1
|
Green K, Kulkarni AS, Jankoski PE, Newton TB, Derbigny B, Clemons TD, Watkins DL, Morgan SE. Biocompatible Glycopolymer-PLA Amphiphilic Hybrid Block Copolymers with Unique Self-Assembly, Uptake, and Degradation Properties. Biomacromolecules 2024; 25:6681-6692. [PMID: 39276065 PMCID: PMC11480976 DOI: 10.1021/acs.biomac.4c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/16/2024]
Abstract
The self-assembly of Janus-type amphiphilic hybrid block copolymers composed of hydrophilic/hydrophobic layers has shown promise for drug encapsulation and delivery. Saccharides have previously been incorporated to improve the biocompatibility of self-assembled structures; however, glycopolymer block copolymers have been less explored, and their structure-property relationships are not well understood. In this study, novel glycopolymer-branched poly(lactic acid) (PLA) block copolymers were synthesized via thiol-ene coupling and their composition-dependent morphologies were elucidated. Stability as a function of pH, dye uptake capabilities, and cytotoxicity were evaluated. Systems with a hydrophilic weight ratio of 30% were found to produce bilayer nanoparticles, while systems with a hydrophilic weight ratio of 60% form micelles upon self-assembly in aqueous media. Regardless of composition and morphology, all systems exhibited uptake of both hydrophobic (curcumin, DL % from 4.25 to 11.55) and hydrophilic (methyl orange, DL % from 4.08 to 5.88) dye molecules with release profiles dependent on composition. Furthermore, all of the nanoparticles exhibited low cytotoxicity, confirming their potential for biomedical applications.
Collapse
Affiliation(s)
- Kevin
A. Green
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi, Hattiesburg 39406, United States
| | - Anuja S. Kulkarni
- Department
of Chemistry & Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Penelope E. Jankoski
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi, Hattiesburg 39406, United States
| | - Thomas B. Newton
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi, Hattiesburg 39406, United States
| | - Blaine Derbigny
- Department
of Chemistry & Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Tristan D. Clemons
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi, Hattiesburg 39406, United States
| | - Davita L. Watkins
- Department
of Chemistry & Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Sarah E. Morgan
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi, Hattiesburg 39406, United States
| |
Collapse
|
2
|
Parcero-Bouzas S, Correa J, Jimenez-Lopez C, Delgado Gonzalez B, Fernandez-Megia E. Modular Synthesis of PEG-Dendritic Block Copolymers by Thermal Azide-Alkyne Cycloaddition with Internal Alkynes and Evaluation of their Self-Assembly for Drug Delivery Applications. Biomacromolecules 2024; 25:2780-2791. [PMID: 38613487 PMCID: PMC11094729 DOI: 10.1021/acs.biomac.3c01429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Linear-dendritic block copolymers assemble in solution due to differences in the solubility or charge properties of the blocks. The monodispersity and multivalency of the dendritic block provide unparalleled control for the design of drug delivery systems when incorporating poly(ethylene glycol) (PEG) as a linear block. An accelerated synthesis of PEG-dendritic block copolymers based on the click and green chemistry pillars is described. The tandem composed of the thermal azide-alkyne cycloaddition with internal alkynes and azide substitution is revealed as a flexible, reliable, atom-economical, and user-friendly strategy for the synthesis and functionalization of biodegradable (polyester) PEG-dendritic block copolymers. The high orthogonality of the sequence has been exploited for the preparation of heterolayered copolymers with terminal alkenes and alkynes, which are amenable for subsequent functionalization by thiol-ene and thiol-yne click reactions. Copolymers with tunable solubility and charge were so obtained for the preparation of various types of nanoassemblies with promising applications in drug delivery.
Collapse
Affiliation(s)
- Samuel Parcero-Bouzas
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| | - Juan Correa
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| | - Celia Jimenez-Lopez
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| | - Bruno Delgado Gonzalez
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| |
Collapse
|
3
|
Alfei S. Cationic Materials for Gene Therapy: A Look Back to the Birth and Development of 2,2-Bis-(hydroxymethyl)Propanoic Acid-Based Dendrimer Scaffolds. Int J Mol Sci 2023; 24:16006. [PMID: 37958989 PMCID: PMC10649874 DOI: 10.3390/ijms242116006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Gene therapy is extensively studied as a realistic and promising therapeutic approach for treating inherited and acquired diseases by repairing defective genes through introducing (transfection) the "healthy" genetic material in the diseased cells. To succeed, the proper DNA or RNA fragments need efficient vectors, and viruses are endowed with excellent transfection efficiency and have been extensively exploited. Due to several drawbacks related to their use, nonviral cationic materials, including lipidic, polymeric, and dendrimer vectors capable of electrostatically interacting with anionic phosphate groups of genetic material, represent appealing alternative options to viral carriers. Particularly, dendrimers are highly branched, nanosized synthetic polymers characterized by a globular structure, low polydispersity index, presence of internal cavities, and a large number of peripheral functional groups exploitable to bind cationic moieties. Dendrimers are successful in several biomedical applications and are currently extensively studied for nonviral gene delivery. Among dendrimers, those derived by 2,2-bis(hydroxymethyl)propanoic acid (b-HMPA), having, unlike PAMAMs, a neutral polyester-based scaffold, could be particularly good-looking due to their degradability in vivo. Here, an overview of gene therapy, its objectives and challenges, and the main cationic materials studied for transporting and delivering genetic materials have been reported. Subsequently, due to their high potential for application in vivo, we have focused on the biodegradable dendrimer scaffolds, telling the history of the birth and development of b-HMPA-derived dendrimers. Finally, thanks to a personal experience in the synthesis of b-HMPA-based dendrimers, our contribution to this field has been described. In particular, we have enriched this work by reporting about the b-HMPA-based derivatives peripherally functionalized with amino acids prepared by us in recent years, thus rendering this paper original and different from the existing reviews.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| |
Collapse
|
4
|
Poudel DP, Taylor RT. Thiol-Ene Click-Inspired Late-Stage Modification of Long-Chain Polyurethane Dendrimers. REACTIONS 2021; 3:12-29. [DOI: 10.3390/reactions3010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The construction of well-defined polyurethane dendrimers is challenging due to the high reactivity of externally added or in situ formed isocyanates leading to the formation of side products. With a primary focus of dendrimer research being the interaction of the periphery and the core, we report the synthesis of a common polyurethane dendron, which allows for the late-stage variation of both the periphery and the core. The periphery can be varied simply by installing a clickable unit in the dendron and then attaching to the core and vice-versa. Thus, a common dendron allows for varying periphery and core in the final two steps. To accomplish this, a protecting group-free, one-pot multicomponent Curtius reaction was utilized to afford a robust and versatile AB2 type polyurethane dendron employing commercially available simple molecules: 5-hydroxyisophthalic acid, 11-bromoundecanol, and 4-penten-1-ol. Subsequent late-stage modifications of either dendrons or dendrimers via a thiol-ene click reaction gave surface-functionalized alternating aromatic-aliphatic polyurethane homodendrimers to generation-three (G3). The dendrons and the dendrimers were characterized by NMR, mass spectrometry, and FT-IR analysis. A bifunctional AB2 type dendritic monomer demonstrated this approach’s versatility that can either undergo a thiol-ene click or attachment to the core. This approach enables the incorporation of functionalities at the periphery and the core that may not withstand the dendrimer growth for the synthesis of polyurethane dendrimers and other dendritic macromolecules.
Collapse
Affiliation(s)
- Dhruba P. Poudel
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Richard T. Taylor
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
5
|
Hoyos P, Perona A, Juanes O, Rumbero Á, Hernáiz MJ. Synthesis of Glycodendrimers with Antiviral and Antibacterial Activity. Chemistry 2021; 27:7593-7624. [PMID: 33533096 DOI: 10.1002/chem.202005065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Indexed: 12/27/2022]
Abstract
Glycodendrimers are an important class of synthetic macromolecules that can be used to mimic many structural and functional features of cell-surface glycoconjugates. Their carbohydrate moieties perform key important functions in bacterial and viral infections, often regulated by carbohydrate-protein interactions. Several studies have shown that the molecular structure, valency and spatial organisation of carbohydrate epitopes in glycoconjugates are key factors in the specificity and avidity of carbohydrate-protein interactions. Choosing the right glycodendrimers almost always helps to interfere with such interactions and blocks bacterial or viral adhesion and entry into host cells as an effective strategy to inhibit bacterial or viral infections. Herein, the state of the art in the design and synthesis of glycodendrimers employed for the development of anti-adhesion therapy against bacterial and viral infections is described.
Collapse
Affiliation(s)
- Pilar Hoyos
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Almudena Perona
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Olga Juanes
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Ángel Rumbero
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - María J Hernáiz
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
6
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Abstract
From a selection of research topics carried out in our laboratory during the last twenty years it becomes apparent that our main target was the discovery of new or improved synthetic methods together with new properties. Our efforts were made with the aim of being of some utility to other fields of research, with particular emphasis to glycobiology and heterocyle-based bioorganic chemistry. We performed new chemistry mainly in the field of carbohydrate manipulations taking as a primary rule the simplicity and efficiency manners. Toward this end, modern synthetic tools and approaches were employed such as heterocyle-based transformations, multicomponent reactions, organocatalysis, click azide–alkyne cycloadditions, reactions in ionic liquids, click photoinduced thiol-ene coupling, and click sulfur–fluoride exchange chemistry. With these potent methodologies in hand, the syntheses of carbohydrate containing amino acids up to proteins glycosylation were performed.1 Heterocyclic Glycoconjugates and Amino Acids2 Triazole-Linked Oligonucleotides: Application of Click CuAAC3 Non-Natural Glycosyl Amino Acids4 Non-Natural Oligosaccharides5 Calixarene-Based Glycoclusters6 Carbohydrate-Based Building Blocks7 Homoazasugars and Aza-C-disaccharides8 Synthesis of Glycodendrimers9 Peptide and Protein Glycoconjugates10 Conclusions
Collapse
|
8
|
Zelli R, Dumy P, Marra A. Metal-free synthesis of imino-disaccharides and calix-iminosugars by photoinduced radical thiol–ene coupling (TEC). Org Biomol Chem 2020; 18:2392-2397. [DOI: 10.1039/d0ob00198h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deprotected iminosugar alkenes were subjected to thiol–ene coupling with deprotected sugar thiols to afford new imino-disaccharides. Two thiol–ene couplings converted these alkenes into iminosugar thiols and then multivalent iminosugars.
Collapse
Affiliation(s)
- Renaud Zelli
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| |
Collapse
|
9
|
McNelles SA, Pantaleo JL, Meichsner E, Adronov A. Strain-Promoted Azide-Alkyne Cycloaddition-Mediated Step-Growth Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Stuart A. McNelles
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Julia L. Pantaleo
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Eric Meichsner
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Alex Adronov
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| |
Collapse
|
10
|
Huang D, Wu D. Biodegradable dendrimers for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:713-727. [PMID: 29853143 DOI: 10.1016/j.msec.2018.03.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/17/2017] [Accepted: 03/03/2018] [Indexed: 01/09/2023]
Abstract
Dendrimers, as a type of artificial polymers with unique structural features, have been extensively explored for their applications in biomedical fields, especially in drug delivery. However, one important concern about the most commonly used dendrimers exists - the nondegradability, which may cause side effects induced by the accumulation of synthetic polymers in cells or tissues. Therefore, biodegradable dendrimers incorporating biodegradability with merits of dendrimers such as well-defined architectures, copious internal cavities and surface functionalities, are much more promising for developing novel nontoxic drug carriers. Herein, we review the recent advances in design and synthesis of biodegradable dendrimers, as well as their applications in fabricating drug delivery systems, with the aim to provide researchers in the related fields a good understanding of biodegradable dendrimers for drug delivery.
Collapse
Affiliation(s)
- Da Huang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, China.; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China..
| |
Collapse
|
11
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
12
|
Landeros JM, Belmont-Bernal F, Pérez-González AT, Pérez-Padrón MI, Guevara-Salazar P, González-Herrera IG, Guadarrama P. A two-step synthetic strategy to obtain a water-soluble derivative of curcumin with improved antioxidant capacity and in vitro cytotoxicity in C6 glioma cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:351-362. [DOI: 10.1016/j.msec.2016.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/21/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
|
13
|
Sangwan R, Mandal PK. Recent advances in photoinduced glycosylation: oligosaccharides, glycoconjugates and their synthetic applications. RSC Adv 2017. [DOI: 10.1039/c7ra01858d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Carbohydrates have been demonstrated to perform imperative act in biological processes. This review highlights recent uses of photoinduced glycosylation in carbohydrate chemistry for the synthesis of oligosaccharides, thiosugars, glycoconjugates and glycoprotein.
Collapse
Affiliation(s)
- Rekha Sangwan
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
- Academy of Scientific and Innovative Research
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
14
|
McSweeney L, Dénès F, Scanlan EM. Thiyl-Radical Reactions in Carbohydrate Chemistry: From Thiosugars to Glycoconjugate Synthesis. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501543] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
|
16
|
García-Gallego S, Nyström AM, Malkoch M. Chemistry of multifunctional polymers based on bis-MPA and their cutting-edge applications. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2015.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Hajipour AR, Rafiee F. Recent Progress in Ionic Liquids and their Applications in Organic Synthesis. ORG PREP PROCED INT 2015. [DOI: 10.1080/00304948.2015.1052317] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Arseneault M, Wafer C, Morin JF. Recent advances in click chemistry applied to dendrimer synthesis. Molecules 2015; 20:9263-94. [PMID: 26007183 PMCID: PMC6272213 DOI: 10.3390/molecules20059263] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/12/2015] [Indexed: 11/16/2022] Open
Abstract
Dendrimers are monodisperse polymers grown in a fractal manner from a central point. They are poised to become the cornerstone of nanoscale devices in several fields, ranging from biomedicine to light-harvesting. Technical difficulties in obtaining these molecules has slowed their transfer from academia to industry. In 2001, the arrival of the "click chemistry" concept gave the field a major boost. The flagship reaction, a modified Hüisgen cycloaddition, allowed researchers greater freedom in designing and building dendrimers. In the last five years, advances in click chemistry saw a wider use of other click reactions and a notable increase in the complexity of the reported structures. This review covers key developments in the click chemistry field applied to dendrimer synthesis from 2010 to 2015. Even though this is an expert review, basic notions and references have been included to help newcomers to the field.
Collapse
Affiliation(s)
- Mathieu Arseneault
- Chimie, Université Laval, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, QC G1V 0A6, Canada.
| | - Caroline Wafer
- Chimie, Université Laval, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, QC G1V 0A6, Canada.
| | - Jean-François Morin
- Chimie, Université Laval, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, QC G1V 0A6, Canada.
| |
Collapse
|
19
|
Appelhans D, Klajnert-Maculewicz B, Janaszewska A, Lazniewska J, Voit B. Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications. Chem Soc Rev 2015; 44:3968-96. [DOI: 10.1039/c4cs00339j] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of dendritic glycopolymers based on dendritic polyamine scaffolds for biomedical applications is presented and compared with that of the structurally related anti-adhesive dendritic glycoconjugates.
Collapse
Affiliation(s)
- Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Anna Janaszewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Joanna Lazniewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
- Organic Chemistry of Polymers
- Technische Universität Dresden
| |
Collapse
|
20
|
Zelli R, Longevial JF, Dumy P, Marra A. Synthesis and biological properties of multivalent iminosugars. NEW J CHEM 2015. [DOI: 10.1039/c5nj00462d] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clustering 1-deoxynojirimycin (DNJ), first isolated from white mulberry, and other iminosugars around various scaffolds gave strong glycosidase inhibitors.
Collapse
Affiliation(s)
- Renaud Zelli
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier cedex 5
| | - Jean-François Longevial
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier cedex 5
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier cedex 5
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier cedex 5
| |
Collapse
|
21
|
Pahovnik D, Čusak A, Reven S, Žagar E. Synthesis of poly(ester-amide) dendrimers based on 2,2-Bis
(hydroxymethyl) propanoic acid and glycine. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- David Pahovnik
- National Institute of Chemistry; Laboratory for Polymer Chemistry and Technology; Hajdrihova 19 SI-1000 Ljubljana Slovenia
| | - Anja Čusak
- EN-FIST Center of Excellence; Dunajska cesta 156 SI-1000 Ljubljana Slovenia
| | - Sebastjan Reven
- Lek Pharmaceuticals d.d.; Sandoz Development Center Slovenia; Verovškova 57 SI-1526 Ljubljana
| | - Ema Žagar
- National Institute of Chemistry; Laboratory for Polymer Chemistry and Technology; Hajdrihova 19 SI-1000 Ljubljana Slovenia
| |
Collapse
|
22
|
Carlborg CF, Vastesson A, Liu Y, van der Wijngaart W, Johansson M, Haraldsson T. Functional off-stoichiometry thiol-ene-epoxy thermosets featuring temporally controlled curing stages via an UV/UV dual cure process. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27276] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carl Fredrik Carlborg
- Department of Micro and Nanosystems; KTH Royal Institute of Technology; Osquldas v. 10 SE-100 44 Stockholm Sweden
| | - Alexander Vastesson
- Department of Micro and Nanosystems; KTH Royal Institute of Technology; Osquldas v. 10 SE-100 44 Stockholm Sweden
| | - Yitong Liu
- Department of Micro and Nanosystems; KTH Royal Institute of Technology; Osquldas v. 10 SE-100 44 Stockholm Sweden
| | - Wouter van der Wijngaart
- Department of Micro and Nanosystems; KTH Royal Institute of Technology; Osquldas v. 10 SE-100 44 Stockholm Sweden
| | - Mats Johansson
- Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; Teknikringen 48 SE-100 44 Stockholm Sweden
| | - Tommy Haraldsson
- Department of Micro and Nanosystems; KTH Royal Institute of Technology; Osquldas v. 10 SE-100 44 Stockholm Sweden
| |
Collapse
|
23
|
Ghirardello M, Öberg K, Staderini S, Renaudet O, Berthet N, Dumy P, Hed Y, Marra A, Malkoch M, Dondoni A. Thiol-ene and thiol-yne-based synthesis of glycodendrimers as nanomolar inhibitors of wheat germ agglutinin. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mattia Ghirardello
- Dipartimento di Scienze Chimiche e Farmaceutiche; Università di Ferrara; Via Fossato di Mortara 17 44121 Ferrara Italy
| | - Kim Öberg
- Division of Coating Technology; KTH The Royal Institute of Technology, School of Chemical Science and Engineering; Teknikringen 56-58 SE-10044 Stockholm Sweden
| | - Samuele Staderini
- Dipartimento di Scienze Chimiche e Farmaceutiche; Università di Ferrara; Via Fossato di Mortara 17 44121 Ferrara Italy
| | - Olivier Renaudet
- Département de Chimie Moléculaire; UMR CNRS 5250, Université Joseph Fourier, 570 Rue de la chimie, BP 53; 38041 Grenoble cedex 9 France
| | - Nathalie Berthet
- Département de Chimie Moléculaire; UMR CNRS 5250, Université Joseph Fourier, 570 Rue de la chimie, BP 53; 38041 Grenoble cedex 9 France
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247, Université Montpellier 2, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale; 34296 Montpellier cedex 5 France
| | - Yvonne Hed
- Division of Coating Technology; KTH The Royal Institute of Technology, School of Chemical Science and Engineering; Teknikringen 56-58 SE-10044 Stockholm Sweden
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247, Université Montpellier 2, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale; 34296 Montpellier cedex 5 France
| | - Michael Malkoch
- Division of Coating Technology; KTH The Royal Institute of Technology, School of Chemical Science and Engineering; Teknikringen 56-58 SE-10044 Stockholm Sweden
| | - Alessandro Dondoni
- Interdisciplinary Center for the Study of Inflammation, Università di Ferrara; Via Borsari 46 44100 Ferrara Italy
| |
Collapse
|
24
|
Synthesis and self-assembly of amphiphilic polyphosphazene with controllable composition via two step thiol-ene click reaction. POLYMER 2014. [DOI: 10.1016/j.polymer.2013.12.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Carlmark A, Malmström E, Malkoch M. Dendritic architectures based on bis-MPA: functional polymeric scaffolds for application-driven research. Chem Soc Rev 2014; 42:5858-79. [PMID: 23628841 DOI: 10.1039/c3cs60101c] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dendritic polymers are highly branched, globular architectures with multiple representations of functional groups. These nanoscale organic frameworks continue to fascinate researchers worldwide and are today under intensive investigation in application-driven research. A large number of potential application areas have been suggested for dendritic polymers, including theranostics, biosensors, optics, adhesives and coatings. The transition from potential to real applications is strongly dictated by their commercial accessibility, scaffolding ability as well as biocompatibility. A dendritic family that fulfills these requirements is based on the 2,2-bismethylolpropionic acid (bis-MPA) monomer. This critical review is the first of its kind to cover most of the research activities generated on aliphatic polyester dendritic architectures based on bis-MPA. It is apparent that these scaffolds will continue to be in the forefront of cutting-edge research as their structural variations are endless including dendrons, dendrimers, hyperbranched polymers, dendritic-linear hybrids and their hybridization with inorganic surfaces.
Collapse
Affiliation(s)
- Anna Carlmark
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Fibre and Polymer Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | | | | |
Collapse
|
26
|
Lowe AB. Thiol–ene “click” reactions and recent applications in polymer and materials synthesis: a first update. Polym Chem 2014. [DOI: 10.1039/c4py00339j] [Citation(s) in RCA: 579] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This contribution serves as an update to a previous review (Polym. Chem.2010,1, 17–36) and highlights recent applications of thiol–ene ‘click’ chemistry as an efficient tool for both polymer/materials synthesis as well as modification.
Collapse
Affiliation(s)
- Andrew B. Lowe
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW Australia
- University of New South Wales
- Kensington Sydney, Australia
| |
Collapse
|
27
|
Fiore M, Berthet N, Renaudet O, Barbier V. New glycopolymers as multivalent systems for lectin recognition. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00097h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New types of glycopolymers have been designed and evaluated as multivalent systems for lectin recognition.
Collapse
Affiliation(s)
- Michele Fiore
- Département de Chimie Moléculaire
- CNRS-Université Joseph Fourier
- 38041 Grenoble Cedex 9
- France
| | - Nathalie Berthet
- Département de Chimie Moléculaire
- CNRS-Université Joseph Fourier
- 38041 Grenoble Cedex 9
- France
| | - Olivier Renaudet
- Département de Chimie Moléculaire
- CNRS-Université Joseph Fourier
- 38041 Grenoble Cedex 9
- France
- Institut Universitaire de France
| | - Valessa Barbier
- Département de Chimie Moléculaire
- CNRS-Université Joseph Fourier
- 38041 Grenoble Cedex 9
- France
- Université Paris-Est de Créteil
| |
Collapse
|
28
|
Percec V, Leowanawat P, Sun HJ, Kulikov O, Nusbaum CD, Tran TM, Bertin A, Wilson DA, Peterca M, Zhang S, Kamat NP, Vargo K, Moock D, Johnston ED, Hammer DA, Pochan DJ, Chen Y, Chabre YM, Shiao TC, Bergeron-Brlek M, André S, Roy R, Gabius HJ, Heiney PA. Modular synthesis of amphiphilic Janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. J Am Chem Soc 2013; 135:9055-77. [PMID: 23692629 DOI: 10.1021/ja403323y] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The modular synthesis of 7 libraries containing 51 self-assembling amphiphilic Janus dendrimers with the monosaccharides D-mannose and D-galactose and the disaccharide D-lactose in their hydrophilic part is reported. These unprecedented sugar-containing dendrimers are named amphiphilic Janus glycodendrimers. Their self-assembly by simple injection of THF or ethanol solution into water or buffer and by hydration was analyzed by a combination of methods including dynamic light scattering, confocal microscopy, cryogenic transmission electron microscopy, Fourier transform analysis, and micropipet-aspiration experiments to assess mechanical properties. These libraries revealed a diversity of hard and soft assemblies, including unilamellar spherical, polygonal, and tubular vesicles denoted glycodendrimersomes, aggregates of Janus glycodendrimers and rodlike micelles named glycodendrimer aggregates and glycodendrimermicelles, cubosomes denoted glycodendrimercubosomes, and solid lamellae. These assemblies are stable over time in water and in buffer, exhibit narrow molecular-weight distribution, and display dimensions that are programmable by the concentration of the solution from which they are injected. This study elaborated the molecular principles leading to single-type soft glycodendrimersomes assembled from amphiphilic Janus glycodendrimers. The multivalency of glycodendrimersomes with different sizes and their ligand bioactivity were demonstrated by selective agglutination with a diversity of sugar-binding protein receptors such as the plant lectins concanavalin A and the highly toxic mistletoe Viscum album L. agglutinin, the bacterial lectin PA-IL from Pseudomonas aeruginosa, and, of special biomedical relevance, human adhesion/growth-regulatory galectin-3 and galectin-4. These results demonstrated the candidacy of glycodendrimersomes as new mimics of biological membranes with programmable glycan ligand presentations, as supramolecular lectin blockers, vaccines, and targeted delivery devices.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gok O, Yigit S, Merve Kose M, Sanyal R, Sanyal A. Dendron-polymer conjugates via the diels-alder “click” reaction of novel anthracene-based dendrons. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ozgul Gok
- Department of Chemistry; Bogazici University; Bebek; Istanbul; 34342; Turkey
| | - Sezin Yigit
- Department of Chemistry; Bogazici University; Bebek; Istanbul; 34342; Turkey
| | - Meliha Merve Kose
- Department of Chemistry; Bogazici University; Bebek; Istanbul; 34342; Turkey
| | - Rana Sanyal
- Department of Chemistry; Bogazici University; Bebek; Istanbul; 34342; Turkey
| | - Amitav Sanyal
- Department of Chemistry; Bogazici University; Bebek; Istanbul; 34342; Turkey
| |
Collapse
|
30
|
Keleş E, Hazer B, Cömert FB. Synthesis of antibacterial amphiphilic elastomer based on polystyrene-block-polyisoprene-block-polystyrene via thiol-ene addition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1061-6. [DOI: 10.1016/j.msec.2012.11.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/22/2012] [Accepted: 11/15/2012] [Indexed: 11/16/2022]
|
31
|
Ötvös SB, Mándity IM, Kiss L, Fülöp F. Alkyne-azide cycloadditions with copper powder in a high-pressure continuous-flow reactor: high-temperature conditions versus the role of additives. Chem Asian J 2013; 8:800-8. [PMID: 23404792 DOI: 10.1002/asia.201201125] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/20/2012] [Indexed: 12/30/2022]
Abstract
A safe and efficient flow-chemistry-based procedure is presented for 1,3-dipolar cycloaddition reactions between organic azides and acetylenes. This simple and inexpensive technique eliminates the need for costly special apparatus and utilizes Cu powder as a plausible Cu(I) source. To maximize the reaction rates, high-pressure/high-temperature conditions are utilized; alternatively, the harsh reaction conditions can be moderated at room temperature by the joint application of basic and acidic additives. A comparison of the performance of these two approaches in a series of model reactions has resulted in the formation of useful 1,4-disubstituted 1,2,3-triazoles in excellent yields. The risks that are associated with the handling of azides are lowered, thanks to the benefits of flow processing, and gram-scale production has been safely implemented. The synthetic capability of this continuous-flow technique is demonstrated by the efficient syntheses of some highly functionalized derivatives of the antifungal cispentacin.
Collapse
Affiliation(s)
- Sándor B Ötvös
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary
| | | | | | | |
Collapse
|
32
|
Chabre YM, Roy R. Multivalent glycoconjugate syntheses and applications using aromatic scaffolds. Chem Soc Rev 2013; 42:4657-708. [PMID: 23400414 DOI: 10.1039/c3cs35483k] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycan-protein interactions are of utmost importance in several biological phenomena. Although the variety of carbohydrate residues in mammalian cells is limited to less than a dozen different sugars, their spatial topographical presentation in what is now associated as the "glycocodes" provides the fundamental keys for specific and high affinity "lock-in" recognition events associated with a wide range of pathologies. Toward deciphering our understanding of these glycocodes, chemists have developed new creative tools that included dendrimer chemistry in order to provide monodisperse multivalent glycoconjugates. This review provides a survey of the numerous aromatic architectures generated for the multivalent presentation of relevant carbohydrates using covalent attachment or supramolecular self-assemblies. The basic concepts toward their controlled syntheses will be described using modern synthetic procedures with a particular emphasis on powerful organometallic methodologies. The large variety of dendritic aromatic scaffolds, together with a brief survey of their unique biophysical and biological properties will be critically reviewed. The distinctiveness of the resulting multivalent glycoarchitectures, encompassing glycoclusters, glycodendrimers and molecularly defined self-assemblies, in forming well organized cross-linked lattices with multivalent carbohydrate binding proteins (lectins) together with their photophysical, medical, and imaging properties will also be briefly highlighted. The topic will be presented in increasing order of aromatic backbone complexities and will end with fullerenes together with self-assembled nanostructures, thus complementing the various scaffolds described in this special thematic issue dedicated to multivalent glycoscience.
Collapse
Affiliation(s)
- Yoann M Chabre
- Pharmaqam - Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8
| | | |
Collapse
|
33
|
Soeriyadi AH, R.Whittaker M, Boyer C, Davis TP. Soft ionization mass spectroscopy: Insights into the polymerization mechanism. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26536] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Wojcik F, O'Brien AG, Götze S, Seeberger PH, Hartmann L. Synthesis of carbohydrate-functionalised sequence-defined oligo(amidoamine)s by photochemical thiol-ene coupling in a continuous flow reactor. Chemistry 2013; 19:3090-8. [PMID: 23325532 DOI: 10.1002/chem.201203927] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Indexed: 12/11/2022]
Abstract
Poly/oligo(amidoamine)s (PAAs) have recently been recognised for their potential as well-defined scaffolds for multiple carbohydrate presentation and as multivalent ligands. Herein, we report two complimentary strategies for the preparation of such sequence-defined carbohydrate-functionalised PAAs that use photochemical thiol-ene coupling (TEC) as an alternative to the established azide-alkyne cycloaddition ("click") reaction. In the first approach, PAAs that contained multiple olefins were synthesised on a solid support from a new building block and subsequent conjugation with unprotected thio-carbohydrates. Alternatively, a pre-functionalised building block was prepared by using TEC and assembled on a solid support to provide a carbohydrate-functionalised PAA. Both methods rely on the use of a continuous flow photoreactor for the TEC reactions. This system is highly efficient, owing to its short path length, and requires no additional radical initiator. Performing the reactions at 254 nm in Teflon AF-2400 tubing provides a highly efficient TEC procedure for carbohydrate conjugation, as demonstrated in the reactions of O-allyl glycosides with thiols. This method allowed the complete functionalisation of all of the reactive sites on the PAA backbone in a single step, thereby obtaining a defined homogeneous sequence. Furthermore, reaction at 366 nm in FEP tubing in the flow reactor enabled the large-scale synthesis of an fluorenylmethyloxycarbonyl (Fmoc)-protected glycosylated building block, which was shown to be suitable for solid-phase synthesis and will also allow heterogeneous sequence control of different carbohydrates along the oligomeric backbone. These developments enable the synthesis of sequence-defined carbohydrate-functionalised PAAs with potential biological applications.
Collapse
Affiliation(s)
- Felix Wojcik
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | | | | | | |
Collapse
|
35
|
Li S, Han J, Gao C. High-density and hetero-functional group engineering of segmented hyperbranched polymersvia click chemistry. Polym Chem 2013. [DOI: 10.1039/c2py20951a] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Gingras M, Chabre YM, Roy M, Roy R. How do multivalent glycodendrimers benefit from sulfur chemistry? Chem Soc Rev 2013; 42:4823-41. [DOI: 10.1039/c3cs60090d] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Albertazzi L, Mickler FM, Pavan GM, Salomone F, Bardi G, Panniello M, Amir E, Kang T, Killops KL, Bräuchle C, Amir RJ, Hawker CJ. Enhanced bioactivity of internally functionalized cationic dendrimers with PEG cores. Biomacromolecules 2012; 13:4089-97. [PMID: 23140570 PMCID: PMC3524974 DOI: 10.1021/bm301384y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hybrid dendritic-linear block copolymers based on a 4-arm poly(ethylene glycol) (PEG) core were synthesized using an accelerated AB2/CD2 dendritic growth approach through orthogonal amine/epoxy and thiol-yne chemistries. The biological activity of these 4-arm and the corresponding 2-arm hybrid dendrimers revealed an enhanced, dendritic effect with an exponential increase in cell internalization concomitant with increasing amine end groups and low cytotoxicity. Furthermore, the ability of these hybrid dendrimers to induce endosomal escape combined with their facile and efficient synthesis makes them attractive platforms for gene transfection. The 4-arm-based dendrimer showed significantly improved DNA binding and gene transfection capabilities in comparison with the 2-arm derivative. These results combined with the MD simulation indicate a significant effect of both the topology of the PEG core and the multivalency of these hybrid macromolecules on their DNA binding and delivery capablities.
Collapse
Affiliation(s)
- Lorenzo Albertazzi
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5121, USA
- NEST, Scuola Normale Superiore and CNR-INFM, and IIT@NEST, Center for Nanotechnology Innovation, Piazza San Silvestro 12, 56126 Pisa, Italy
| | - Frauke M. Mickler
- Department of Chemistry, Ludwig-Maximilians-Universität München, Center for NanoScience (CeNS) and Center for Integrated Protein Science Munich (CIPSM), Butenandtstr. 5-13, D-81377, München, Germany
| | - Giovanni M. Pavan
- Laboratory of Applied Mathematics and Physics (LaMFI),University of Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, 6928, Switzerland
| | - Fabrizio Salomone
- NEST, Scuola Normale Superiore and CNR-INFM, and IIT@NEST, Center for Nanotechnology Innovation, Piazza San Silvestro 12, 56126 Pisa, Italy
| | - Giuseppe Bardi
- NEST, Scuola Normale Superiore and CNR-INFM, and IIT@NEST, Center for Nanotechnology Innovation, Piazza San Silvestro 12, 56126 Pisa, Italy
| | - Mariangela Panniello
- NEST, Scuola Normale Superiore and CNR-INFM, and IIT@NEST, Center for Nanotechnology Innovation, Piazza San Silvestro 12, 56126 Pisa, Italy
| | - Elizabeth Amir
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5121, USA
| | - Taegon Kang
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5121, USA
| | - Kato L. Killops
- US Army RDECOM Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21010
| | - Christoph Bräuchle
- Department of Chemistry, Ludwig-Maximilians-Universität München, Center for NanoScience (CeNS) and Center for Integrated Protein Science Munich (CIPSM), Butenandtstr. 5-13, D-81377, München, Germany
| | - Roey J. Amir
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5121, USA
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Craig J. Hawker
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5121, USA
| |
Collapse
|
38
|
Heo J, Kang T, Jang SG, Hwang DS, Spruell JM, Killops KL, Waite JH, Hawker CJ. Improved performance of protected catecholic polysiloxanes for bioinspired wet adhesion to surface oxides. J Am Chem Soc 2012. [PMID: 23181614 DOI: 10.1021/ja309044z] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile synthetic strategy for introducing catecholic moieties into polymeric materials based on a readily available precursor (eugenol) and efficient chemistries [tris(pentafluorophenyl)borane-catalyzed silation and thiol-ene coupling] is reported. Silyl protection is shown to be critical for the oxidative stability of catecholic moieties during synthesis and processing, which allows functionalized polysiloxane derivatives to be fabricated into 3D microstructures as well as 2D patterned surfaces. Deprotection gives stable catechol surfaces whose adhesion to a variety of oxide surfaces can be precisely tuned by the level of catechol incorporation. The advantage of silyl protection for catechol-functionalized polysiloxanes is demonstrated and represents a promising and versatile new platform for underwater surface treatments.
Collapse
Affiliation(s)
- Jinhwa Heo
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Shen Y, Ma Y, Li Z. Facile synthesis of dendrimers combining aza-Michael addition with Thiol-yne click chemistry. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26429] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Adzima BJ, Bowman CN. The emerging role of click reactions in chemical and biological engineering. AIChE J 2012. [DOI: 10.1002/aic.13909] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Dimitrov-Raytchev P, Beghdadi S, Serghei A, Drockenmuller E. Main-chain 1,2,3-triazolium-based poly(ionic liquid)s issued from AB + AB click chemistry polyaddition. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26326] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Amir E, Antoni P, Campos LM, Damiron D, Gupta N, Amir RJ, Pesika N, Drockenmuller E, Hawker CJ. Biodegradable, multi-layered coatings for controlled release of small molecules. Chem Commun (Camb) 2012; 48:4833-5. [PMID: 22499161 PMCID: PMC4257843 DOI: 10.1039/c2cc31188g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporation of orthogonal functional groups into biodegradable polymers permits the fabrication of multi-layered thin films with improved adhesion and tunable degradation profiles. The bi-layer structure also allows for accurate control over small molecule release.
Collapse
Affiliation(s)
- Elizabeth Amir
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Per Antoni
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Luis M. Campos
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Denis Damiron
- Université Claude Bernard Lyon 1, Ingénierie des Matériaux Polymères (IMP - UMR CNRS 5223), 15 Boulevard Latarjet, 69622 Villeurbanne Cedex, France
| | - Nalini Gupta
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Roey J. Amir
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Noshir Pesika
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Eric Drockenmuller
- Université Claude Bernard Lyon 1, Ingénierie des Matériaux Polymères (IMP - UMR CNRS 5223), 15 Boulevard Latarjet, 69622 Villeurbanne Cedex, France
| | - Craig J. Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
43
|
Cohen C, Damiron D, Dkhil SB, Drockenmuller E, Restagno F, Léger L. Synthesis of well-defined poly(dimethylsiloxane) telechelics having nitrobenzoxadiazole fluorescent chain-ends via thiol-ene coupling. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.25952] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
De S, Khan A. Efficient synthesis of multifunctional polymers via thiol–epoxy “click” chemistry. Chem Commun (Camb) 2012; 48:3130-2. [DOI: 10.1039/c2cc30434a] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Dondoni A, Marra A. Recent applications of thiol–ene coupling as a click process for glycoconjugation. Chem Soc Rev 2012; 41:573-86. [DOI: 10.1039/c1cs15157f] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Robb MJ, Connal LA, Lee BF, Lynd NA, Hawker CJ. Functional block copolymer nanoparticles: toward the next generation of delivery vehicles. Polym Chem 2012; 3:1618-1628. [PMID: 25484930 PMCID: PMC4257844 DOI: 10.1039/c2py20131c] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The self-assembly of functional block copolymers (BCPs) into dispersed nanoparticles is a powerful technique for the preparation of novel delivery vehicles with precise control of morphology and architecture. Well-defined BCPs containing an alkyne-functional, biodegradable polylactide (PLA) block were synthesized and conjugated with azide-functional coumarin dyes via copper catalyzed azide alkyne cycloaddition 'click' chemistry. Self-assembled nanoparticles with internal nanophase-separated morphologies could then be accessed by carefully controlling the composition of the BCPs and release of the covalently attached model payload was shown to occur under physiological conditions via the degradation of the PLA scaffold. These results demonstrate the potential of self-assembled nanoparticles as modular delivery vehicles with multiple functionalities, nanostructures, and compartmentalized internal morphology.
Collapse
Affiliation(s)
- Maxwell J. Robb
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - Luke A. Connal
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - Bongjae F. Lee
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - Nathaniel A. Lynd
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - Craig J. Hawker
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
- King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia 31261
| |
Collapse
|