1
|
Sanner A, Hardt R, Matzner U, Winter D. Data-Independent Acquisition-Parallel Reaction Monitoring Acquisition Reveals Age-Dependent Alterations of the Lysosomal Proteome in a Mouse Model of Metachromatic Leukodystrophy. Anal Chem 2024; 96:19567-19575. [PMID: 39620638 DOI: 10.1021/acs.analchem.4c04378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
For the reproducible analysis of peptides by mass spectrometry-based proteomics, data-independent acquisition (DIA) and parallel/multiple reaction monitoring (PRM/MRM) deliver unrivalled performance with respect to sensitivity and reproducibility. Both approaches, however, come with distinct advantages and shortcomings. While DIA enables unbiased whole proteome analysis, it shows limitations with respect to dynamic range and the quantification of low-abundant proteins. PRM, on the other hand, is ideally suited to reproducibly quantify selected proteins even if they are low-abundant, but no knowledge of the remaining sample is obtained. Here, we combine both methods into a mixed DIA-PRM acquisition approach, merging their benefits while operating at reduced machine run times and needed sample amounts. We demonstrate the feasibility of DIA-PRM by merging a scheduled PRM assay for 103 peptides, representing 59 low-abundant lysosomal hydrolases, with a DIA data acquisition scheme. After benchmarking DIA-PRM with mouse embryonic fibroblast (MEF) whole cell lysates, we use the approach to investigate age-related proteomic changes in brain tissues of a mouse model of metachromatic leukodystrophy (MLD). This revealed an MLD-related progressive increase in distinct classes of lysosomal hydrolases as well as alterations of proteins related to myelin and cellular metabolism. All data are available via ProteomeXchange with PXD052313.
Collapse
Affiliation(s)
- Anne Sanner
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Robert Hardt
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Ulrich Matzner
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
2
|
Ulke J, Chopra S, Kadiri OL, Geserick P, Stein V, Cheshmeh S, Kleinridders A, Kappert K. PTPRJ is a negative regulator of insulin signaling in neuronal cells, impacting protein biosynthesis, and neurite outgrowth. J Neuroendocrinol 2024; 36:e13446. [PMID: 39253900 PMCID: PMC11646663 DOI: 10.1111/jne.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/29/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Central insulin resistance has been linked to the development of neurodegenerative diseases and mood disorders. Various proteins belonging to the enzyme family of protein tyrosine phosphatases (PTPs) act as inhibitors of insulin signaling. Protein tyrosine phosphatase receptor type J (PTPRJ) has been identified as a negative regulator in insulin signaling in the periphery. However, the impact of PTPRJ on insulin signaling and its functional role in neuronal cells is largely unknown. Therefore, we generated a Ptprj knockout (KO) cell model in the murine neuroblast cell line Neuro2a by CRISPR-Cas9 gene editing. Ptprj KO cells displayed enhanced insulin signaling, as shown by increased phosphorylation of the insulin receptor (INSR), IRS-1, AKT, and ERK1/2. Further, proximity ligation assays (PLA) revealed both direct interaction of PTPRJ with the INSR and recruitment of this phosphatase to the receptor upon insulin stimulation. By RNA sequencing gene expression analysis, we identified multiple gene clusters responsible for glucose uptake and metabolism, and genes involved in the synthesis of various lipids being mainly upregulated under PTPRJ deficiency. Furthermore, multiple Ca2+ transporters were differentially expressed along with decreased protein biosynthesis. This was accompanied by an increase in endoplasmic reticulum (ER) stress markers. On a functional level, PTPRJ deficiency compromised cell differentiation and neurite outgrowth, suggesting a role in nervous system development. Taken together, PTPRJ emerges as a negative regulator of central insulin signaling, impacting neuronal metabolism and neurite outgrowth.
Collapse
Affiliation(s)
- Jannis Ulke
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and PathobiochemistryBerlinGermany
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal ResearchCharité—Universitätsmedizin BerlinBerlinGermany
| | - Simran Chopra
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional ScienceUniversity of PotsdamNuthetalGermany
| | - Otsuware Linda‐Josephine Kadiri
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional ScienceUniversity of PotsdamNuthetalGermany
| | - Peter Geserick
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and PathobiochemistryBerlinGermany
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal ResearchCharité—Universitätsmedizin BerlinBerlinGermany
| | - Vanessa Stein
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and PathobiochemistryBerlinGermany
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal ResearchCharité—Universitätsmedizin BerlinBerlinGermany
| | - Sahar Cheshmeh
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional ScienceUniversity of PotsdamNuthetalGermany
| | - André Kleinridders
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional ScienceUniversity of PotsdamNuthetalGermany
| | - Kai Kappert
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and PathobiochemistryBerlinGermany
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal ResearchCharité—Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
3
|
Janowska J, Gargas J, Sypecka J. Pearls and Pitfalls of Isolating Rat OPCs for In Vitro Culture with Different Methods. Cell Mol Neurobiol 2023; 43:3705-3722. [PMID: 37407878 PMCID: PMC10477124 DOI: 10.1007/s10571-023-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
There are several in vitro models to study the biology of oligodendrocyte progenitor cells (OPCs). The use of models based on induced pluripotent stem cells or oligodendrocyte-like cell lines has many advantages but raises significant questions, such as inaccurate reproduction of neural tissue or genetic instability. Moreover, in a specific case of studying the biology of neonatal OPCs, it is particularly difficult to find good representative model, due to the unique metabolism and features of these cells, as well as neonatal brain tissue. The following study evaluates two methods of isolating OPCs from rat pups as a model for in vitro studies. The first protocol is a modification of the classical mixed glial culture with series of shakings applied to isolate the fraction of OPCs. The second protocol is based on direct cell sorting and uses magnetic microbeads that target the surface antigen of the oligodendrocyte progenitor cell-A2B5. We compared the performance of these methods and analyzed the purity of obtained cultures as well as oligodendrocyte differentiation. Although the yield of OPCs collected with these two methods is similar, both have their advantages and disadvantages. The OPCs obtained with both methods give rise to mature oligodendrocytes within a few days of culture in ITS-supplemented serum-free medium and a 5% O2 atmosphere (mimicking the endogenous oxygen conditions of the nervous tissue). Methods for isolating rat OPCs In the following study we compared methods for isolating neonatal rat oligodendrocyte progenitor cells, for the studies on the in vitro model of neonatal brain injuries. We evaluated the purity of obtained cell cultures and the ability to maturate in physiological normoxia and serum-free culture medium.
Collapse
Affiliation(s)
- Justyna Janowska
- NeuroRepair Department, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Justyna Gargas
- NeuroRepair Department, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Hardt R, Dehghani A, Schoor C, Gödderz M, Cengiz Winter N, Ahmadi S, Sharma R, Schork K, Eisenacher M, Gieselmann V, Winter D. Proteomic investigation of neural stem cell to oligodendrocyte precursor cell differentiation reveals phosphorylation-dependent Dclk1 processing. Cell Mol Life Sci 2023; 80:260. [PMID: 37594553 PMCID: PMC10439241 DOI: 10.1007/s00018-023-04892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Oligodendrocytes are generated via a two-step mechanism from pluripotent neural stem cells (NSCs): after differentiation of NSCs to oligodendrocyte precursor/NG2 cells (OPCs), they further develop into mature oligodendrocytes. The first step of this differentiation process is only incompletely understood. In this study, we utilized the neurosphere assay to investigate NSC to OPC differentiation in a time course-dependent manner by mass spectrometry-based (phospho-) proteomics. We identify doublecortin-like kinase 1 (Dclk1) as one of the most prominently regulated proteins in both datasets, and show that it undergoes a gradual transition between its short/long isoform during NSC to OPC differentiation. This is regulated by phosphorylation of its SP-rich region, resulting in inhibition of proteolytic Dclk1 long cleavage, and therefore Dclk1 short generation. Through interactome analyses of different Dclk1 isoforms by proximity biotinylation, we characterize their individual putative interaction partners and substrates. All data are available via ProteomeXchange with identifier PXD040652.
Collapse
Affiliation(s)
- Robert Hardt
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Alireza Dehghani
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach, Germany
| | - Carmen Schoor
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Markus Gödderz
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Nur Cengiz Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
- Institute of Human Genetics, University Hospital Cologne, 50931, Cologne, Germany
| | - Shiva Ahmadi
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
- Bayer Pharmaceuticals, 42113, Wuppertal, Germany
| | - Ramesh Sharma
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Karin Schork
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Volkmar Gieselmann
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
5
|
Danko K, Lukasheva E, Zhukov VA, Zgoda V, Frolov A. Detergent-Assisted Protein Digestion-On the Way to Avoid the Key Bottleneck of Shotgun Bottom-Up Proteomics. Int J Mol Sci 2022; 23:13903. [PMID: 36430380 PMCID: PMC9695859 DOI: 10.3390/ijms232213903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Gel-free bottom-up shotgun proteomics is the principal methodological platform for the state-of-the-art proteome research. This methodology assumes quantitative isolation of the total protein fraction from a complex biological sample, its limited proteolysis with site-specific proteases, analysis of the resulted peptides with nanoscaled reversed-phase high-performance liquid chromatography-(tandem) mass spectrometry (nanoRP-HPLC-MS and MS/MS), protein identification by sequence database search and peptide-based quantitative analysis. The most critical steps of this workflow are protein reconstitution and digestion; therefore, detergents and chaotropic agents are strongly mandatory to ensure complete solubilization of complex protein isolates and to achieve accessibility of all protease cleavage sites. However, detergents are incompatible with both RP separation and electrospray ionization (ESI). Therefore, to make LC-MS analysis possible, several strategies were implemented in the shotgun proteomics workflow. These techniques rely either on enzymatic digestion in centrifugal filters with subsequent evacuation of the detergent, or employment of MS-compatible surfactants, which can be degraded upon the digestion. In this review we comprehensively address all currently available strategies for the detergent-assisted proteolysis in respect of their relative efficiency when applied to different biological matrices. We critically discuss the current progress and the further perspectives of these technologies in the context of its advances and gaps.
Collapse
Affiliation(s)
- Katerina Danko
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin, 196608 St. Petersburg, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Andrej Frolov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| |
Collapse
|
6
|
Krivinko JM, Erickson SL, MacDonald ML, Garver ME, Sweet RA. Fingolimod mitigates synaptic deficits and psychosis-like behavior in APP/PSEN1 mice. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12324. [PMID: 36016832 PMCID: PMC9395154 DOI: 10.1002/trc2.12324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 04/18/2023]
Abstract
Introduction Current treatments for psychosis in Alzheimer's disease (AD), a syndrome characterized by more rapid deterioration and reduced synaptic protein abundance relative to non-psychotic AD, are inadequate. Fingolimod, a currently US Food and Drug Administration (FDA)-approved pharmacotherapy for multiple sclerosis, alters synaptic protein expression and warrants preclinical appraisal as a candidate pharmacotherapy for psychosis in AD. Methods Presenilin and amyloid precursor protein transgenic mice (APPswe/PSEN1dE9) and wild-type mice were randomized to fingolimod or saline for 7 days. Psychosis-associated behaviors were quantified by open field testing, pre-pulse inhibition of the acoustic startle response testing, and habituation of the acoustic startle response testing. Synaptic proteins were quantified by liquid chromatography/mass spectrometry in homogenate and postsynaptic density fractions. Results Fingolimod treatment increased the synaptic protein abundance in cortical homogenates and normalized psychosis-associated behaviors in APPswe/PSEN1dE9 mice relative to saline. Mitochondrial-related proteins were preferentially altered by fingolimod treatment and correlated with improvements in psychosis-associated behaviors. Discussion Preclinical studies employing complementary psychosis-associated behavioral assessments and proteomic evaluations across multiple AD-related models are warranted to replicate the current study and further investigate fingolimod as a candidate treatment for psychosis in AD.
Collapse
Affiliation(s)
- Josh M. Krivinko
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Susan L. Erickson
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Matthew L. MacDonald
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Megan E. Garver
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Robert A. Sweet
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
7
|
Balboa E, Marín T, Oyarzún JE, Contreras PS, Hardt R, van den Bosch T, Alvarez AR, Rebolledo-Jaramillo B, Klein AD, Winter D, Zanlungo S. Proteomic Analysis of Niemann-Pick Type C Hepatocytes Reveals Potential Therapeutic Targets for Liver Damage. Cells 2021; 10:cells10082159. [PMID: 34440927 PMCID: PMC8392304 DOI: 10.3390/cells10082159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
Niemann-Pick type C disease (NPCD) is a lysosomal storage disorder caused by mutations in the NPC1 gene. The most affected tissues are the central nervous system and liver, and while significant efforts have been made to understand its neurological component, the pathophysiology of the liver damage remains unclear. In this study, hepatocytes derived from wild type and Npc1-/- mice were analyzed by mass spectrometry (MS)-based proteomics in conjunction with bioinformatic analysis. We identified 3832 proteins: 416 proteins had a p-value smaller than 0.05, of which 37% (n = 155) were considered differentially expressed proteins (DEPs), 149 of them were considered upregulated, and 6 were considered downregulated. We focused the analysis on pathways related to NPC pathogenic mechanisms, finding that the most significant changes in expression levels occur in proteins that function in the pathways of liver damage, lipid metabolism, and inflammation. Moreover, in the group of DEPs, 30% (n = 47) were identified as lysosomal proteins and 7% (n = 10) were identified as mitochondrial proteins. Importantly, we found that lysosomal DEPs, including CTSB/D/Z, LIPA, DPP7 and GLMP, and mitocondrial DEPs, AKR1B10, and VAT1 had been connected with liver fibrosis, damage, and steatosis in previous studies, validiting our dataset. Our study found potential therapeutic targets for the treatment of liver damage in NPCD.
Collapse
Affiliation(s)
- Elisa Balboa
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Tamara Marín
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Juan Esteban Oyarzún
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Pablo S Contreras
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8018, USA
| | - Robert Hardt
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Thea van den Bosch
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Alejandra R Alvarez
- Laboratory of Cell Signaling, Department of Cellular and Molecular Biology, Biological Sciences Faculty, CARE UC, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Boris Rebolledo-Jaramillo
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Andres D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| |
Collapse
|
8
|
Ulloa-Navas MJ, Pérez-Borredá P, Morales-Gallel R, Saurí-Tamarit A, García-Tárraga P, Gutiérrez-Martín AJ, Herranz-Pérez V, García-Verdugo JM. Ultrastructural Characterization of Human Oligodendrocytes and Their Progenitor Cells by Pre-embedding Immunogold. Front Neuroanat 2021; 15:696376. [PMID: 34248510 PMCID: PMC8262677 DOI: 10.3389/fnana.2021.696376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system. They provide trophic, metabolic, and structural support to neurons. In several pathologies such as multiple sclerosis (MS), these cells are severely affected and fail to remyelinate, thereby leading to neuronal death. The gold standard for studying remyelination is the g-ratio, which is measured by means of transmission electron microscopy (TEM). Therefore, studying the fine structure of the oligodendrocyte population in the human brain at different stages through TEM is a key feature in this field of study. Here we study the ultrastructure of oligodendrocytes, its progenitors, and myelin in 10 samples of human white matter using nine different markers of the oligodendrocyte lineage (NG2, PDGFRα, A2B5, Sox10, Olig2, BCAS1, APC-(CC1), MAG, and MBP). Our findings show that human oligodendrocytes constitute a very heterogeneous population within the human white matter and that its stages of differentiation present characteristic features that can be used to identify them by TEM. This study sheds light on how these cells interact with other cells within the human brain and clarify their fine characteristics from other glial cell types.
Collapse
Affiliation(s)
- María J Ulloa-Navas
- Laboratory of Compared Neurobiology, University of Valencia-CIBERNED, Paterna, Spain
| | - Pedro Pérez-Borredá
- Laboratory of Compared Neurobiology, University of Valencia-CIBERNED, Paterna, Spain.,Neurosurgery Department, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Raquel Morales-Gallel
- Laboratory of Compared Neurobiology, University of Valencia-CIBERNED, Paterna, Spain
| | - Ana Saurí-Tamarit
- Laboratory of Compared Neurobiology, University of Valencia-CIBERNED, Paterna, Spain
| | | | | | - Vicente Herranz-Pérez
- Laboratory of Compared Neurobiology, University of Valencia-CIBERNED, Paterna, Spain.,Predepartmental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | | |
Collapse
|
9
|
Protein Kinase C Activation Drives a Differentiation Program in an Oligodendroglial Precursor Model through the Modulation of Specific Biological Networks. Int J Mol Sci 2021; 22:ijms22105245. [PMID: 34063504 PMCID: PMC8156399 DOI: 10.3390/ijms22105245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 02/03/2023] Open
Abstract
Protein kinase C (PKC) activation induces cellular reprogramming and differentiation in various cell models. Although many effectors of PKC physiological actions have been elucidated, the molecular mechanisms regulating oligodendrocyte differentiation after PKC activation are still unclear. Here, we applied a liquid chromatography–mass spectrometry (LC–MS/MS) approach to provide a comprehensive analysis of the proteome expression changes in the MO3.13 oligodendroglial cell line after PKC activation. Our findings suggest that multiple networks that communicate and coordinate with each other may finally determine the fate of MO3.13 cells, thus identifying a modular and functional biological structure. In this work, we provide a detailed description of these networks and their participating components and interactions. Such assembly allows perturbing each module, thus describing its physiological significance in the differentiation program. We applied this approach by targeting the Rho-associated protein kinase (ROCK) in PKC-activated cells. Overall, our findings provide a resource for elucidating the PKC-mediated network modules that contribute to a more robust knowledge of the molecular dynamics leading to this cell fate transition.
Collapse
|
10
|
Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM, Moya PR, Piccart E, Hellings N, Eijnde BO, Derave W, Schreiber R, Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 2021; 78:4615-4637. [PMID: 33751149 PMCID: PMC8195802 DOI: 10.1007/s00018-021-03802-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand. Mounting evidence shows that OPC dysfunction, culminating in the lack of OPC differentiation, mediates the progression of neurodegenerative disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Importantly, neurodegeneration is characterised by oxidative and carbonyl stress, which may primarily affect OPC plasticity due to the high metabolic demand and a limited antioxidant capacity associated with this cell type. The underlying mechanisms of how oxidative/carbonyl stress disrupt OPC differentiation remain enigmatic and a focus of current research efforts. This review proposes a role for oxidative/carbonyl stress in interfering with the transcriptional and metabolic changes required for OPC differentiation. In particular, oligodendrocyte (epi)genetics, cellular defence and repair responses, mitochondrial signalling and respiration, and lipid metabolism represent key mechanisms how oxidative/carbonyl stress may hamper OPC differentiation in neurodegenerative disorders. Understanding how oxidative/carbonyl stress impacts OPC function may pave the way for future OPC-targeted treatment strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieve van Veggel
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Melissa Schepers
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Assia Tiane
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jack van Horssen
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - David M Wilson
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Elisabeth Piccart
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, SMRC-Sportsmedical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rudy Schreiber
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt-Pelt, Belgium.
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
11
|
Galichet C, Clayton RW, Lovell-Badge R. Novel Tools and Investigative Approaches for the Study of Oligodendrocyte Precursor Cells (NG2-Glia) in CNS Development and Disease. Front Cell Neurosci 2021; 15:673132. [PMID: 33994951 PMCID: PMC8116629 DOI: 10.3389/fncel.2021.673132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs), also referred to as NG2-glia, are the most proliferative cell type in the adult central nervous system. While the primary role of OPCs is to serve as progenitors for oligodendrocytes, in recent years, it has become increasingly clear that OPCs fulfil a number of other functions. Indeed, independent of their role as stem cells, it is evident that OPCs can regulate the metabolic environment, directly interact with and modulate neuronal function, maintain the blood brain barrier (BBB) and regulate inflammation. In this review article, we discuss the state-of-the-art tools and investigative approaches being used to characterize the biology and function of OPCs. From functional genetic investigation to single cell sequencing and from lineage tracing to functional imaging, we discuss the important discoveries uncovered by these techniques, such as functional and spatial OPC heterogeneity, novel OPC marker genes, the interaction of OPCs with other cells types, and how OPCs integrate and respond to signals from neighboring cells. Finally, we review the use of in vitro assay to assess OPC functions. These methodologies promise to lead to ever greater understanding of this enigmatic cell type, which in turn will shed light on the pathogenesis and potential treatment strategies for a number of diseases, such as multiple sclerosis (MS) and gliomas.
Collapse
Affiliation(s)
- Christophe Galichet
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
| | | | | |
Collapse
|
12
|
de la Fuente AG, Queiroz RML, Ghosh T, McMurran CE, Cubillos JF, Bergles DE, Fitzgerald DC, Jones CA, Lilley KS, Glover CP, Franklin RJM. Changes in the Oligodendrocyte Progenitor Cell Proteome with Ageing. Mol Cell Proteomics 2020; 19:1281-1302. [PMID: 32434922 PMCID: PMC8015006 DOI: 10.1074/mcp.ra120.002102] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 11/06/2022] Open
Abstract
Following central nervous system (CNS) demyelination, adult oligodendrocyte progenitor cells (OPCs) can differentiate into new myelin-forming oligodendrocytes in a regenerative process called remyelination. Although remyelination is very efficient in young adults, its efficiency declines progressively with ageing. Here we performed proteomic analysis of OPCs freshly isolated from the brains of neonate, young and aged female rats. Approximately 50% of the proteins are expressed at different levels in OPCs from neonates compared with their adult counterparts. The amount of myelin-associated proteins, and proteins associated with oxidative phosphorylation, inflammatory responses and actin cytoskeletal organization increased with age, whereas cholesterol-biosynthesis, transcription factors and cell cycle proteins decreased. Our experiments provide the first ageing OPC proteome, revealing the distinct features of OPCs at different ages. These studies provide new insights into why remyelination efficiency declines with ageing and potential roles for aged OPCs in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Alerie G de la Fuente
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, United Kingdom
| | - Rayner M L Queiroz
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, United Kingdom; Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Granta Park, United Kingdom
| | - Tanay Ghosh
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, United Kingdom
| | - Christopher E McMurran
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom
| | - Juan F Cubillos
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, United Kingdom
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA; John Hopkins University, Kavli Neuroscience Discovery Institute, USA
| | - Denise C Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Clare A Jones
- John Hopkins University, Kavli Neuroscience Discovery Institute, USA
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, United Kingdom
| | - Colin P Glover
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Granta Park, United Kingdom; Oncology Early Clinical Projects, Oncology R &D, AstraZeneca, Melbourn Science Park, Melbourn, Hertfordshire, United Kingdom
| | - Robin J M Franklin
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, United Kingdom.
| |
Collapse
|
13
|
Tatomir A, Rao G, Boodhoo D, Vlaicu SI, Beltrand A, Anselmo F, Rus V, Rus H. Histone Deacetylase SIRT1 Mediates C5b-9-Induced Cell Cycle in Oligodendrocytes. Front Immunol 2020; 11:619. [PMID: 32328069 PMCID: PMC7160252 DOI: 10.3389/fimmu.2020.00619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Sublytic levels of C5b-9 increase the survival of oligodendrocytes (OLGs) and induce the cell cycle. We have previously observed that SIRT1 co-localizes with surviving OLGs in multiple sclerosis (MS) plaques, but it is not yet known whether SIRT1 is involved in OLGs survival after exposure to sublytic C5b-9. We have now investigated the role of SIRT1 in OLGs differentiation and the effect of sublytic levels of C5b-9 on SIRT1 and phosphorylated-SIRT1 (Ser27) expression. We also examined the downstream effects of SIRT1 by measuring histone H3 lysine 9 trimethylation (H3K9me3) and the expression of cyclin D1 as a marker of cell cycle activation. OLG progenitor cells (OPCs) purified from the brain of rat pups were differentiated in vitro and treated with sublytic C5b-9 or C5b6. To investigate the signaling pathway activated by C5b-9 and required for SIRT1 expression, we pretreated OLGs with a c-jun antisense oligonucleotide, a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002), and a protein kinase C (PKC) inhibitor (H7). Our data show a significant reduction in phospho-SIRT1 and SIRT1 expression during OPCs differentiation, associated with a decrease in H3K9me3 and a peak of cyclin D1 expression in the first 24 h. Stimulation of OLGs with sublytic C5b-9 resulted in an increase in the expression of SIRT1 and phospho-SIRT1, H3K9me3, cyclin D1 and decreased expression of myelin-specific genes. C5b-9-stimulated SIRT1 expression was significantly reduced after pretreatment with c-jun antisense oligonucleotide, H7 or LY294002. Inhibition of SIRT1 with sirtinol also abolished C5b-9-induced DNA synthesis. Taken together, these data show that induction of SIRT1 expression by C5b-9 is required for cell cycle activation and is mediated through multiple signaling pathways.
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gautam Rao
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sonia I. Vlaicu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Austin Beltrand
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Freidrich Anselmo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Violeta Rus
- Division of Rheumatology and Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Horea Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, United States
| |
Collapse
|
14
|
Yang S, Kang Q, Hou Y, Wang L, Li L, Liu S, Liao H, Cao Z, Yang L, Xiao Z. Mutant BCL11B in a Patient With a Neurodevelopmental Disorder and T-Cell Abnormalities. Front Pediatr 2020; 8:544894. [PMID: 33194885 PMCID: PMC7641641 DOI: 10.3389/fped.2020.544894] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Background: BCL11B encodes B-cell lymphoma/leukemia 11B, a transcription factor that participates in the differentiation and migration of neurons and lymphocyte cells. De novo mutations of BCL11B have been associated with neurodevelopmental disorder and immunodeficiency, such as immunodeficiency 49 (IMD49) and intellectual developmental disorder with speech delay, dysmorphic facies, and T-cell abnormalities (IDDSFTA). However, the pathogenesis of the neurodevelopmental disorder and T-cell deficiency is still mysterious. The strategy to distinguish these two diseases in detail is also unclear. Methods: A patient with unique clinical features was identified. Multiple examinations were applied for evaluation. Whole-exome sequencing (WES) and Sanger sequencing were also performed for the identification of the disease-causing mutation. Results: We reported a 17-month-old girl with intellectual disability, speech impairment, and delay in motor development. She presented with mild dysmorphic facial features and weak functional movement. MRI indicated the abnormal myelination of the white matter. Immunological analysis showed normal levels of RTEs and γδT cells but a deficiency of naive T cells. Genetic sequencing identified a de novo heterozygous frameshift mutation c.1192_1196delAGCCC in BCL11B. Conclusions: An IDDSFTA patient of East Asian origin was reported. The unreported neurological display, immunophenotype, and a novel disease-causing mutation of the patient extended the spectrum of clinical features and genotypes of IDDSFTA.
Collapse
Affiliation(s)
- Sai Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Qingyun Kang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | | | - Lili Wang
- Research Institute of Pediatrics, Hunan Children's Hospital, Changsha, China
| | - Liping Li
- Research Institute of Pediatrics, Hunan Children's Hospital, Changsha, China
| | - Shulei Liu
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Hongmei Liao
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | | | - Liming Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Zhenghui Xiao
- Department of Neurology, Hunan Children's Hospital, Changsha, China.,Research Institute of Pediatrics, Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
15
|
Rehorst WA, Thelen MP, Nolte H, Türk C, Cirak S, Peterson JM, Wong GW, Wirth B, Krüger M, Winter D, Kye MJ. Muscle regulates mTOR dependent axonal local translation in motor neurons via CTRP3 secretion: implications for a neuromuscular disorder, spinal muscular atrophy. Acta Neuropathol Commun 2019; 7:154. [PMID: 31615574 PMCID: PMC6794869 DOI: 10.1186/s40478-019-0806-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder, which causes dysfunction/loss of lower motor neurons and muscle weakness as well as atrophy. While SMA is primarily considered as a motor neuron disease, recent data suggests that survival motor neuron (SMN) deficiency in muscle causes intrinsic defects. We systematically profiled secreted proteins from control and SMN deficient muscle cells with two combined metabolic labeling methods and mass spectrometry. From the screening, we found lower levels of C1q/TNF-related protein 3 (CTRP3) in the SMA muscle secretome and confirmed that CTRP3 levels are indeed reduced in muscle tissues and serum of an SMA mouse model. We identified that CTRP3 regulates neuronal protein synthesis including SMN via mTOR pathway. Furthermore, CTRP3 enhances axonal outgrowth and protein synthesis rate, which are well-known impaired processes in SMA motor neurons. Our data revealed a new molecular mechanism by which muscles regulate the physiology of motor neurons via secreted molecules. Dysregulation of this mechanism contributes to the pathophysiology of SMA.
Collapse
|