1
|
Howard CK, Yamada M, Dovel M, Leverett R, Hill A, Manlapaz KA, Keyser DO, Hernandez RS, Rowe SS, Carr WS, Roy MJ, Rhea CK. An Objective Assessment of Neuromotor Control Using a Smartphone App After Repeated Subconcussive Blast Exposure. SENSORS (BASEL, SWITZERLAND) 2024; 24:7064. [PMID: 39517961 PMCID: PMC11548176 DOI: 10.3390/s24217064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Subconcussive blast exposure has been shown to alter neurological functioning. However, the extent to which neurological dysfunction persists after blast exposure is unknown. This longitudinal study examined the potential short- and long-term effects of repeated subconcussive blast exposure on neuromotor performance from heavy weapons training in military personnel. A total of 214 participants were assessed; 137 were exposed to repeated subconcussive blasts and 77 were not exposed to blasts (controls). Participants completed a short stepping-in-place task while an Android smartphone app placed on their thigh recorded movement kinematics. We showed acute suppression of neuromotor variability 6 h after subconcussive blast exposure, followed by a rebound to levels not different from baseline at the 72 h, 2-week, and 3-month post-tests. It is postulated that this suppression of neuromotor variability results from a reduction in the functional degrees of freedom from the subconcussive neurological insult. It is important to note that this change in behavior is short-lived, with a return to pre-blast exposure movement kinematics within 72 h.
Collapse
Affiliation(s)
- Charlend K. Howard
- Ellmer College of Health Sciences, Old Dominion University, Norfolk, VA 23529, USA;
| | - Masahiro Yamada
- Department of Kinesiology, Whittier College, Whittier, CA 90602, USA;
| | - Marcia Dovel
- Military Traumatic Brain Injury Initiative (MTBI2), Uniformed Services University, Bethesda, MD 20814, USA; (M.D.); (R.L.); (A.H.); (K.A.M.); (D.O.K.); (R.S.H.); (S.S.R.); (M.J.R.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Rie Leverett
- Military Traumatic Brain Injury Initiative (MTBI2), Uniformed Services University, Bethesda, MD 20814, USA; (M.D.); (R.L.); (A.H.); (K.A.M.); (D.O.K.); (R.S.H.); (S.S.R.); (M.J.R.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Alexander Hill
- Military Traumatic Brain Injury Initiative (MTBI2), Uniformed Services University, Bethesda, MD 20814, USA; (M.D.); (R.L.); (A.H.); (K.A.M.); (D.O.K.); (R.S.H.); (S.S.R.); (M.J.R.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Kenneth A. Manlapaz
- Military Traumatic Brain Injury Initiative (MTBI2), Uniformed Services University, Bethesda, MD 20814, USA; (M.D.); (R.L.); (A.H.); (K.A.M.); (D.O.K.); (R.S.H.); (S.S.R.); (M.J.R.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - David O. Keyser
- Military Traumatic Brain Injury Initiative (MTBI2), Uniformed Services University, Bethesda, MD 20814, USA; (M.D.); (R.L.); (A.H.); (K.A.M.); (D.O.K.); (R.S.H.); (S.S.R.); (M.J.R.)
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20841, USA
| | - Rene S. Hernandez
- Military Traumatic Brain Injury Initiative (MTBI2), Uniformed Services University, Bethesda, MD 20814, USA; (M.D.); (R.L.); (A.H.); (K.A.M.); (D.O.K.); (R.S.H.); (S.S.R.); (M.J.R.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Sheilah S. Rowe
- Military Traumatic Brain Injury Initiative (MTBI2), Uniformed Services University, Bethesda, MD 20814, USA; (M.D.); (R.L.); (A.H.); (K.A.M.); (D.O.K.); (R.S.H.); (S.S.R.); (M.J.R.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Walter S. Carr
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Michael J. Roy
- Military Traumatic Brain Injury Initiative (MTBI2), Uniformed Services University, Bethesda, MD 20814, USA; (M.D.); (R.L.); (A.H.); (K.A.M.); (D.O.K.); (R.S.H.); (S.S.R.); (M.J.R.)
- Department of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Christopher K. Rhea
- Ellmer College of Health Sciences, Old Dominion University, Norfolk, VA 23529, USA;
| |
Collapse
|
2
|
López-Fernández M, García-Aguilar F, Asencio P, Caballero C, Moreno FJ, Sabido R. Motor variability during resistance training: Acceleration signal as intensity indicator. PLoS One 2024; 19:e0307949. [PMID: 39298439 DOI: 10.1371/journal.pone.0307949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/16/2024] [Indexed: 09/21/2024] Open
Abstract
Analysis of variability in physiological time series has been shown to be an indicator of the state of the organism. Although there is evidence of the usefulness of analysis of the amount and/or structure of variability (complexity) in cycling actions, there is limited knowledge about its application in resistance exercise. The aim of this study is to find out whether variability in acceleration signals can be an indicator of intensity level in a squat task. For this purpose, an experimental design was developed in which the following participated seventy-two participants (age = 25.7 ± 4.4 years; height = 169.2 ± 9.8 cm; body mass = 67.7 ± 11.2 kg; ratio 1RM/body mass = 1.4 ± 0.3). They performed four repetitions of back squat at loads of 10%, 30%, 50%, 70%, and 90% of 1RM. Acceleration during the exercise was recorded using an inertial measurement unit (IMU) and a force platform. The variability of the movement was then analyzed using Standard Deviation (SD), Detrended Fluctuation Analysis (DFA), Fuzzy Entropy (FuzzyEn), and Sample Entropy (SampEn). For the IMU and for the force platform, significant effects were observed in all variables (p < 0.001). In pairwise comparisons, IMU showed a significant increase in motor complexity with increasing intensity, among most intensities, in DFA, FuzzyEn and SampEn. Differences in force platform were more limited, and only DFA detected differences between most intensities. The results suggest that measures of signal and acceleration variability may be a useful indicator of the relative intensity at which a squat exercise is performed.
Collapse
Affiliation(s)
- Miguel López-Fernández
- Sport Sciences Department, Laboratory of Motor Control and Learning, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Fernando García-Aguilar
- Sport Sciences Department, Laboratory of Motor Control and Learning, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Pablo Asencio
- Sport Sciences Department, Laboratory of Motor Control and Learning, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Carla Caballero
- Sport Sciences Department, Laboratory of Motor Control and Learning, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Francisco J Moreno
- Sport Sciences Department, Laboratory of Motor Control and Learning, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Rafael Sabido
- Sport Sciences Department, Laboratory of Motor Control and Learning, Miguel Hernández University of Elche, Elche, Alicante, Spain
| |
Collapse
|
3
|
Lumb MJ, Snegireva N, Welman K. Expert consensus on the terminology, diagnostics and management of persisting symptoms after concussion with a focus on mental health, postural stability, electroencephalogram and balance testing: A cross-sectional Delphi-like survey. SOUTH AFRICAN JOURNAL OF SPORTS MEDICINE 2024; 36:v36i1a17870. [PMID: 39100104 PMCID: PMC11294671 DOI: 10.17159/2078-516x/2024/v36i1a17870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Background Persisting symptoms after concussion (PSaC) are a pathological manifestation of head injuries that present with symptoms after the acute phase of head trauma has subsided. Insufficient research about PSaC has led to gaps in knowledge and incorrect terminology being applied. Furthermore, gaps exist in standardised assessment protocols and understanding of mental health symptoms associated with sports. Objectives The study aimed to; 1) Determine expert consensus on appropriate terminology for symptoms lasting >4 weeks, 2) Investigate associations with mental health and postural stability symptoms, 3) Evaluate experts' views on quantitative balance and electroencephalogram (EEG) testing. Methods A Delphi-like survey was designed in REDCap and sent to identified experts in the field of sports-related concussions (SRC). Expert consensus was defined as ≥75% agreement. Results Expert consensus identified the following mood and motor control symptoms being associated with PSaC: increases in emotional state (80%), irritability (87%), nervousness (87%), sadness (80%), balance impairment (80%), dizziness (87%) and feeling slow (80%). Numbness and tingling were not considered longer-term effects (80%). Additionally, 93% of respondents acknowledged mental health symptoms as potential longer-term effects, with 80% agreeing on inadequate current management. Respondents indicated PSaC are only somewhat adequately managed (73%) or not managed well enough (27%). The use of EEG and quantitative balance testing remains open for debate. The survey response rate was 21%. Conclusion Improving mental health management for athletes with PSaC and standardising terminology is crucial. Future research is required to establish effective diagnosis and treatment methods. Addressing these issues may result in better care and safer return to play for athletes.
Collapse
Affiliation(s)
- M J Lumb
- Division of Movement Science and Exercise Therapy, The Movement Laboratory, Department of Exercise, Sport & Lifestyle Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Stellenbosch, Western Cape, South Africa
| | - N Snegireva
- Division of Movement Science and Exercise Therapy, The Movement Laboratory, Department of Exercise, Sport & Lifestyle Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Stellenbosch, Western Cape, South Africa
| | - K Welman
- Division of Movement Science and Exercise Therapy, The Movement Laboratory, Department of Exercise, Sport & Lifestyle Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Stellenbosch, Western Cape, South Africa
| |
Collapse
|
4
|
Echemendia RJ, Burma JS, Bruce JM, Davis GA, Giza CC, Guskiewicz KM, Naidu D, Black AM, Broglio S, Kemp S, Patricios JS, Putukian M, Zemek R, Arango-Lasprilla JC, Bailey CM, Brett BL, Didehbani N, Gioia G, Herring SA, Howell D, Master CL, Valovich McLeod TC, Meehan WP, Premji Z, Salmon D, van Ierssel J, Bhathela N, Makdissi M, Walton SR, Kissick J, Pardini J, Schneider KJ. Acute evaluation of sport-related concussion and implications for the Sport Concussion Assessment Tool (SCAT6) for adults, adolescents and children: a systematic review. Br J Sports Med 2023; 57:722-735. [PMID: 37316213 DOI: 10.1136/bjsports-2022-106661] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES To systematically review the scientific literature regarding the acute assessment of sport-related concussion (SRC) and provide recommendations for improving the Sport Concussion Assessment Tool (SCAT6). DATA SOURCES Systematic searches of seven databases from 2001 to 2022 using key words and controlled vocabulary relevant to concussion, sports, SCAT, and acute evaluation. ELIGIBILITY CRITERIA (1) Original research articles, cohort studies, case-control studies, and case series with a sample of >10; (2) ≥80% SRC; and (3) studies using a screening tool/technology to assess SRC acutely (<7 days), and/or studies containing psychometric/normative data for common tools used to assess SRC. DATA EXTRACTION Separate reviews were conducted involving six subdomains: Cognition, Balance/Postural Stability, Oculomotor/Cervical/Vestibular, Emerging Technologies, and Neurological Examination/Autonomic Dysfunction. Paediatric/Child studies were included in each subdomain. Risk of Bias and study quality were rated by coauthors using a modified SIGN (Scottish Intercollegiate Guidelines Network) tool. RESULTS Out of 12 192 articles screened, 612 were included (189 normative data and 423 SRC assessment studies). Of these, 183 focused on cognition, 126 balance/postural stability, 76 oculomotor/cervical/vestibular, 142 emerging technologies, 13 neurological examination/autonomic dysfunction, and 23 paediatric/child SCAT. The SCAT discriminates between concussed and non-concussed athletes within 72 hours of injury with diminishing utility up to 7 days post injury. Ceiling effects were apparent on the 5-word list learning and concentration subtests. More challenging tests, including the 10-word list, were recommended. Test-retest data revealed limitations in temporal stability. Studies primarily originated in North America with scant data on children. CONCLUSION Support exists for using the SCAT within the acute phase of injury. Maximal utility occurs within the first 72 hours and then diminishes up to 7 days after injury. The SCAT has limited utility as a return to play tool beyond 7 days. Empirical data are limited in pre-adolescents, women, sport type, geographical and culturally diverse populations and para athletes. PROSPERO REGISTRATION NUMBER CRD42020154787.
Collapse
Affiliation(s)
- Ruben J Echemendia
- Concussion Care Clinic, University Orthopedics, State College, Pennsylvania, USA
- University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Joel S Burma
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jared M Bruce
- Biomedical and Health Informatics, University of Missouri - Kansas City, Kansas City, Missouri, USA
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Cabrini Health, Malvern, Victoria, Australia
| | - Christopher C Giza
- Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, California, USA
- Pediatrics/Pediatric Neurology, Mattel Children's Hospital UCLA, Los Angeles, California, USA
| | - Kevin M Guskiewicz
- Matthew Gfeller Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dhiren Naidu
- Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Steven Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Simon Kemp
- Sports Medicine, Rugby Football Union, London, UK
| | - Jon S Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg-Braamfontein, South Africa
| | | | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Christopher M Bailey
- Neurology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Benjamin L Brett
- Neurosurgery/ Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Gerry Gioia
- Depts of Pediatrics and Psychiatry & Behavioral Sciences, Children's National Health System, Washington, District of Columbia, USA
| | - Stanley A Herring
- Department of Rehabilitation Medicine, Orthopaedics and Sports Medicine, and Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - David Howell
- Orthopedics, Sports Medicine Center, Children's Hospital Colorado, Aurora, Colorado, USA
| | | | - Tamara C Valovich McLeod
- Department of Athletic Training and School of Osteopathic Medicine in Arizona, A.T. Still University, Mesa, Arizona, USA
| | - William P Meehan
- Sports Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
- Emergency Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, British Columbia, Canada
| | | | | | - Neil Bhathela
- UCLA Health Steve Tisch BrainSPORT Program, Los Angeles, California, USA
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health - Austin Campus, Heidelberg, Victoria, Australia
- La Trobe Sport and Exercise Medicine Research Centre, Melbourne, Victoria, Australia
| | - Samuel R Walton
- Department of Physical Medicine and Rehabilitation, School of Medicine, Richmond, Virginia, USA
| | - James Kissick
- Dept of Family Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jamie Pardini
- Departments of Internal Medicine and Neurology, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Saraiva M, Vilas-Boas JP, Fernandes OJ, Castro MA. Effects of Motor Task Difficulty on Postural Control Complexity during Dual Tasks in Young Adults: A Nonlinear Approach. SENSORS (BASEL, SWITZERLAND) 2023; 23:628. [PMID: 36679423 PMCID: PMC9866022 DOI: 10.3390/s23020628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Few studies have evaluated the effect of a secondary motor task on the standing posture based on nonlinear analysis. However, it is helpful to extract information related to the complexity, stability, and adaptability to the environment of the human postural system. This study aimed to analyze the effect of two motor tasks with different difficulty levels in motor performance complexity on the static standing posture in healthy young adults. Thirty-five healthy participants (23.08 ± 3.92 years) performed a postural single task (ST: keep a quiet standing posture) and two motor dual tasks (DT). i.e., mot-DT(A)—perform the ST while performing simultaneously an easy motor task (taking a smartphone out of a bag, bringing it to the ear, and putting it back in the bag)—and mot-DT(T)—perform the ST while performing a concurrent difficult motor task (typing on the smartphone keyboard). The approximate entropy (ApEn), Lyapunov exponent (LyE), correlation dimension (CoDim), and fractal dimension (detrending fluctuation analysis, DFA) for the mediolateral (ML) and anterior-posterior (AP) center-of-pressure (CoP) displacement were measured with a force plate while performing the tasks. A significant difference was found between the two motor dual tasks in ApEn, DFA, and CoDim-AP (p < 0.05). For the ML CoP direction, all nonlinear variables in the study were significantly different (p < 0.05) between ST and mot-DT(T), showing impairment in postural control during mot-DT(T) compared to ST. Differences were found across ST and mot-DT(A) in ApEn-AP and DFA (p < 0.05). The mot-DT(T) was associated with less effectiveness in postural control, a lower number of degrees of freedom, less complexity and adaptability of the dynamic system than the postural single task and the mot-DT(A).
Collapse
Affiliation(s)
- Marina Saraiva
- RoboCorp Laboratory, i2A, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
- Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - João Paulo Vilas-Boas
- Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
- LABIOMEP-UP, Faculty of Sports and CIFI2D, University of Porto, 4200-450 Porto, Portugal
| | - Orlando J. Fernandes
- Sport and Health Department, School of Health and Human Development, University of Évora, 7000-671 Évora, Portugal
- Comprehensive Health Research Center (CHRC), University of Évora, 7000-671 Évora, Portugal
| | - Maria António Castro
- RoboCorp Laboratory, i2A, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
- Department of Mechanical Engineering, University of Coimbra, CEMMPRE, 3030-788 Coimbra, Portugal
- Sector of Physiotherapy, School of Health Sciences, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| |
Collapse
|
6
|
Rhea CK, Yamada M, Kuznetsov NA, Jakiela JT, LoJacono CT, Ross SE, Haran FJ, Bailie JM, Wright WG. Neuromotor changes in participants with a concussion history can be detected with a custom smartphone app. PLoS One 2022; 17:e0278994. [PMID: 36520862 PMCID: PMC9754195 DOI: 10.1371/journal.pone.0278994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Neuromotor dysfunction after a concussion is common, but balance tests used to assess neuromotor dysfunction are typically subjective. Current objective balance tests are either cost- or space-prohibitive, or utilize a static balance protocol, which may mask neuromotor dysfunction due to the simplicity of the task. To address this gap, our team developed an Android-based smartphone app (portable and cost-effective) that uses the sensors in the device (objective) to record movement profiles during a stepping-in-place task (dynamic movement). The purpose of this study was to examine the extent to which our custom smartphone app and protocol could discriminate neuromotor behavior between concussed and non-concussed participants. Data were collected at two university laboratories and two military sites. Participants included civilians and Service Members (N = 216) with and without a clinically diagnosed concussion. Kinematic and variability metrics were derived from a thigh angle time series while the participants completed a series of stepping-in-place tasks in three conditions: eyes open, eyes closed, and head shake. We observed that the standard deviation of the mean maximum angular velocity of the thigh was higher in the participants with a concussion history in the eyes closed and head shake conditions of the stepping-in-place task. Consistent with the optimal movement variability hypothesis, we showed that increased movement variability occurs in participants with a concussion history, for which our smartphone app and protocol were sensitive enough to capture.
Collapse
Affiliation(s)
- Christopher K. Rhea
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- College of Health Sciences, Old Dominion University, Norfolk, Virginia, United States of America
- * E-mail:
| | - Masahiro Yamada
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, United States of America
| | - Nikita A. Kuznetsov
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- Department of Psychology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jason T. Jakiela
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
| | - Chanel T. LoJacono
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- Department of Kinesiology, Missouri Southern State University, Joplin, Missouri, United States of America
| | - Scott E. Ross
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - F. J. Haran
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Jason M. Bailie
- Naval Hospital Camp Pendleton, Oceanside, California, United States of America
- Traumatic Brain Injury Center of Excellence (TBICoE), Silver Spring, Maryland, United States of America
- General Dynamics Information Technology, Falls Church, Virginia, United States of America
| | - W. Geoffrey Wright
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
A Study of Athlete Pose Estimation Techniques in Sports Game Videos Combining Multiresidual Module Convolutional Neural Networks. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2021:4367875. [PMID: 34992645 PMCID: PMC8727100 DOI: 10.1155/2021/4367875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
In this paper, we propose a multiresidual module convolutional neural network-based method for athlete pose estimation in sports game videos. The network firstly designs an improved residual module based on the traditional residual module. Firstly, a large perceptual field residual module is designed to learn the correlation between the athlete components in the sports game video within a large perceptual field. A multiscale residual module is designed in the paper to better solve the inaccuracy of the pose estimation due to the problem of scale change of the athlete components in the sports game video. Secondly, these three residual modules are used as the building blocks of the convolutional neural network. When the resolution is high, the large perceptual field residual module and the multiscale residual module are used to capture information in a larger range as well as at each scale, and when the resolution is low, only the improved residual module is used. Finally, four multiresidual module convolutional neural networks are used to form the final multiresidual module stacked convolutional neural network. The neural network model proposed in this paper achieves high accuracy of 89.5% and 88.2% on the upper arm and lower arm, respectively, so the method in this paper reduces the influence of occlusion on the athlete's posture estimation to a certain extent. Through the experiments, it can be seen that the proposed multiresidual module stacked convolutional neural network-based method for athlete pose estimation in sports game videos further improves the accuracy of athlete pose estimation in sports game videos.
Collapse
|
8
|
Potential Mechanisms of Acute Standing Balance Deficits After Concussions and Subconcussive Head Impacts: A Review. Ann Biomed Eng 2021; 49:2693-2715. [PMID: 34258718 DOI: 10.1007/s10439-021-02831-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023]
Abstract
Standing balance deficits are prevalent after concussions and have also been reported after subconcussive head impacts. However, the mechanisms underlying such deficits are not fully understood. The objective of this review is to consolidate evidence linking head impact biomechanics to standing balance deficits. Mechanical energy transferred to the head during impacts may deform neural and sensory components involved in the control of standing balance. From our review of acute balance-related changes, concussions frequently resulted in increased magnitude but reduced complexity of postural sway, while subconcussive studies showed inconsistent outcomes. Although vestibular and visual symptoms are common, potential injury to these sensors and their neural pathways are often neglected in biomechanics analyses. While current evidence implies a link between tissue deformations in deep brain regions including the brainstem and common post-concussion balance-related deficits, this link has not been adequately investigated. Key limitations in current studies include inadequate balance sampling duration, varying test time points, and lack of head impact biomechanics measurements. Future investigations should also employ targeted quantitative methods to probe the sensorimotor and neural components underlying balance control. A deeper understanding of the specific injury mechanisms will inform diagnosis and management of balance deficits after concussions and subconcussive head impact exposure.
Collapse
|
9
|
Lin Y, Mukherjee M, Stergiou N, Chien JH. Using mastoid vibration can detect the uni/bilateral vestibular deterioration by aging during standing. J Vestib Res 2021; 32:145-154. [PMID: 34180442 DOI: 10.3233/ves-210042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND The mastoid vibration (MV) has been used to investigate unilateral vestibular dysfunction by inducing nystagmus. Additionally, this MV can be used to quantify the effect of deterioration by aging on the vestibular system during walking. Could such MV be used to assess the uni/bilateral vestibular deterioration by aging during standing? OBJECTIVE This study attempted to determine the feasibility of using MV for identifying the uni/bilateral vestibular deterioration by aging during standing. METHODS Fifteen young and ten old adults' balance control patterns were assessed by three random MV conditions: 1) No MV; 2) Unilateral MV; 3) Bilateral MV. The dependent variables were the 95% confidence ellipse areas and the sample entropy values, which were calculated based on the center of gravity displacement within each condition. RESULTS Significant main effects of MV and aging were found on all outcome variables. A significant interaction between aging and different MV types was observed in the 95% confidence ellipse area (p = 0.002) and the length of the short axis (anterior-posterior direction, p = 0.001). CONCLUSIONS We concluded that the MV could be used to identify different vestibular dysfunctions, specifically in old adults.
Collapse
Affiliation(s)
- Yufeng Lin
- Division of Physical Therapy Education, College of Allied Health Professions, University of Nebraska Medical Center, USA
| | - Mukul Mukherjee
- Department of Biomechanics, College of Education, University of Nebraska Omaha, USA
| | - Nicholas Stergiou
- Department of Biomechanics, College of Education, University of Nebraska Omaha, USA
| | - Jung Hung Chien
- Division of Physical Therapy Education, College of Allied Health Professions, University of Nebraska Medical Center, USA
| |
Collapse
|
10
|
Wright B, Wilmoth K, Juengst SB, Didehbani N, Maize R, Cullum CM. Perceived Recovery and Self-Reported Functioning in Adolescents with Mild Traumatic Brain Injury: The Role of Sleep, Mood, and Physical Symptoms. Dev Neurorehabil 2021; 24:237-243. [PMID: 33356738 DOI: 10.1080/17518423.2020.1858456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: To determine the contributions of anxiety, depressive, and concussion symptoms and sleep quality to self-perceived recovery in adolescents with concussion.Method: Adolescents aged 12-20 (n = 298) completed anxiety, depression, concussion symptoms, and sleep measures at an initial concussion clinic visit and three-month follow-up. At follow-up, they reported self-perceived recovery as percent back to normal.Results: Injury-related factors alone did not predict self-perceived recovery (R2Adj =.017, p =.074). More concurrent physical, mental health, and sleep symptoms explained 18.8% additional variance in poorer self-perceived recovery (R2Adj Change =.188, p <.05). Physical symptoms (Bstand = -.292) and anxiety (Bstand = -.260) accounted for the most variance in self-perceived recovery.Conclusion: Post-concussive symptoms, in particular anxiety and self-reported physical symptoms, seem to characterize protracted recovery. Self-perceived recovery as an outcome measure may provide a more holistic understanding of adolescents' experiences after concussion.
Collapse
Affiliation(s)
- Brittany Wright
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - K Wilmoth
- The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Medical College of Wisconsin, Milwaukee, WI, USA
| | - S B Juengst
- The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Medical College of Wisconsin, Milwaukee, WI, USA
| | - N Didehbani
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R Maize
- Carlow University, Pittsburgh, PA, USA
| | - C M Cullum
- The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Carlow University, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Sweeny M, Habib Perez O, Inness EL, Danells C, Chandra T, Foster E, Comper P, Bayley M, Mochizuki G. The Toronto concussion study: a cross-sectional analysis of balance deficits following acute concussion in community-dwelling adults. Brain Inj 2021; 35:587-595. [PMID: 33734923 DOI: 10.1080/02699052.2021.1891288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: To characterize balance deficits in community-dwelling adults following acute concussion.Design: Cross-sectional observational study.Methods: Individuals with acute concussion (n=100) and healthy controls (n=20) completed the BESS (Balance Error Scoring System) and quiet standing trials on forceplates with the eyes open, closed, or during a cognitive dual task. BESS score and centre-of-pressure root mean square and high-frequency power (0.4-3Hz) were used to characterize group differences. In a secondary analysis, participants were subdivided based on self-reported symptoms of balance problems and dizziness using the SCAT-3 (Sport Concussion Assessment Tool - Third Edition) Symptom Checklist.Results: In comparing individuals with concussion and controls, BESS score (16.0 ± 6.0 vs 12.6 ± 3.8; F(1,116) = 5.814, p = .017) and anteroposterior [F(1.78, 204.2) = 11.93, p < .001] and mediolateral [F(1, 114) = 10.05, p = .002] high-frequency power revealed significant group differences. Dividing individuals based on self-reported symptoms revealed significant differences in mediolateral high frequency power, such that participants reporting balance and dizziness problems as well as those participants not reporting balance or dizziness symptoms following concussion were less stable than controls.Conclusions: Deficits in clinical and posturographic measures of balance occur in community-dwelling adults with concussion. These measures do not align with self-reported balance symptoms. Future research and clinical practice aimed at careful selection of optimized balance assessment is recommended.
Collapse
Affiliation(s)
- Michelle Sweeny
- Toronto Rehabilitation Institute -University Centre, University Health Network, Toronto, Canada.,Rehabilitation Sciences Institute,Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Olinda Habib Perez
- Toronto Rehabilitation Institute -University Centre, University Health Network, Toronto, Canada
| | - Elizabeth L Inness
- Toronto Rehabilitation Institute -University Centre, University Health Network, Toronto, Canada.,Rehabilitation Sciences Institute,Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Cynthia Danells
- Toronto Rehabilitation Institute -University Centre, University Health Network, Toronto, Canada.,Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Tharshini Chandra
- Toronto Rehabilitation Institute -University Centre, University Health Network, Toronto, Canada
| | - Evan Foster
- Toronto Rehabilitation Institute -University Centre, University Health Network, Toronto, Canada
| | - Paul Comper
- Toronto Rehabilitation Institute -University Centre, University Health Network, Toronto, Canada.,Rehabilitation Sciences Institute,Faculty of Medicine, University of Toronto, Toronto, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | - Mark Bayley
- Toronto Rehabilitation Institute -University Centre, University Health Network, Toronto, Canada.,Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - George Mochizuki
- Toronto Rehabilitation Institute -University Centre, University Health Network, Toronto, Canada.,Rehabilitation Sciences Institute,Faculty of Medicine, University of Toronto, Toronto, Canada.,School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Canada
| |
Collapse
|
12
|
Dugan EL, Shilt JS, Masterson CM, Ernest KM. The use of inertial measurement units to assess gait and postural control following concussion. Gait Posture 2021; 83:262-267. [PMID: 33220659 DOI: 10.1016/j.gaitpost.2020.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/04/2020] [Accepted: 10/06/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Impairments in gait and balance function are typical after concussion. There is evidence that these neuromuscular deficits persist past the typical time of symptom resolution. The ability to quantify these changes in gait and balance may provide useful information when making return to play decisions in clinical settings. RESEARCH QUESTION Are changes in gait function and postural control evident across the course of a concussion management program? METHODS A retrospective analysis of a convenience sample of 38 patients who were seen for concussion between October 2017 and May 2019 was performed. Gait and balance measures were assessed at their initial clinic visit post-injury and at their clearance visit using inertial measurement units. During dual-task walking trials, the medial-lateral motion of the center of mass and gait velocity were measured. Postural sway complexity and jerk index were measured during both eyes-open and eyes-closed balance trials. RESULTS Paired samples t-tests and Wilcoxon signed rank tests were used to determine whether statistically significant changes occurred for the gait and balance variables, respectively. Medial-lateral sway decreased (4.4 ± 1.3 cm to 4.0 ± 1.2 cm, p = 0.018) and gait velocity increased (0.78 ± 0.23 m/s to 0.91 ± 0.18 m/s, p < 0.001) from initial to clearance testing. Jerk index decreased (6.41 ± 11.06 m2/s5 to 5.73 ± 4.28 m2/s5, p = 0.031) and (11.87 ± 26.42 m2/s5 to 7.87 ± 8.38 m2/s5, p = 0.003) from initial to clearance testing for the eyes-open and eyes-closed conditions, respectively. Complexity index increased (2.38 ± 1.08-2.86 ± 0.72, p = 0.010) from initial to clearance testing for the eyes-closed condition. There was no change in complexity index for the eyes-open condition. SIGNIFICANCE These preliminary results support the potential use of measures of gait and postural control to assess recovery following a concussion in a clinical setting.
Collapse
Affiliation(s)
- Eric L Dugan
- Texas Children's Hospital, The Woodlands, TX 77384, USA; Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Jeffrey S Shilt
- Texas Children's Hospital, The Woodlands, TX 77384, USA; Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Kristin M Ernest
- Texas Children's Hospital, The Woodlands, TX 77384, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Reilly N, Prebor J, Moxey J, Schussler E. Chronic impairments of static postural stability associated with history of concussion. Exp Brain Res 2020; 238:2783-2793. [DOI: 10.1007/s00221-020-05934-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023]
|
14
|
Kupper C, Roemer K, Jusko E, Zentgraf K. Distality of Attentional Focus and Its Role in Postural Balance Control. Front Psychol 2020; 11:125. [PMID: 32153451 PMCID: PMC7050164 DOI: 10.3389/fpsyg.2020.00125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/16/2020] [Indexed: 11/29/2022] Open
Abstract
The role of attentional focusing in motor tasks has been highlighted frequently. The "internal-external" dimension has emerged, but also the spatial distance between body and attended location. In two experiments, an extended attentional focus paradigm was introduced to investigate distality effects of attentional foci on balance performance. First, the distality of the coordinates of the point of focus was varied between a proximal and distal position on an artificial tool attached to the body. Second, the distance of the displayed effect on the wall was varied between a 2.5 and 5 m condition. Subjects were instructed to focus on controlling either a proximal or distal spot on a tool attached to their head, represented by two laser pointers. Subsequently, they needed to visually track their own body-movement effect of one of the laser pointers at a wall while completing various single leg stance tasks. Center of pressure (COP) sway was analyzed using a linear method (classic sway variables) as well as a non-linear method (multiscale entropy). In addition, laser trajectories were videotaped and served as additional performance outcome measure. Experiment 1 revealed differences in balance performance under proximal compared to distal attentional focus conditions. Moreover, experiment 2 yielded differences in balance-related sway measures and laser data between the 2.5 and 5 m condition of the visually observable movement effect. In conclusion, varying the distality of the point of focus between proximal and distal impacted balance performance. However, this effect was not consistent across all balance tasks. Relevantly, the distality of the movement effect shows a significant effect on balance plus laser performance with advantages in more distal conditions. This research emphasizes the importance of the spatial distality of movement effects for human behavior.
Collapse
Affiliation(s)
- Christian Kupper
- Institute of Sport Sciences, Department of Movement Science and Training in Sports, Faculty of Psychology and Sports Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Karen Roemer
- Department of Health Sciences, College of Education and Professional Studies, Central Washington University, Ellensburg, WA, United States
| | - Elizabeth Jusko
- Department of Health Sciences, College of Education and Professional Studies, Central Washington University, Ellensburg, WA, United States
| | - Karen Zentgraf
- Institute of Sport Sciences, Department of Movement Science and Training in Sports, Faculty of Psychology and Sports Sciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
15
|
Complexity-Based Measures of Postural Sway during Walking at Different Speeds and Durations Using Multiscale Entropy. ENTROPY 2019. [PMCID: PMC7514472 DOI: 10.3390/e21111128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
: Participation in various physical activities requires successful postural control in response to the changes in position of our body. It is important to assess postural control for early detection of falls and foot injuries. Walking at various speeds and for various durations is essential in daily physical activities. The purpose of this study was to evaluate the changes in complexity of the center of pressure (COP) during walking at different speeds and for different durations. In this study, a total of 12 participants were recruited for walking at two speeds (slow at 3 km/h and moderate at 6 km/h) for two durations (10 and 20 minutes). An insole-type plantar pressure measurement system was used to measure and calculate COP as participants walked on a treadmill. Multiscale entropy (MSE) was used to quantify the complexity of COP. Our results showed that the complexity of COP significantly decreased (p < 0.05) after 20 min of walking (complexity index, CI = −3.51) compared to 10 min of walking (CI = −3.20) while walking at 3 km/h, but not at 6 km/h. Our results also showed that the complexity index of COP indicated a significant difference (p < 0.05) between walking at speeds of 3 km/h (CI = −3.2) and 6 km/h (CI = −3.6) at the walking duration of 10 minutes, but not at 20 minutes. This study demonstrated an interaction between walking speeds and walking durations on the complexity of COP.
Collapse
|