel: +852-22552681, Fax: +852-22185212, E-mail:
| |
Collapse
|
23
|
Tian C, Wang K, Zhao M, Cong S, Di X, Li R. Extracellular vesicles participate in the pathogenesis of sepsis. Front Cell Infect Microbiol 2022; 12:1018692. [PMID: 36579343 PMCID: PMC9791067 DOI: 10.3389/fcimb.2022.1018692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Sepsis is one of the leading causes of mortality worldwide and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The early diagnosis and effective treatment of sepsis still face challenges due to its rapid progression, dynamic changes, and strong heterogeneity among different individuals. To develop novel strategies to control sepsis, a better understanding of the complex mechanisms of sepsis is vital. Extracellular vesicles (EVs) are membrane vesicles released from cells through different mechanisms. In the disease state, the number of EVs produced by activated or apoptotic cells and the cargoes they carry were altered. They regulated the function of local or distant host cells in autocrine or paracrine ways. Current studies have found that EVs are involved in the occurrence and development of sepsis through multiple pathways. In this review, we focus on changes in the cargoes of EVs in sepsis, the regulatory roles of EVs derived from host cells and bacteria, and how EVs are involved in multiple pathological processes and organ dysfunction in sepsis. Overall, EVs have great application prospects in sepsis, such as early diagnosis of sepsis, dynamic monitoring of disease, precise therapeutic targets, and prevention of sepsis as a vaccine platform.
Collapse
Affiliation(s)
- Chang Tian
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Min Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Cong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Di
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Ranwei Li,
| |
Collapse
|
24
|
Alahdal M, Elkord E. Promising use of immune cell-derived exosomes in the treatment of SARS-CoV-2 infections. Clin Transl Med 2022; 12:e1026. [PMID: 35988156 PMCID: PMC9393056 DOI: 10.1002/ctm2.1026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is persistently threatening the lives of thousands of individuals globally. It triggers pulmonary oedema, driving to dyspnoea and lung failure. Viral infectivity of coronavirus disease 2019 (COVID-19) is a genuine challenge due to the mutagenic genome and mysterious immune-pathophysiology. Early reports highlighted that extracellular vesicles (exosomes, Exos) work to enhance COVID-19 progression by mediating viral transmission, replication and mutations. Furthermore, recent studies revealed that Exos derived from immune cells play an essential role in the promotion of immune cell exhaustion by transferring regulatory lncRNAs and miRNAs from exhausted cells to the active cells. Fortunately, there are great chances to modulate the immune functions of Exos towards a sustained repression of COVID-19. Engineered Exos hold promising immunotherapeutic opportunities for remodelling cytotoxic T cells' function. Immune cell-derived Exos may trigger a stable epigenetic repression of viral infectivity, restore functional cytokine-producing T cells and rebalance immune response in severe infections by inducing functional T regulatory cells (Tregs). This review introduces a view on the current outcomes of immunopathology, and immunotherapeutic applications of immune cell-derived Exos in COVID-19, besides new perspectives to develop novel patterns of engineered Exos triggering novel anti-SARS-CoV-2 immune responses.
Collapse
Affiliation(s)
- Murad Alahdal
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.,Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
25
|
Liu Y, Liu N, Liu Y, He H, Luo Z, Liu W, Song N, Ju M. Ginsenoside Rb1 Reduces D-GalN/LPS-induced Acute Liver Injury by Regulating TLR4/NF-κB Signaling and NLRP3 Inflammasome. J Clin Transl Hepatol 2022; 10:474-485. [PMID: 35836757 PMCID: PMC9240244 DOI: 10.14218/jcth.2021.00072] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/08/2021] [Accepted: 07/21/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS The effect of ginsenoside Rb1 on D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced acute liver injury (ALI) is unknown. The aim of this study was to evaluate the effect of ginsenoside Rb1 on ALI and its underlying mechanisms. METHODS Mice were pretreated with ginsenoside Rb1 by intraperitoneal injection for 3 days before D-GalN/LPS treatment, to induce ALI. The survival rate was monitored every hour for 24 h, and serum biochemical parameters, hepatic index and histopathological analysis were evaluated to measure the degree of liver injury. ELISA was used to detect oxidative stress and inflammatory cytokines in hepatic tissue and serum. Immunohistochemistry staining, RT-PCR and western blotting were performed to evaluate the expression of toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), and NLR family, pyrin domain-containing 3 protein (NLRP3) in liver tissue and Kupffer cells (KCs). RESULTS Ginsenoside Rb1 improved survival with D-GalN/LPS-induced ALI by up to 80%, significantly ameliorated the increased alanine and aspartate transaminase, restored the hepatic pathological changes and reduced the levels of oxidative stress and inflammatory cytokines altered by D-GalN/LPS. Compared to the control group, the KCs were increased in the D-GalN/LPS groups but did not increase significantly with Rb1 pretreatment. D-GalN/LPS could upregulate while Rb1 pretreatment could downregulate the expression of interleukin (IL)-1β, IL-18, NLRP3, apoptosis associated speck-like protein containing CARD (ASC) and caspase-1 in isolated KCs. Furthermore, ginsenoside Rb1 inhibited activation of the TLR4/NF-κB signaling pathway and NLRP3 inflammasome induced by D-GalN/LPS administration. CONCLUSIONS Ginsenoside Rb1 protects mice against D-GalN/LPS-induced ALI by attenuating oxidative stress and the inflammatory response through the TLR4/NF-κB signaling pathway and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yimei Liu
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Ninghua Liu
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Yujing Liu
- Department of Nursing, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Hongyu He
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Wenjun Liu
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Nan Song
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
- Correspondence to: Minjie Ju, Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China. ORCID: https://orcid.org/0000-0001-8725-9231. Tel/Fax: +86-21-6404-1990, E-mail: ; Nan Song, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai 200031, China; ORCID: https://orcid.org/0000-0002-8110-739X. Tel/Fax: +86-21-6437-7134, E-mail:
| | - Minjie Ju
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, China
- Correspondence to: Minjie Ju, Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China. ORCID: https://orcid.org/0000-0001-8725-9231. Tel/Fax: +86-21-6404-1990, E-mail: ; Nan Song, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai 200031, China; ORCID: https://orcid.org/0000-0002-8110-739X. Tel/Fax: +86-21-6437-7134, E-mail:
| |
Collapse
|
26
|
Di Vito Nolfi M, Vecchiotti D, Flati I, Verzella D, Di Padova M, Alesse E, Capece D, Zazzeroni F. EV-Mediated Chemoresistance in the Tumor Microenvironment: Is NF-κB a Player? Front Oncol 2022; 12:933922. [PMID: 35814425 PMCID: PMC9257640 DOI: 10.3389/fonc.2022.933922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Drug resistance is a major impediment to patient survival and remains the primary cause of unsuccessful cancer therapy. Drug resistance occurs in many tumors and is frequently induced by chemotherapy which triggers a defensive response both in cancerous and cancer-associated cells that constitute the tumor microenvironment (TME). Cell to cell communication within the TME is often mediated by extracellular vesicles (EVs) which carry specific tumor-promoting factors able to activate survival pathways and immune escape mechanisms, thus sustaining tumor progression and therapy resistance. NF-κB has been recognized as a crucial player in this context. NF-κB activation is involved in EVs release and EVs, in turn, can trigger NF-κB pathway activation in specific contexts, based on secreting cytotype and their specific delivered cargo. In this review, we discuss the role of NF-κB/EVs interplay that sustain chemoresistance in the TME by focusing on the molecular mechanisms that underlie inflammation, EVs release, and acquired drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daria Capece
- *Correspondence: Francesca Zazzeroni, ; Daria Capece,
| | | |
Collapse
|
27
|
Song X, Xue Y, Fan S, Hao J, Deng R. Lipopolysaccharide-activated macrophages regulate the osteogenic differentiation of bone marrow mesenchymal stem cells through exosomes. PeerJ 2022; 10:e13442. [PMID: 35586136 PMCID: PMC9109694 DOI: 10.7717/peerj.13442] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/25/2022] [Indexed: 01/14/2023] Open
Abstract
Background Periodontal tissue regeneration is the ultimate goal of periodontitis treatment. Exosomes are nanoscale vesicles secreted by cells that participate in and regulate the physiological activities between cells. However, the relationship between inflammatory macrophage-derived exosomes and osteoblast differentiation in periodontitis has not been thoroughly reported. Here, we attempt to explore the role of inflammatory macrophage-derived exosomes in crosstalk with osteoblasts. Methods Porphyromonas gingivalis lipopolysaccharide was used to stimulate macrophages and inflate their inflammatory cellular state. Exosomes were extracted from inflammatory macrophages using supercentrifugation, and their characteristics were detected by transmission electron microscopy, particle size analysis, and Western blotting. Exosome uptake bybone marrow mesenchymal stem cells (BMSCs) was observed by fluorescence microscopy. The effects of exosomes on the BMSC inflammatory response and on osteogenic differentiation were detected by quantitative polymerase chain reaction and Western blot analysis. Alkaline phosphatase activity was tested for verification. Results We successfully extracted and identified inflammatory macrophage-derived exosomes and observed that BMSCs successfully took up exosomes. Inflammatory macrophage-derived exosomes upregulated the expression levels of the inflammatory factors interleukin-6 and tumour necrosis factor-alpha in BMSCs and mediated inflammatory stimulation. Additionally, they inhibited the transcription levels of the osteogenic genes alkaline phosphatase, type I collagen, and Runt-related transcription factor 2 as well as the alkaline phosphatase activity, while the use of the exosome inhibitor GW4869 attenuated this effect. Conclusion Our study shows that macrophages in periodontitis can mediate inflammatory stimulation and inhibit the osteogenic differentiation of bone marrow mesenchymal stem cells through the exosome pathway. Interference with exosome secretion is likely to be a promising method for bone tissue regeneration in inflammatory states.
Collapse
Affiliation(s)
- Xiao Song
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yiwen Xue
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Siyu Fan
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Hao
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Runzhi Deng
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Hazrati A, Soudi S, Malekpour K, Mahmoudi M, Rahimi A, Hashemi SM, Varma RS. Immune cells-derived exosomes function as a double-edged sword: role in disease progression and their therapeutic applications. Biomark Res 2022; 10:30. [PMID: 35550636 PMCID: PMC9102350 DOI: 10.1186/s40364-022-00374-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/03/2022] [Indexed: 02/08/2023] Open
Abstract
Exosomes, ranging in size from 30 to 150 nm as identified initially via electron microscopy in 1946, are one of the extracellular vesicles (EVs) produced by many cells and have been the subject of many studies; initially, they were considered as cell wastes with the belief that cells produced exosomes to maintain homeostasis. Nowadays, it has been found that EVs secreted by different cells play a vital role in cellular communication and are usually secreted in both physiological and pathological conditions. Due to the presence of different markers and ligands on the surface of exosomes, they have paracrine, endocrine and autocrine effects in some cases. Immune cells, like other cells, can secrete exosomes that interact with surrounding cells via these vesicles. Immune system cells-derived exosomes (IEXs) induce different responses, such as increasing and decreasing the transcription of various genes and regulating cytokine production. This review deliberate the function of innate and acquired immune cells derived exosomes, their role in the pathogenesis of immune diseases, and their therapeutic appliances.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Kosar Malekpour
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
29
|
The Role of Exosomes in Inflammatory Diseases and Tumor-Related Inflammation. Cells 2022; 11:cells11061005. [PMID: 35326456 PMCID: PMC8947057 DOI: 10.3390/cells11061005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammation plays a decisive role in inducing tumorigenesis, promoting tumor development, tumor invasion and migration. The interaction of cancer cells with their surrounding stromal cells and inflammatory cells further forms an inflammatory tumor microenvironment (TME). The large number of cells present within the TME, such as mesenchymal stem cells (MSCs), macrophages, neutrophils, etc., play different roles in the changing TME. Exosomes, extracellular vesicles released by various types of cells, participate in a variety of inflammatory diseases and tumor-related inflammation. As an important communication medium between cells, exosomes continuously regulate the inflammatory microenvironment. In this review, we focused on the role of exosomes in inflammatory diseases and tumor-related inflammation. In addition, we also summarized the functions of exosomes released by various cells in inflammatory diseases and in the TME during the transformation of inflammatory diseases to tumors. We discussed in depth the potential of exosomes as targets and tools to treat inflammatory diseases and tumor-related inflammation.
Collapse
|
30
|
Xing Y, Sun X, Dou Y, Wang M, Zhao Y, Yang Q, Zhao Y. The Immuno-Modulation Effect of Macrophage-Derived Extracellular Vesicles in Chronic Inflammatory Diseases. Front Immunol 2022; 12:785728. [PMID: 34975877 PMCID: PMC8716390 DOI: 10.3389/fimmu.2021.785728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
As natural nanocarriers and intercellular messengers, extracellular vesicles (EVs) control communication among cells. Under physiological and pathological conditions, EVs deliver generic information including proteins and nucleic acids to recipient cells and exert regulatory effects. Macrophages help mediate immune responses, and macrophage-derived EVs may play immunomodulatory roles in the progression of chronic inflammatory diseases. Furthermore, EVs derived from various macrophage phenotypes have different biological functions. In this review, we describe the pathophysiological significance of macrophage-derived extracellular vesicles in the development of chronic inflammatory diseases, including diabetes, cancer, cardiovascular disease, pulmonary disease, and gastrointestinal disease, and the potential applications of these EVs.
Collapse
Affiliation(s)
- Yi Xing
- Department of Orthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Min Wang
- Department of Orthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yanhong Zhao
- Department of Orthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
31
|
Zhou L, Shen M, Fan X, Liu Y, Yang L. Pathogenic and Potential Therapeutic Roles of Exosomes Derived From Immune Cells in Liver Diseases. Front Immunol 2022; 13:810300. [PMID: 35185900 PMCID: PMC8854144 DOI: 10.3389/fimmu.2022.810300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Liver diseases, such as viral hepatitis, alcoholic hepatitis and cirrhosis, nonalcoholic steatohepatitis, and hepatocellular carcinoma place a heavy burden on many patients worldwide. However, the treatment of many liver diseases is currently insufficient, and the treatment may be associated with strong side effects. Therapies for liver diseases targeting the molecular and cellular levels that minimize adverse reactions and maximize therapeutic effects are in high demand. Immune cells are intimately involved in the occurrence, development, and prognosis of liver diseases. The immune response in the liver can be suppressed, leading to tolerance in homeostasis. When infection or tissue damage occurs, immunity in the liver is activated rapidly. As small membrane vesicles derived from diverse cells, exosomes carry multiple cargoes to exert their regulatory effects on recipient cells under physiological or pathological conditions. Exosomes from different immune cells exert different effects on liver diseases. This review describes the biology of exosomes and focuses on the effects of exosomes from different immune cells on pathogenesis, diagnosis, and prognosis and their therapeutic potential in liver diseases.
Collapse
|
32
|
Lu W, Bai L, Chen Y. The Role of Macrophage-Derived Exosomes in Liver Diseases. INFECTIOUS DISEASES & IMMUNITY 2022; 2:34-41. [DOI: 10.1097/id9.0000000000000034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Abstract
Exosomes (exos) widely distributed in a variety of biological fluids, including blood, urine, saliva, sputum, breast milk, cerebrospinal fluid, and ascites, contain specific bioactive contents which are involved in physiological and pathological processes, such as signal molecular transfer, substance metabolism, gene regulation, and immune regulation. Macrophages are important innate immune cells which usually act as the first line of defense against infection, and can switch between different functional phenotypes in response to the changes around the microenvironment. Evidence suggests that macrophage-derived exos exert a crucial effect on infection, inflammation, regeneration, tumors, fibrosis, and other lesions in multiple human diseases. However, the role and mechanism of macrophage-derived exos in liver diseases remain to be explored. This review summarizes the current researches on the role and possible mechanism of macrophage-derived exos in liver diseases, with the purpose of providing new potential targets and directions for diagnostic biomarker and clinical treatment of liver diseases.
Collapse
Affiliation(s)
- Wang Lu
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| | - Li Bai
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| | - Yu Chen
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| |
Collapse
|
33
|
Miao H, Chen S, Ding R. Evaluation of the Molecular Mechanisms of Sepsis Using Proteomics. Front Immunol 2021; 12:733537. [PMID: 34745104 PMCID: PMC8566982 DOI: 10.3389/fimmu.2021.733537] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a complex syndrome promoted by pathogenic and host factors; it is characterized by dysregulated host responses and multiple organ dysfunction, which can lead to death. However, its underlying molecular mechanisms remain unknown. Proteomics, as a biotechnology research area in the post-genomic era, paves the way for large-scale protein characterization. With the rapid development of proteomics technology, various approaches can be used to monitor proteome changes and identify differentially expressed proteins in sepsis, which may help to understand the pathophysiological process of sepsis. Although previous reports have summarized proteomics-related data on the diagnosis of sepsis and sepsis-related biomarkers, the present review aims to comprehensively summarize the available literature concerning “sepsis”, “proteomics”, “cecal ligation and puncture”, “lipopolysaccharide”, and “post-translational modifications” in relation to proteomics research to provide novel insights into the molecular mechanisms of sepsis.
Collapse
Affiliation(s)
- He Miao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, China
| | - Song Chen
- Department of Trauma Intensive Care Unit, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Wang G, Huang W, Wang S, Wang J, Cui W, Zhang W, Lou A, Geng S, Li X. Macrophagic Extracellular Vesicle CXCL2 Recruits and Activates the Neutrophil CXCR2/PKC/NOX4 Axis in Sepsis. THE JOURNAL OF IMMUNOLOGY 2021; 207:2118-2128. [PMID: 34507947 DOI: 10.4049/jimmunol.2100229] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/31/2021] [Indexed: 01/21/2023]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysfunctional host response to infection. Neutrophils play a protective role by releasing antibacterial proteins or by phagocytizing bacteria. However, excess neutrophils can induce tissue damage. Recently, a novel intercellular communication pathway involving extracellular vesicles (EVs) has garnered considerable attention. However, whether EVs secreted by macrophages mediate neutrophil recruitment to infected sites has yet to be studied. In this study, we assessed the chemotactic effect of EVs isolated from mouse Raw264.7 macrophages on mouse neutrophils and found that CXCL2 was highly expressed in these EVs. By regulating CXCL2 in Raw264.7 macrophages, we found that CXCL2 on macrophage EVs recruited neutrophils in vitro and in vivo. The CXCL2 EVs activated the CXCR2/PKC/NOX4 pathway and induced tissue damage. This study provides information regarding the mechanisms underlying neutrophil recruitment to tissues and proposes innovative strategies and targets for the treatment of sepsis.
Collapse
Affiliation(s)
- Guozhen Wang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; .,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weichang Huang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Lishui, Zhejiang, China; and
| | - Jun Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanfu Cui
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenyong Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Anni Lou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shiyu Geng
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; .,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Equine Intestinal O-Seroconverting Temperate Coliphage Hf4s: Genomic and Biological Characterization. Appl Environ Microbiol 2021; 87:e0112421. [PMID: 34406832 DOI: 10.1128/aem.01124-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tailed bacteriophages constitute the bulk of the intestinal viromes of vertebrate animals. However, the relationships between lytic and lysogenic lifestyles of phages in these ecosystems are not always clear and may vary between the species or even between the individuals. The human intestinal (fecal) viromes are dominated mostly by temperate phages, while in horse feces virulent phages are more prevalent. To our knowledge, all the previously reported isolates of horse fecal coliphages are virulent. Temperate coliphage Hf4s was isolated from horse feces, from the indigenous equine Escherichia coli 4s strain. It is a podovirus related to the Lederbergvirus genus (including the well-characterized Salmonella bacteriophage P22). Hf4s recognizes the host O antigen as its primary receptor and possesses a functional O antigen seroconversion cluster that renders the lysogens protected from superinfection by the same bacteriophage and also abolishes the adsorption of some indigenous equine virulent coliphages, such as DT57C, while other phages, such as G7C or phiKT, retain the ability to infect E. coli 4s (Hf4s) lysogens. IMPORTANCE The relationships between virulent and temperate bacteriophages and their impact on high-density symbiotic microbial ecosystems of animals are not always clear and may vary between species or even between individuals. The horse intestinal virome is dominated by virulent phages, and Hf4s is the first temperate equine intestinal coliphage characterized. It recognizes the host O antigen as its primary receptor and possesses a functional O antigen seroconversion cluster that renders the lysogens protected from superinfection by some indigenous equine virulent coliphages, such as DT57C, while other phages, such as G7C or phiKT, retain the ability to infect E. coli 4s (Hf4s) lysogens. These findings raise questions on the significance of bacteriophage-bacteriophage interactions within the ecology of microbial viruses in mammal intestinal ecosystems.
Collapse
|
36
|
Li Y, Liu Z, Shi X, Tong H, Su L. Prognostic value of plasma exosomal levels of histone H3 protein in patients with heat stroke. Exp Ther Med 2021; 22:922. [PMID: 34335883 PMCID: PMC8290468 DOI: 10.3892/etm.2021.10354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Heat stroke (HS) is a condition that can lead to multiple organ dysfunction syndrome and death; however, there is no reliable method for stratifying mortality risk in HS. The abundance of exosomes in the circulation and their contents may be used as potential biomarkers of HS. The present study aimed to examine whether histone H3 levels in plasma exosomes could be used to determine HS prognosis. Blood samples were collected from patients with HS (36 survivors and 8 non-survivors) at admission to the intensive care unit and 4 days after admission. Blood samples were additionally collected from 15 healthy volunteers. Plasma exosomes were isolated using high-speed differential centrifugation. Correlation between histone H3 level and organ function and disease severity was examined. The results suggested differential expression and enrichment of histone H3 in the plasma exosomes of patients with HS (survivors, 249.3±04.6; non-survivors, 500.4±216.8; healthy controls, 161.1±52.49 pg/100 µg; P<0.05). The increased expression of histone H3 was associated with increased disease severity and duration. Plasma exosomal levels of histone H3 were significantly correlated with both organ dysfunction and disease severity (P<0.0001) and were significantly different between non-survivors and survivors (area under the receiver operating characteristic curve, 0.9668). A cutoff value of 307 pg/100 µg demonstrated optimized sensitivity (95%) and specificity (91.67%) for predicting mortality risk, suggesting that histone H3 levels in plasma exosomes may be a reliable biomarker for HS prognosis.
Collapse
Affiliation(s)
- Yue Li
- Intensive Care Unit, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of The People's Liberation Army, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Zhifeng Liu
- Intensive Care Unit, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of The People's Liberation Army, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Xuezhi Shi
- Intensive Care Unit, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of The People's Liberation Army, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Huasheng Tong
- Intensive Care Unit, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of The People's Liberation Army, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Lei Su
- Intensive Care Unit, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of The People's Liberation Army, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
37
|
Hu Q, Lyon CJ, Fletcher JK, Tang W, Wan M, Hu TY. Extracellular vesicle activities regulating macrophage- and tissue-mediated injury and repair responses. Acta Pharm Sin B 2021; 11:1493-1512. [PMID: 34221864 PMCID: PMC8245807 DOI: 10.1016/j.apsb.2020.12.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023] Open
Abstract
Macrophages are typically identified as classically activated (M1) macrophages and alternatively activated (M2) macrophages, which respectively exhibit pro- and anti-inflammatory phenotypes, and the balance between these two subtypes plays a critical role in the regulation of tissue inflammation, injury, and repair processes. Recent studies indicate that tissue cells and macrophages interact via the release of small extracellular vesicles (EVs) in processes where EVs released by stressed tissue cells can promote the activation and polarization of adjacent macrophages which can in turn release EVs and factors that can promote cell stress and tissue inflammation and injury, and vice versa. This review discusses the roles of such EVs in regulating such interactions to influence tissue inflammation and injury in a number of acute and chronic inflammatory disease conditions, and the potential applications, advantage and concerns for using EV-based therapeutic approaches to treat such conditions, including their potential role of drug carriers for the treatment of infectious diseases.
Collapse
Key Words
- ADSCs, adipose-derived stem cells
- AKI, acute kidney injury
- ALI, acute lung injury
- AMs, alveolar macrophages
- BMSCs, bone marrow stromal cells
- CLP, cecal ligation and puncture
- DSS, dextran sodium sulphate
- EVs, extracellular vesicles
- Extracellular vesicles
- HSPA12B, heat shock protein A12B
- HUCMSCs, human umbilical cord mesenchymal stem cells
- IBD, inflammatory bowel disease
- ICAM-1, intercellular adhesion molecule 1
- IL-1β, interleukin-1β
- Inflammatory disease
- Interaction loop
- KCs, Kupffer cells
- KLF4, krüppel-like factor 4
- LPS, lipopolysaccharides
- MHC, major histocompatibility complex
- MSCs, mesenchymal stromal cells
- MVs, microvesicles
- Macrophage
- PEG, polyethylene glycol
- PMFA, 5,7,30,40,50-pentamethoxyflavanone
- PPARγ, peroxisome proliferator-activated receptor γ
- SIRPα, signal regulatory protein α
- Sepsis
- Stem cell
- TECs, tubular epithelial cells
- TNF, tumor necrosis factor
- TRAIL, tumor necrosis factor-related apoptosis-inducing ligand
- Targeted therapy
- Tissue injury
- iNOS, inducible nitrogen oxide synthase
Collapse
|
38
|
Qin X, Lin X, Liu L, Li Y, Li X, Deng Z, Chen H, Chen H, Niu Z, Li Z, Hu Y. Macrophage-derived exosomes mediate silica-induced pulmonary fibrosis by activating fibroblast in an endoplasmic reticulum stress-dependent manner. J Cell Mol Med 2021; 25:4466-4477. [PMID: 33834616 PMCID: PMC8093963 DOI: 10.1111/jcmm.16524] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Macrophages play a key role in silicosis, and exosomes are potent mediators of intercellular communication. This suggests that macrophage-derived exosomes have a potential contribution to the pathogenesis of silicosis. To investigate whether macrophage-derived exosomes promote or inhibit lung fibrosis, in vitro, silica-exposed macrophage-derived exosomes (SiO2 -Exos) were collected and cocultured with fibroblasts. The expression of collagen I and α-SMA was evaluated. Furthermore, the endoplasmic reticulum (ER) stress markers BIP, XBP1s and P-eIF2α were assessed after treatment with or without the ER stress inhibitor 4-PBA. In vivo, mice were pre-treated with the exosome secretion inhibitor GW4869 prior to silica exposure. After sacrifice, lung tissues were histologically examined, and the expression of proinflammatory cytokines (TNF-α, IL-1β and IL-6) in bronchoalveolar lavage fluid (BALF) was measured. The results showed that the expression of collagen I and α-SMA was up-regulated after treatment with SiO2 -Exos, accompanied by increased expression of BIP, XBP1s and P-eIF2α. Pre-treatment with 4-PBA reversed this effect. More importantly, an in vivo study demonstrated that pre-treatment with GW4869 decreased lung fibrosis and the expression of TNF-α, IL-1β and IL-6 in BALF. These results suggested that SiO2 -Exos are profibrogenic and that the facilitating effect is dependent on ER stress.
Collapse
Affiliation(s)
- Xiaofeng Qin
- Department of PathologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Xiaofang Lin
- Department of PathologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Lang Liu
- Department of Occupational DiseasesHunan Prevention and Treatment Institute for Occupational DiseasesChangshaChina
| | - Ying Li
- Department of Occupational DiseasesHunan Prevention and Treatment Institute for Occupational DiseasesChangshaChina
| | - Xiang Li
- Department of PathologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Department of PathologyXiangya HospitalCentral South UniversityChangshaChina
| | - Zhenghao Deng
- Department of PathologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Department of PathologyXiangya HospitalCentral South UniversityChangshaChina
| | - Huiping Chen
- Department of PathologyXiangya HospitalCentral South UniversityChangshaChina
| | - Hui Chen
- Department of PathologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Zhiyuan Niu
- Department of PathologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Zisheng Li
- Department of PathologyXiangya HospitalCentral South UniversityChangshaChina
| | - Yongbin Hu
- Department of PathologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Department of PathologyXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
39
|
Qiu P, Zhou J, Zhang J, Dong Y, Liu Y. Exosome: The Regulator of the Immune System in Sepsis. Front Pharmacol 2021; 12:671164. [PMID: 33995102 PMCID: PMC8113812 DOI: 10.3389/fphar.2021.671164] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Sepsis is a syndrome comprised of a series of life-threatening organ dysfunctions caused by a maladjusted body response to infection with no effective treatment. There is growing evidence that the immune system plays a core role in sepsis. Pathogens cause abnormal host immune response and eventually lead to immunosuppression, which is an important cause of death in patients with sepsis. Exosomes are vesicles derived from double invagination of plasma membrane, associating with immune responses closely. The cargos delivered by exosomes into recipient cells, especially immune cells, effectively alter their response and functions in sepsis. In this review, we focus on the effects and mechanisms of exosomes on multiple immune cells, as well as the role of immune cell-derived exosomes in sepsis. This is helpful for us to have an in-depth understanding of the mechanism of immune disorders in sepsis. Exosomes is also expected to become a novel target and therapeutic approach for sepsis.
Collapse
Affiliation(s)
- Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Zhou
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youjing Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
40
|
Li C, Deng C, Zhou T, Hu J, Dai B, Yi F, Tian N, Jiang L, Dong X, Zhu Q, Zhang S, Cui H, Cao L, Shang Y. MicroRNA-370 carried by M2 macrophage-derived exosomes alleviates asthma progression through inhibiting the FGF1/MAPK/STAT1 axis. Int J Biol Sci 2021; 17:1795-1807. [PMID: 33994863 PMCID: PMC8120458 DOI: 10.7150/ijbs.59715] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence has suggested the functions of exosomes in allergic diseases including asthma. By using a mouse model with asthma induced by ovalbumin (OVA), we explored the roles of M2 macrophage-derived exosomes (M2Φ-Exos) in asthma progression. M2Φ-Exos significantly alleviated OVA-induced fibrosis and inflammatory responses in mouse lung tissues, as well as inhibited abnormal proliferation, invasion, and fibrosis-related protein production in platelet derived growth factor (PDGF-BB) treated primary mouse airway smooth muscle cells (ASMCs). The OVA administration in mice or the PDGF-BB treatment in ASMCs reduced the expression of miR-370, which was detected in M2Φ-Exos by miRNA sequencing. However, treating the mice or ASMCs with M2Φ-Exos reversed the inhibitory effect of OVA or PDGF-BB on miR-370 expression. We identified that the target of miR-370 was fibroblast growth factor 1 (FGF1). Downregulation of miR-370 by Lv-miR-370 inhibitor or overexpression of FGF1 by Lv-FGF1 blocked the protective roles of M2Φ-Exos in asthma-like mouse and cell models. M2Φ-Exos were found to inactivate the MAPK signaling pathway, which was recovered by miR-370 inhibition or FGF1 overexpression. Collectively, we conclude that M2Φ-Exos carry miR-370 to alleviate asthma progression through downregulating FGF1 expression and the MAPK/STAT1 signaling pathway. Our study may offer a novel insight into asthma treatment.
Collapse
Affiliation(s)
- Chunlu Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chengsi Deng
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Tingting Zhou
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Bing Dai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Fei Yi
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Na Tian
- Jilin Tuohua Biotechnology Co., Ltd. Changchun, Jilin 13000, China
| | - Lijun Jiang
- Jilin Tuohua Biotechnology Co., Ltd. Changchun, Jilin 13000, China
| | - Xiang Dong
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Qingfeng Zhu
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Siyi Zhang
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Hongyan Cui
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Liu Cao
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
41
|
Ye H, Zhai Q, Fang P, Yang S, Sun Y, Wu S, Huang R, Chen Q, Fang X. Triggering receptor expressed on myeloid Cells-2 (TREM2) inhibits steroidogenesis in adrenocortical cell by macrophage-derived exosomes in lipopolysaccharide-induced septic shock. Mol Cell Endocrinol 2021; 525:111178. [PMID: 33556472 DOI: 10.1016/j.mce.2021.111178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Endogenously produced glucocorticoids exhibit immunomodulating properties and are of pivotal importance for sepsis outcome. Uncontrolled activation of the immune-adrenal crosstalk increases the risk of sepsis-related death. Triggering receptor expressed on myeloid cells-2 (TREM2) is richly expressed on macrophages and has been demonstrated to improve outcome of sepsis by enhancing elimination of pathogens. However, the role and mode of action of macrophage TREM2 on adrenocortical steroidogenesis remains unclear in septic shock. METHODS The acute septic shock model was established by intraperitoneally challenging wild-type (WT) and TREM2 knock-out (Trem2-/-) mice with lipopolysaccharide (LPS, 30 mg/kg). The mice were assessed for TREM2 expression and local inflammation in adrenal gland and for synthesis of corticotropin releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) in vivo. Bone marrow-derived macrophages or macrophage-derived exosomes were isolated from WT and Trem2-/- mice and were co-cultured with adrenocortical cells. The expression of steroidogenic enzymes and corticosterone production was assessed. RESULTS Genetic deficiency of TREM2 caused significantly higher corticosterone levels at the early stage of LPS-induced septic shock; whereas TREM2 deficiency neither increased CRH and ACTH nor exacerbated the inflammation in adrenocortical tissue during septic shock. Ex vivo study revealed that Trem2-/- macrophages significantly promoted the expression of steroidogenic enzymes and increased production of corticosterone. Furthermore, Trem2-/- macrophage-derived exosomes were able to mimic Trem2-/- macrophages in enhancing adrenocortical steroidogenesis. CONCLUSIONS At the early stage of LPS-induced septic shock, corticosterone biosynthesis can be inhibited by macrophage TREM2 in adrenocortical cells, which might partially associate with macrophage-derived exosomes.
Collapse
Affiliation(s)
- Hui Ye
- Department of Anesthesiology and Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Zhai
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ping Fang
- Department of Anesthesiology and Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Anesthesiology, Lihuili Hospital, Ningbo Medical Center, Ningbo, China
| | - Shiyue Yang
- Department of Anesthesiology and Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaqi Sun
- Department of Anesthesiology and Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuijing Wu
- Department of Anesthesiology and Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruoqiong Huang
- Department of Clinical Research Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qixing Chen
- Department of Clinical Research Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
42
|
Noonin C, Thongboonkerd V. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Am J Cancer Res 2021; 11:4436-4451. [PMID: 33754070 PMCID: PMC7977448 DOI: 10.7150/thno.54004] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasome is a complex of multiple proteins found in cytoplasm of the cells activated by infectious and/or non-infectious stimuli. This complex involves caspase-1 activation, leading to unconventional secretion of interleukin-1β (IL-1β) and IL-18 and inflammatory cascade. Exosome is the nanoscale membrane-bound extracellular vesicle that plays significant roles in intercellular communications by carrying bioactive molecules, e.g., proteins, RNAs, microRNAs (miRNAs), DNAs, from one cell to the others. In this review, we provide the update information on the crosstalk between exosome and inflammasome and their roles in inflammatory responses. The effects of inflammasome activation on exosomal secretion are summarized. On the other hand, the (dual) effects of exosomes on inhibiting and promoting inflammasome activation are discussed. Finally, perspectives on therapeutic roles of exosomes in human diseases and future direction of the research on exosome-inflammasome crosstalk are provided.
Collapse
|
43
|
Zou Y, Zheng WB, He JJ, Elsheikha HM, Zhu XQ, Lu YX. Toxocara canis Differentially Affects Hepatic MicroRNA Expression in Beagle Dogs at Different Stages of Infection. Front Vet Sci 2020; 7:587273. [PMID: 33282932 PMCID: PMC7689213 DOI: 10.3389/fvets.2020.587273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/01/2020] [Indexed: 01/25/2023] Open
Abstract
Toxocara canis is a neglected zoonotic parasite, which threatens the health of dogs and humans worldwide. The molecular mechanisms that underlie the progression of T. canis infection remain mostly unknown. MicroRNAs (miRNAs) are small non-coding RNAs that have been identified in T. canis; however, the regulation and role of miRNAs in the host during infection remain incompletely understood. In this study, we determined hepatic miRNA expression at different stages of T. canis infection in beagle dogs. Individual dogs were infected by 300 embryonated T. canis eggs, and their livers were collected at 12 hpi (hours post-infection), 24 hpi, and 36 dpi (days post-infection). The expression profiles of liver miRNAs were determined using RNA-sequencing. Compared to the control groups, 9, 16, and 34 differentially expressed miRNAs (DEmiRNAs) were detected in the livers of infected dogs at the three infection stages, respectively. Among those DEmiRNAs, the novel-294 and cfa-miR-885 were predicted to regulate inflammation-related genes at the initial stage of infection (12 hpi). The cfa-miR-1839 was predicted to regulate the target gene TRIM71, which may influence the development of T. canis larvae at 24 hpi. Moreover, cfa-miR-370 and cfa-miR-133c were associated with immune response at the final stage of infection (36 dpi). Some immunity-related Gene Ontology terms were enriched particularly at 24 hpi. Likewise, Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that many significantly enriched pathways were involved in inflammation and immune responses. The expression level of nine DEmiRNAs was validated using quantitative real-time PCR (qRT-PCR). These results show that miRNAs play critical roles in the pathogenesis of T. canis during the hepatic phase of parasite development. Our data provide fundamental information for further investigation of the roles of miRNAs in the innate/adaptive immune response of dogs infected by T. canis.
Collapse
Affiliation(s)
- Yang Zou
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wen-Bin Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Yi-Xin Lu
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
44
|
Li C, Dai B, Hu J, Shang Y. WITHDRAWN: M2 macrophage-derived exosomes carry microRNA-370 to alleviate asthma progression through inhibiting the FGF1/MAPK/STAT1 axis. Exp Cell Res 2020:112285. [PMID: 32941809 DOI: 10.1016/j.yexcr.2020.112285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 01/16/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Chunlu Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Bing Dai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| |
Collapse
|
45
|
Murao A, Brenner M, Aziz M, Wang P. Exosomes in Sepsis. Front Immunol 2020; 11:2140. [PMID: 33013905 PMCID: PMC7509534 DOI: 10.3389/fimmu.2020.02140] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a severe state of infection with high mortality. Pathogen-associated molecular patterns and damage-associated molecular patterns (DAMPs) initiate dysregulated systemic inflammation upon binding to pattern recognition receptors. Exosomes are endosome-derived vesicles, which carry proteins, lipids and nucleic acids, and facilitate intercellular communications. Studies have shown altered contents and function of exosomes during sepsis. In sepsis, exosomes carry increased levels of cytokines and DAMPs to induce inflammation. Exosomal DAMPs include, but are not limited to, high mobility group box 1, heat shock proteins, histones, adenosine triphosphate, and extracellular RNA. Exosomes released during sepsis have impact on multiple organs, including the lungs, kidneys, liver, cardiovascular system, and central nervous system. Here, we review the mechanisms of inflammation caused by exosomes, and their contribution to multiple organ dysfunction in sepsis.
Collapse
Affiliation(s)
- Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
46
|
Yang D, Liu J. Targeting extracellular vesicles-mediated hepatic inflammation as a therapeutic strategy in liver diseases. Liver Int 2020; 40:2064-2073. [PMID: 32593200 DOI: 10.1111/liv.14579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/18/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Extracellular Vesicles (EVs) are nano- to micro-sized membranous vesicles that can be produced by normal and diseased cells. As carriers of biologically active molecules including proteins, lipids and nucleic acids, EVs mediate cell-to-cell communication and execute diverse functions by delivering their cargoes to specific cell types. Hepatic inflammation caused by virus infection, autoimmunity and malignancy is a common driver of progressive liver fibrosis and permanent liver damage. Emerging evidence has shown that EVs-mediated inflammation as critical player in the progression of liver diseases since they shuttle within the liver as well as between other tissues with inflammatory signals. Therefore, targeting inflammatory EVs could represent a potential therapeutic strategy in liver diseases. Moreover, EVs are emerging as a promising tool for intracellular delivery of therapeutic nucleic acid. In this review, we will discuss not only recent advances on the role of EVs in mediating hepatic inflammation and present strategies for targeted therapy on the context of liver diseases but also the challenging questions that need to be answered in the field.
Collapse
Affiliation(s)
- Dakai Yang
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jing Liu
- Microbiology and Immunity Department, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| |
Collapse
|
47
|
Shao S, Fang H, Li Q, Wang G. Extracellular vesicles in Inflammatory Skin Disorders: from Pathophysiology to Treatment. Am J Cancer Res 2020; 10:9937-9955. [PMID: 32929326 PMCID: PMC7481415 DOI: 10.7150/thno.45488] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs), naturally secreted by almost all known cell types into extracellular space, can transfer their bioactive cargos of nucleic acids and proteins to recipient cells, mediating cell-cell communication. Thus, they participate in many pathogenic processes including immune regulation, cell proliferation and differentiation, cell death, angiogenesis, among others. Cumulative evidence has shown the important regulatory effects of EVs on the initiation and progression of inflammation, autoimmunity, and cancer. In dermatology, recent studies indicate that EVs play key immunomodulatory roles in inflammatory skin disorders, including psoriasis, atopic dermatitis, lichen planus, bullous pemphigoid, systemic lupus erythematosus, and wound healing. Importantly, EVs can be used as biomarkers of pathophysiological states and/or therapeutic agents, both as carriers of drugs or even as a drug by themselves. In this review, we will summarize current research advances of EVs from different cells and their implications in inflammatory skin disorders, and further discuss their future applications, updated techniques, and challenges in clinical translational medicine.
Collapse
|
48
|
Li Y, Zhu X, Wang G, Tong H, Su L, Li X. Proteomic analysis of extracellular vesicles released from heat-stroked hepatocytes reveals promotion of programmed cell death pathway. Biomed Pharmacother 2020; 129:110489. [PMID: 32768969 DOI: 10.1016/j.biopha.2020.110489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Liver injury is a common complication of severe heat stroke (HS). Extracellular vesicles (EVs) are part of a novel pathway mediating intercellular communication. Whether EVs are involved in the pathogenesis underlying HS-induced liver injury remains unknown. Here, we explored the role of hepatocyte EVs in HS-induced liver injury and their protein regulation patterns after HS induction. Isobaric tags for relative and absolute quantification technology (iTRAQ) and liquid chromatography-tandem mass spectrometry analysis identified changes in the proteomic profiles of hepatocyte-derived heat-stroked EVs, and we identified 53 up-regulated proteins. Bioinformatics analysis verified that the regulation of programmed cell death was the most significant altered pathway. To clarify the effect of HS hepatocyte-derived EVs in inducing hepatocyte-programmed death and injury, they were added to recipient hepatocytes and injected into mice. This treatment significantly induced the synthesis of apoptosis (caspase-3/8) and necroptosis-associated proteins [receptor-interacting protein 1 (RIP1), RIP3, and mixed lineage kinase domain-like protein]; moreover, it increased the numbers of apoptotic and necroptotic cells in hepatocytes and liver tissues and increased the levels of biochemical liver injury markers (alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase). Our study is the first comprehensive analysis of the hepatocyte-derived heat-stroked EV proteome confirming the induction of liver injury by Evs. We provide a novel explanation for the pathological mechanism underlying HS-induced liver injury.
Collapse
Affiliation(s)
- Yue Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Southern Medical University, Guangzhou, China.
| | - Xintao Zhu
- Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Southern Medical University, Guangzhou, China.
| | - Guozhen Wang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Huasheng Tong
- Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Southern Medical University, Guangzhou, China.
| | - Lei Su
- Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Southern Medical University, Guangzhou, China.
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
49
|
Jiang Y, Ji X, Liu K, Shi Y, Wang C, Li Y, Zhang T, He Y, Xiang M, Zhao R. Exosomal miR-200c-3p negatively regulates the migraion and invasion of lipopolysaccharide (LPS)-stimulated colorectal cancer (CRC). BMC Mol Cell Biol 2020; 21:48. [PMID: 32600257 PMCID: PMC7325272 DOI: 10.1186/s12860-020-00291-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/16/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cancer and a major cause of death. Lipopolysaccharide (LPS), an abundant component in gut microbiome, is involved in CRC progression and metastasis, potentially through regulating the miRNA composition of CRC-derived exosomes. In this study, we aimed to identify miRNA species in exosome which regulates CRC progression after LPS stimulation. RESULTS Firstly, we discovered a shift of miRNA profile in CRC exosome after LPS stimulation. Among the differentially expressed miRNAs, we identified miR-200c-3p as a potential key regulator of CRC progression and metastasis. Retrospective analysis revealed that miR-200c-3p was elevated in CRC tumor tissues, but decreased in the serum exosome in CRC patients. In vitro experiments demonstrated that exosomal miR-200c-3p expression did not influence CRC cell proliferation, but negatively regulated their capacity of migration and invasion in the presence of LPS. miR-200c-3p level in exosome influenced exosomal expression of Zinc finger E-box-binding homeobox-1 (ZEB-1) mRNA, one of the miR-200c targets which affects migration and invasion capacity, and further altered ZEB-1 protein expression in CRC cell. In addition, exosomal miR-200c-3p promotes apoptosis of HCT-116 cells. CONCLUSIONS Our findings indicate that exosomal miR-200c-3p inhibits CRC migration and invasion, and promotes their apoptosis after LPS stimulation. It is suggested as a potential diagnostic marker and therapeutic target of CRC.
Collapse
Affiliation(s)
- Yimei Jiang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xiaopin Ji
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Kun Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yiqing Shi
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Changgang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - You Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Tao Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yonggang He
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Ming Xiang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
50
|
Shao J, Li S, Liu Y, Zheng M. Extracellular vesicles participate in macrophage-involved immune responses under liver diseases. Life Sci 2019; 240:117094. [PMID: 31760101 DOI: 10.1016/j.lfs.2019.117094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
The liver serves as a central participant in immune system owing to its particular blood supply and large amounts of immune cells, in which macrophages play a significant role in liver homeostasis and disorders. Extracellular vesicles (EVs), membrane-defined nanometer-sized vesicles released by cells in a tightly controlled manner, have attracted intensive research attention as a critical vehicle for cell-cell communication in the pathophysiology of liver. Accumulating evidence has proved that extracellular vesicles are frequently involved in macrophage-mediated biological behaviors. Not only can macrophages produce and secrete EVs containing multifarious cargo themselves to exert immunomodulatory functions, but also macrophages may serve as target cells of EVs from other cells eliciting the alteration of their phenotype and function. Since both macrophage as well as EVs show pleiotropic and central effects in the progression of liver diseases, their roles in adjusting innate immunity of liver often present a crossover. In this review we are dedicated to deciphering the complex immunological network constituted by macrophages and EVs in several common liver diseases, including acute liver injury or failure and a set of chronic liver diseases such as viral hepatitis B and C, metabolic and alcoholic liver diseases, as well as hepatocellular carcinoma (HCC). From the aspect of immunology, we integrate the mechanism of EVs and hepatic macrophages in the setting of liver diseases and show a promising significance of utilizing this association into clinical immunotherapy.
Collapse
Affiliation(s)
- Jiajia Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University. Hangzhou, China
| | - Shuangshuang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University. Hangzhou, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University. Hangzhou, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University. Hangzhou, China.
| |
Collapse
|