1
|
Sundar S, Koopman A, Manzoni TJ, Xie W, Bhatti QUA, Lo CY, Damani VS, Yang AN, Pochan D, Parreno J, Engiles JB, Kayser LV, Dhong C. Kinetics and Retention of Polystyrenesulfonate for Proteoglycan Replacement in Cartilage. Biomacromolecules 2024; 25:5819-5833. [PMID: 39142342 PMCID: PMC11389691 DOI: 10.1021/acs.biomac.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Tissue hydration provides articular cartilage with dynamic viscoelastic properties. Early stage osteoarthritis (OA) is marked by loss of proteoglycans and glycosaminoglycans (GAG), lowering fixed charge density, and impairing tissue osmotic function. The most common GAG replacement, chondroitin sulfate (CS), has failed to show effectiveness. Here, we investigated a synthetic polyelectrolyte, poly(styrenesulfonate) (PSS), both as a model compound to investigate polyelectrolyte transport in cartilage, and as a potential candidate to restore bulk fixed charge density in cartilage with GAG loss. Through bovine explants and histology, we determined zonal-based effective diffusion coefficients for three different molecular weights of PSS. Compared to CS, PSS was retained longer in GAG-depleted cartilage in static and compression-based desorption experiments. We explained enhanced solute performance of PSS by its more compact morphology and higher charge density by small-angle X-ray scattering. This study may improve design of GAG mimetic molecules for repairing osmotic function in OA cartilage.
Collapse
Affiliation(s)
- Shalini Sundar
- Department of Biomedical Engineering, University of Delaware, Newark 19716, Delaware, United States
| | - Allison Koopman
- Department of Materials Science and Engineering, University of Delaware, Newark 19716, Delaware, United States
| | - Thomas J Manzoni
- Department of Biological Sciences, University of Delaware, Newark 19716, Delaware, United States
| | - Weiran Xie
- Department of Materials Science and Engineering, University of Delaware, Newark 19716, Delaware, United States
| | - Qurat-Ul-Ain Bhatti
- Department of Materials Science and Engineering, University of Delaware, Newark 19716, Delaware, United States
| | - Chun-Yuan Lo
- Department of Chemistry and Biochemistry, University of Delaware, Newark 19716, Delaware, United States
| | - Vidhika S Damani
- Department of Materials Science and Engineering, University of Delaware, Newark 19716, Delaware, United States
| | - Ai Nin Yang
- Department of Chemistry and Biochemistry, University of Delaware, Newark 19716, Delaware, United States
| | - Darrin Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark 19716, Delaware, United States
| | - Justin Parreno
- Department of Biomedical Engineering, University of Delaware, Newark 19716, Delaware, United States
- Department of Biological Sciences, University of Delaware, Newark 19716, Delaware, United States
| | - Julie B Engiles
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Kennett Square 19348, Pennsylvania, United States
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania 19348, United States
| | - Laure V Kayser
- Department of Materials Science and Engineering, University of Delaware, Newark 19716, Delaware, United States
- Department of Chemistry and Biochemistry, University of Delaware, Newark 19716, Delaware, United States
| | - Charles Dhong
- Department of Biomedical Engineering, University of Delaware, Newark 19716, Delaware, United States
- Department of Materials Science and Engineering, University of Delaware, Newark 19716, Delaware, United States
| |
Collapse
|
2
|
Lo CY, Koutsoukos KP, Nguyen DM, Wu Y, Angel Trujillo DA, Miller T, Shrestha T, Mackey E, Damani VS, Kanbur U, Opila R, Martin DC, Kaphan D, Kayser LV. Imidazolium-Based Sulfonating Agent to Control the Degree of Sulfonation of Aromatic Polymers and Enable Plastics-to-Electronics Upgrading. JACS AU 2024; 4:2596-2605. [PMID: 39055151 PMCID: PMC11267550 DOI: 10.1021/jacsau.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
The accumulation of plastic waste in the environment is a growing environmental, economic, and societal challenge. Plastic upgrading, the conversion of low-value polymers to high-value materials, could address this challenge. Among upgrading strategies, the sulfonation of aromatic polymers is a powerful approach to access high-value materials for a range of applications, such as ion-exchange resins and membranes, electronic materials, and pharmaceuticals. While many sulfonation methods have been reported, achieving high degrees of sulfonation while minimizing side reactions that lead to defects in the polymer chains remains challenging. Additionally, sulfonating agents are most often used in large excess, which prevents precise control over the degree of sulfonation of aromatic polymers and their functionality. Herein, we address these challenges using 1,3-disulfonic acid imidazolium chloride ([Dsim]Cl), a sulfonic acid-based ionic liquid, to sulfonate aromatic polymers and upgrade plastic waste to electronic materials. We show that stoichiometric [Dsim]Cl can effectively sulfonate model polystyrene up to 92% in high yields, with minimal defects and high regioselectivity for the para position. Owing to its high reactivity, the use of substoichiometric [Dsim]Cl uniquely allows for precise control over the degree of sulfonation of polystyrene. This approach is also applicable to a wide range of aromatic polymers, including waste plastic. To prove the utility of our approach, samples of poly(styrene sulfonate) (PSS), obtained from either partially sulfonated polystyrene or expanded polystyrene waste, are used as scaffolds for poly(3,4-ethylenedioxythiophene) (PEDOT) to form the ubiquitous conductive material PEDOT:PSS. PEDOT:PSS from plastic waste is subsequently integrated into organic electrochemical transistors (OECTs) or as a hole transport layer (HTL) in a hybrid solar cell and shows the same performance as commercial PEDOT:PSS. This imidazolium-mediated approach to precisely sulfonating aromatic polymers provides a pathway toward upgrading postconsumer plastic waste to high-value electronic materials.
Collapse
Affiliation(s)
- Chun-Yuan Lo
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Kelsey P. Koutsoukos
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Dan My Nguyen
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Yuhang Wu
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | | | - Tabitha Miller
- Chemical
Sciences and Engineering Division, Argonne
National Laboratories, Lemont, Illinois 60439, United States
| | - Tulaja Shrestha
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Ethan Mackey
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Vidhika S. Damani
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Uddhav Kanbur
- Chemical
Sciences and Engineering Division, Argonne
National Laboratories, Lemont, Illinois 60439, United States
| | - Robert Opila
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - David C. Martin
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19716, United States
| | - David Kaphan
- Chemical
Sciences and Engineering Division, Argonne
National Laboratories, Lemont, Illinois 60439, United States
| | - Laure V. Kayser
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Coyle V, Brothers MC, McDonald S, Kim SS. Superlative and Selective Sensing of Serotonin in Undiluted Human Serum Using Novel Polystyrene Sulfonate Conductive Polymer. ACS OMEGA 2024; 9:16800-16809. [PMID: 38617682 PMCID: PMC11008228 DOI: 10.1021/acsomega.4c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
In the past 5 years, real-time health monitoring has become ubiquitous with the development of watches and rings that can measure and report on the physiological state. As an extension, real-time biomarker sensors, such as the continuous glucose monitor, are becoming popular for both health and performance monitoring. However, few real-time sensors for biomarkers have been made commercially available; this is primarily due to problems with cost, stability, sensitivity, selectivity, and reproducibility of biosensors. Therefore, simple, robust sensors are needed to expand the number of analytes that can be detected in emerging and existing wearable platforms. To address this need, we present a simple but novel sensing material. In short, we have modified the already popular PEDOT/PSS conductive polymer by completely removing the PEDOT component and thus have fabricated a polystyrene sulfonate (PSS) sensor electrodeposited on a glassy carbon (GC) base (GC-PSS). We demonstrate that coupling the GC-PSS sensor with differential pulse voltammetry creates a sensor capable of the selective and sensitive detection of serotonin. Notably, the GC-PSS sensor has a sensitivity of 179 μA μM-1 cm-2 which is 36x that of unmodified GC and an interferent-free detection limit of 10 nM, which is below the concentrations typically found in saliva, urine, and plasma. Notably, the redox potential of serotonin interfacing with the GC-PSS sensor is at -0.188 V versus Ag/AgCl, which is significantly distanced from peaks produced by common interferants found in biofluids, including serum. Therefore, this paper reports a novel, simple sensor and polymeric interface that is compatible with emerging wearable sensor platforms.
Collapse
Affiliation(s)
- Victoria
E. Coyle
- Human
Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- UES
Inc., Dayton, Ohio 45432, United States
| | - Michael C. Brothers
- Human
Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- UES
Inc., Dayton, Ohio 45432, United States
| | - Sarah McDonald
- Human
Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- UES
Inc., Dayton, Ohio 45432, United States
| | - Steve S. Kim
- Human
Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
4
|
Nady N, Abdel Rehim MH, Badawy AA. Dye removal membrane from electrospun nanofibers of blended polybutylenesuccinate and sulphonated expanded polystyrene waste. Sci Rep 2023; 13:15455. [PMID: 37723280 PMCID: PMC10507098 DOI: 10.1038/s41598-023-42424-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023] Open
Abstract
Polystyrene (PS) is a thermoplastic polymer used in food packaging and the manufacture of trays and cups, among other applications. In this work, the preparation of a membrane by electrospinning blended sulphonated expanded PS waste and polybutylenesuccinate (PBS) is described. The fiber quality is controlled by selecting the right polymers' ratios and solvents. Investigation of the structure of the produced membranes by Fourier transform infrared spectroscopy-attenuated total reflectance confirmed the successful sulphonation of expanded PS and the appearance of characteristic (PBS) bands in the prepared blends. Morphology study of the electrospun membranes using a scanning electron microscope revealed that the quality of the fibers is improved significantly by increasing the amount of PBS in the blend solution. Moreover, continuous and more homogenous fibers are produced by increasing the ratio of PBS to 2%. The efficiency of the prepared membranes in dye removal was tested using methylene blue. The effects of different parameters such as, pH, contact time, temperature, and dye concentration have been studied. Also, kinetic and adsorption isotherm models as well as the durability of the prepared membranes were investigated. The membrane prepared from PSS/1% PBS demonstrated the highest dye uptake (846 mol) with good regeneration efficiency. The adsorption process was found to be endothermic and fits the Freundlich isotherm and pseudo-second-order kinetic model. The values of activation energy for the adsorption process are 36.98, 30.70, and 43.40 kJ/mol over PSS, PSS/1% PBS and PSS/2% PBS, respectively.
Collapse
Affiliation(s)
- Norhan Nady
- Polymeric Material Research Department, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Mona H Abdel Rehim
- Packaging Materials Department, National Research Center, Institute of Chemical Industries Research, 33 El Behooth St., Dokki Giza, Egypt.
| | - Abdelrahman A Badawy
- Physical Chemistry Department, National Research Centre, Advanced Materials Technology and Mineral Resources Research Institute, Giza, 12622, Egypt.
| |
Collapse
|
5
|
Pelras T, Eisenga A, Érsek G, Altomare A, Portale G, Kamperman M, Loos K. One-Pot Synthesis of Strong Anionic/Charge-Neutral Amphiphilic Block Copolymers. ACS Macro Lett 2023; 12:1071-1078. [PMID: 37462370 PMCID: PMC10433517 DOI: 10.1021/acsmacrolett.3c00355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 08/16/2023]
Abstract
Despite the ever more versatile polymerization techniques that are becoming available, the synthesis of macromolecules with tailored functionalities can remain a lengthy endeavor. This becomes more conspicuous when the implementation of incompatible chemistries (i.e., strong polyelectrolytes) within sequence-controlled polymers is desired, often requiring (i) polymerization, (ii) chain extension, and (iii) postpolymerization modification. Herein, we explore the production of strong anionic/charge-neutral block copolymers (BCPs) in a one-pot fashion. This straightforward three-step process includes the synthesis of a macroinitiator and chain extension via rapid and efficient photomediated atom transfer radical polymerization, followed by in situ deprotection to expose the polyanionic domains. The resulting BCPs, which are strong amphiphiles by nature, are capable of self-assembly in aqueous media, as evidenced by dynamic light scattering, small-angle X-ray scattering, ζ-potential measurements, and transmission electron microscopy. We further demonstrate the versatility of our methodology by producing several BCPs through sampling of a single reaction mixture, enabling the straightforward production of strong polymer amphiphiles.
Collapse
Affiliation(s)
- Théophile Pelras
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - András Eisenga
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gábor Érsek
- Physical
Chemistry of Polymeric and Nanostructured Materials, Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Aldo Altomare
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Giuseppe Portale
- Physical
Chemistry of Polymeric and Nanostructured Materials, Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Kamperman
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Katja Loos
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Wysor SK, Marcus RK. Two-dimensional separation of water-soluble polymers using size exclusion and reversed phase chromatography employing capillary-channeled polymer fiber columns. J Chromatogr A 2023; 1701:464051. [PMID: 37209520 DOI: 10.1016/j.chroma.2023.464051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Polymeric materials are readily available, durable materials that have piqued the interest of many diverse fields, ranging from biomedical engineering to construction. The physiochemical properties of a polymer dictate the behavior and function, where large polydispersity among polymer properties can lead to problems; however, current polymer analysis methods often only report results for one particular property. Two-dimensional liquid chromatography (2DLC) applications have become increasingly popular due to the ability to implement two chromatographic modalities in one platform, meaning the ability to simultaneously address multiple physiochemical aspects of a polymer sample, such as functional group content and molar mass. The work presented employs size exclusion chromatography (SEC) and reversed-phase (RP) chromatography, through two coupling strategies: SEC x RP and RP x RP separations of the water-soluble polymers poly(methacrylic acid) (PMA) and polystyrene sulfonic acid (PSSA). Capillary-channeled polymer (C-CP) fiber (polyester and polypropylene) stationary phases were used for the RP separations. Particularly attractive is the fact that they are easily implemented as the second dimension in 2DLC workflows due to their low backpressure (<1000 psi at ∼70 mm sec-1) and fast separation times. In-line multi-angle light scattering (MALS) was also implemented for molecular weight determinations of the polymer samples, with the molecular weight of PMA ranging from 5 × 104 to 2 × 105 g mol-1, while PSSA ranges from 105 to 108 g mol-1. While the orthogonal pairing of SEC x RP addresses polymer sizing and chemistry, this approach is limited by long separation times (80 min), the need for high solute concentrations (PMA = 1.79 mg mL-1 and PSSA = 0.175 mg mL-1 to yield comparable absorbance responses) due to on-column dilution and subsequently limited resolution in the RP separation space. With RP x RP couplings, separation times were significantly reduced (40 min), with lower sample concentrations (0.595 mg mL-1 of PMA and 0.05 mg mL-1 of PSSA) required. The combined RP strategy provided better overall distinction in the chemical distribution of the polymers, yielding 7 distict species versus 3 for the SEC x RP coupling.
Collapse
Affiliation(s)
- Sarah K Wysor
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA.
| |
Collapse
|
7
|
Bakhvalova ES, Bykov AV, Markova ME, Lugovoy YV, Sidorov AI, Molchanov VP, Sulman MG, Kiwi-Minsker L, Nikoshvili LZ. Naphthalene-Based Polymers as Catalytic Supports for Suzuki Cross-Coupling. Molecules 2023; 28:4938. [PMID: 37446600 DOI: 10.3390/molecules28134938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
In this work, for the first time, naphthalene (NA)-based polymers were synthesized by one-stage Friedel-Crafts crosslinking. The influence of NA functionalization by -OH, -SO3H, and -NO2 groups on the polymers' porosity and distribution of the catalytically active phase (Pd) was studied. Synthesized catalytic systems containing 1 wt.% of Pd either in the form of Pd(II) species or Pd(0) nanoparticles supported on NA-based polymers were tested in a model reaction of Suzuki cross-coupling between 4-bromoanisole and phenylboronic acid under mild reaction conditions (60 °C, ethanol-water mixture as a solvent). These novel catalysts demonstrated high efficiency with more than 95% of 4-bromoanisole conversion and high selectivity (>97%) for the target 4-methoxybiphenyl.
Collapse
Affiliation(s)
- Elena S Bakhvalova
- Regional Technological Centre, Tver State University, Zhelyabova Str., 33, 170100 Tver, Russia
| | - Alexey V Bykov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A.Nikitina Str., 22, 170026 Tver, Russia
| | - Mariia E Markova
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A.Nikitina Str., 22, 170026 Tver, Russia
| | - Yury V Lugovoy
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A.Nikitina Str., 22, 170026 Tver, Russia
| | - Alexander I Sidorov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A.Nikitina Str., 22, 170026 Tver, Russia
| | - Vladimir P Molchanov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A.Nikitina Str., 22, 170026 Tver, Russia
| | - Mikhail G Sulman
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A.Nikitina Str., 22, 170026 Tver, Russia
| | - Lioubov Kiwi-Minsker
- Regional Technological Centre, Tver State University, Zhelyabova Str., 33, 170100 Tver, Russia
- Ecole Polytechnique Fédérale de Lausanne, ISIC-FSB-EPFL, CH-1015 Lausanne, Switzerland
| | - Linda Z Nikoshvili
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A.Nikitina Str., 22, 170026 Tver, Russia
| |
Collapse
|
8
|
Lee G, In Park S, Yi Shin H, Joh HI, Kim SS, Lee S. Simultaneous Reactions of Sulfonation and Condensation for High-Yield Conversion of Polystyrene into Carbonaceous Material. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Fraser AC, Yankey J, Coronell O, Dingemans TJ. A Sulfonated All-Aromatic Polyamide for Heavy Metal Capture: A Model Study with Pb(II). ACS APPLIED POLYMER MATERIALS 2023; 5:856-865. [PMID: 38144907 PMCID: PMC10735244 DOI: 10.1021/acsapm.2c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Polyelectrolytes are widely used in heavy metal removal, finding applications as coagulants and flocculants. We compare the heavy metal removal capability of a water-soluble sulfonated semirigid polyamide, poly(2,2'-disulfonyl-4,4'-benzidine isophthalamide) (PBDI), with that of a well-known random-coil polymer, poly(sodium 4-styrenesulfonate) (PSS). Using lead (Pb(II)) as a model contaminant, both polymers precipitate out from solution at ~500 mg/L Pb(II) in water. The ability to remove Pb(II) from water was quantified using adsorption isotherms and fitted with Langmuir and Freundlich adsorption models. The sorption of Pb(II) by PSS fit the Langmuir model with a high degree of correlation (0.976 R2), but the sorption of Pb(II) by PBDI could not be accurately predicted using the Langmuir or Freundlich model. The sorption of Pb(II) by PBDI and PSS was compared by normalizing sorption by the number of sulfonate groups of each polymer and the ion exchange capacity (IEC), found by titration. We find that PBDI removes a greater amount of Pb(II) per gram of sorbent compared to PSS, 410 mg/g vs 260 mg/g, respectively, which cannot be accounted for by differences in IEC or number of sulfonate groups. Our findings confirm that the positioning of the sulfonate groups and the rigidity of the polymer backbone play an important role in how Pb(II) coordinates to the polymer prior to precipitating out from solution.
Collapse
Affiliation(s)
- Anna C Fraser
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3050, United States
| | - Jacob Yankey
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3050, United States
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, United States
| | - Theo J Dingemans
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3050, United States
| |
Collapse
|
10
|
Ullah MW, Haraguchi N, Ali MA, Alam MR, Chowdhury SI. Synthesis of homo- and copolymer containing sulfonic acid via atom transfer radical polymerization. Des Monomers Polym 2022; 25:261-270. [PMID: 36187446 PMCID: PMC9518635 DOI: 10.1080/15685551.2022.2126092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Well-defined functional poly(p-phenyl styrenesulfonate) and poly(p-phenyl styrene-sulfonate-co-styrene) were successfully synthesized by the atom transfer radical polymerization (ATRP) using CuBr/bpy(PMDETA) catalyst and 1-phenylethyl bromide (1-PEBr) as an ATRP initiator in diphenyl ether (DPE) or dimethyl formamide (DMF). In both homo- and copolymers, the CuBr/PMDETA catalytic system in DPE or DME showed higher yield than CuBr/bpy and the polydispersity index (PDI) of polymer was low. Using PMDETA or bpy as a ligand in DMF, the high yield with high PDI was obtained than in DPE. We found that the CuBr/PMDETA catalyzed ATRP of p-phenyl styrenesulfonate and copolymerization with styrene comonomer in DPE proceeded in a controlled manner. The polymers containing sulfonic acid were obtained by the chemical deprotection of protecting group, followed by acidification. The molecular structure, molecular weights and thermal properties of the copolymers were determined by nuclear magnetic resonance (1H NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, size exclusion chromatography (SEC), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively.
Collapse
Affiliation(s)
- Md. Wali Ullah
- Department of Chemistry, Faculty of Science, Comilla University, Cumilla, Bangladesh
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Naoki Haraguchi
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Md. Azgar Ali
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Md. Rabiul Alam
- Department of Chemistry, Faculty of Science, Comilla University, Cumilla, Bangladesh
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Samiul Islam Chowdhury
- Department of Chemistry, Faculty of Science and Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka, Bangladesh
| |
Collapse
|
11
|
Neira-Carrillo A, Zárate IA, Nieto E, Butto-Miranda N, Lobos-González L, Del Campo-Smith M, Palacio DA, Urbano BF. Electrospun Poly(acrylic acid- co-4-styrene sulfonate) as Potential Drug-Eluting Scaffolds for Targeted Chemotherapeutic Delivery Systems on Gastric (AGS) and Breast (MDA-Mb-231) Cancer Cell Lines. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3903. [PMID: 36364679 PMCID: PMC9657868 DOI: 10.3390/nano12213903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Potential drug-eluting scaffolds of electrospun poly(acrylic acid-co-styrene sulfonate) P(AA-co-SS) in clonogenic assays using tumorigenic gastric and ovarian cancer cells were tested in vitro. Electrospun polymer nanofiber (EPnF) meshes of PAA and PSSNa homo- and P(AA-co-SS) copolymer composed of 30:70, 50:50, 70:30 acrylic acid (AA) and sodium 4-styrene sulfonate (SSNa) units were performed by electrospinning (ES). The synthesis, structural and morphological characterization of all EPnF meshes were analyzed by optical and electron microscopy (SEM-EDS), infrared spectroscopy (FTIR), contact angle, and X-ray diffraction (XRD) measurements. This study shows that different ratio of AA and SSNa of monomers in P(AA-co-SS) EPnF play a crucial role in clonogenic in vitro assays. We found that 50:50 P(AA-co-SS) EPnF mesh loaded with antineoplastic drugs can be an excellent suppressor of growth-independent anchored capacities in vitro assays and a good subcutaneous drug delivery system for chemotherapeutic medication in vivo model for surgical resection procedures in cancer research.
Collapse
Affiliation(s)
- Andrónico Neira-Carrillo
- Department of Biological and Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Santiago 380492, Chile
| | - Ignacio A. Zárate
- Department of Biological and Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - Eddie Nieto
- Department of Biological and Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - Nicole Butto-Miranda
- Department of Biological and Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDIS), Santiago 380492, Chile
- Center for Regenerative Medicine, Faculty of Medicine, Universidad del Desarrollo, Clínica Alemana, Santiago 7610658, Chile
| | - Matias Del Campo-Smith
- Advanced Center for Chronic Diseases (ACCDIS), Santiago 380492, Chile
- Center for Regenerative Medicine, Faculty of Medicine, Universidad del Desarrollo, Clínica Alemana, Santiago 7610658, Chile
| | - Daniel A. Palacio
- Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción, Concepción 3349001, Chile
| | - Bruno F. Urbano
- Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción, Concepción 3349001, Chile
| |
Collapse
|
12
|
Effect of Chemical Agents on the Morphology and Chemical Structures of Microplastics. Polymers (Basel) 2022; 14:polym14204353. [PMID: 36297931 PMCID: PMC9609594 DOI: 10.3390/polym14204353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
Increased demand for plastics leads to a large amount of plastic manufacturing, which is accompanied by inappropriate disposal of plastics. The by-products of these waste plastics are microplastics (MPs; less than 5 nm in size), which are produced because of various environmental and physicochemical factors, posing hazardous effects to the ecosystem, such as the death of marine organisms due to the swallowing of plastic specks of no nutritional value. Therefore, the collection, preparation, identification, and recycling of these microsized plastics have become imperative. The pretreatment of MPs requires numerous chemical agents comprising strong acids, bases, and oxidizing agents. However, there is limited research on the chemical resistance of various MPs to these substances to date. In this study, the chemical resistance of five species of MPs (high-density polyethylene, low-density polyethylene, polystyrene, polyethylene terephthalate, and polypropylene) to sulfuric acid, hydrochloric acid, hydrogen peroxide, potassium hydroxide, and sodium hydroxide was studied. The MPs were reacted with these chemical reagents at preset temperatures and durations, and variations in morphology and chemical structures were detected when the MPs were reacted with mineral acids, such as sulfuric acid. The data pertaining to these changes in MP properties could be a significant reference for future studies on MP pretreatment with strong acids, bases, and oxidizing agents.
Collapse
|
13
|
Teo JYQ, Zheng XT, Seng DHL, Hui HK, Chee PL, Su X, Loh XJ, Lim JYC. Waste Polystyrene‐derived Sulfonated Fluorescent Carbon Nanoparticles for Cation Sensing. ChemistrySelect 2022. [DOI: 10.1002/slct.202202720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jerald Y. Q. Teo
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
| | - Debbie Hwee Leng Seng
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
| | - Hui Kim Hui
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
- Prof. Dr. JYC Lim Department of Materials Science and Engineering National University of Singapore (NUS) 9 Engineering Drive 1 Singapore Singapore 117576
| | - Jason Y. C. Lim
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
- Prof. Dr. JYC Lim Department of Materials Science and Engineering National University of Singapore (NUS) 9 Engineering Drive 1 Singapore Singapore 117576
| |
Collapse
|
14
|
Pelras T, Hofman AH, Germain LMH, Maan AMC, Loos K, Kamperman M. Strong Anionic/Charge-Neutral Block Copolymers from Cu(0)-Mediated Reversible Deactivation Radical Polymerization. Macromolecules 2022; 55:8795-8807. [PMID: 36245548 PMCID: PMC9558488 DOI: 10.1021/acs.macromol.2c01487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/30/2022] [Indexed: 11/29/2022]
Abstract
![]()
Despite recent developments in controlled polymerization
techniques,
the straightforward synthesis of block copolymers that feature both
strong anionic and charge-neutral segments remains a difficult endeavor.
In particular, solubility issues may arise during the direct synthesis
of strong amphiphiles and typical postpolymerization deprotection
often requires harsh conditions. To overcome these challenges, we
employed Cu(0)-mediated reversible deactivation radical polymerization
(Cu(0)-RDRP) on a hydrophobic isobutoxy-protected 3-sulfopropyl acrylate.
Cu(0)-RDRP enables the rapid synthesis of the polymer, reaching high
conversions and low dispersities while using a single solvent system
and low amounts of copper species. These macromolecules are straightforward
to characterize and can subsequently be deprotected in a mild yet
highly efficient fashion to expose their strongly charged nature.
Furthermore, a protected sulfonate segment could be grown from a variety
of charge-neutral macroinitiators to produce, after the use of the
same deprotection chemistry, a library of amphiphilic, double-hydrophilic
as well as thermoresponsive block copolymers (BCPs). The ability of
these various BCPs to self-assemble in aqueous media was further studied
by dynamic light scattering, ζ-potential measurements as well
as atomic force and electron microscopy.
Collapse
Affiliation(s)
- Théophile Pelras
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Anton H. Hofman
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Lieke M. H. Germain
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Anna M. C. Maan
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Kamperman
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
15
|
Hofman AH, Pedone M, Kamperman M. Protected Poly(3-sulfopropyl methacrylate) Copolymers: Synthesis, Stability, and Orthogonal Deprotection. ACS POLYMERS AU 2022; 2:169-180. [PMID: 35698473 PMCID: PMC9185742 DOI: 10.1021/acspolymersau.1c00044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
Abstract
Because of their permanent charge, strong polyelectrolytes remain challenging to characterize, in particular, when they are combined with hydrophobic features. For this reason, they are typically prepared through a postmodification of a fully hydrophobic precursor. Unfortunately, these routes often result in an incomplete functionalization or otherwise require harsh reaction conditions, thus limiting their applicability. To overcome these problems, in this work a strategy is presented that facilitates the preparation of well-defined strong polyanions by starting from protected 3-sulfopropyl methacrylate monomers. Depending on the chemistry of the protecting group, the hydrophobic precursor could be quantitatively converted into a strong polyanion under nucleophilic, acidic, or basic conditions. As a proof of concept, orthogonally protected diblock copolymers were synthesized, selectively deprotected, and allowed to self-assemble in aqueous solution. Further conversion into a fully water-soluble polyanion was achieved by deprotecting the second block as well.
Collapse
Affiliation(s)
- Anton H. Hofman
- Polymer Science, Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Matteo Pedone
- Polymer Science, Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Kamperman
- Polymer Science, Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
16
|
Balding P, Borrelli R, Volkovinsky R, Russo PS. Physical Properties of Sodium Poly(styrene sulfonate): Comparison to Incompletely Sulfonated Polystyrene. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul Balding
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rachel Borrelli
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ron Volkovinsky
- Chattahoochee High School, Johns Creek, Georgia 30022, United States
- Open Polymer Active Learning Laboratory, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Paul S. Russo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Hock S, Rein C, Rose M. 3D printed acidic monolithic catalysts for liquid phase catalysis with enhanced mass transfer properties. ChemCatChem 2022. [DOI: 10.1002/cctc.202101947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sebastian Hock
- TU Darmstadt: Technische Universitat Darmstadt Technische Chemie II GERMANY
| | - Christof Rein
- TU Darmstadt: Technische Universitat Darmstadt Technische Chemie II GERMANY
| | - Marcus Rose
- Technische Universitat Darmstadt Technische Chemie II Alarich-Weiss-Str. 8 64287 Darmstadt GERMANY
| |
Collapse
|
18
|
Khadem Modarresi Z, Mowla D, Karimi G. Electrodialytic separation of phosphate from sewage sludge ash using electrospun ion exchange membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Abbett RL, Chen Y, Schlenoff JB. Self-Exchange of Polyelectrolyte in Multilayers: Diffusion as a Function of Salt Concentration and Temperature. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rachel L. Abbett
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Yuhui Chen
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
20
|
Nicolas M, Beyou E, Fumagalli M. Two-step synthesis of polystyrene sulfonate based copolymers bearing pendant primary amines. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Bains W, Petkowski JJ, Zhan Z, Seager S. Evaluating Alternatives to Water as Solvents for Life: The Example of Sulfuric Acid. Life (Basel) 2021; 11:400. [PMID: 33925658 PMCID: PMC8145300 DOI: 10.3390/life11050400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/18/2022] Open
Abstract
The chemistry of life requires a solvent, which for life on Earth is water. Several alternative solvents have been suggested, but there is little quantitative analysis of their suitability as solvents for life. To support a novel (non-terrestrial) biochemistry, a solvent must be able to form a stable solution of a diverse set of small molecules and polymers, but must not dissolve all molecules. Here, we analyze the potential of concentrated sulfuric acid (CSA) as a solvent for biochemistry. As CSA is a highly effective solvent but a reactive substance, we focused our analysis on the stability of chemicals in sulfuric acid, using a model built from a database of kinetics of reaction of molecules with CSA. We consider the sulfuric acid clouds of Venus as a test case for this approach. The large majority of terrestrial biochemicals have half-lives of less than a second at any altitude in Venus's clouds, but three sets of human-synthesized chemicals are more stable, with average half-lives of days to weeks at the conditions around 60 km altitude on Venus. We show that sufficient chemical structural and functional diversity may be available among those stable chemicals for life that uses concentrated sulfuric acid as a solvent to be plausible. However, analysis of meteoritic chemicals and possible abiotic synthetic paths suggests that postulated paths to the origin of life on Earth are unlikely to operate in CSA. We conclude that, contrary to expectation, sulfuric acid is an interesting candidate solvent for life, but further work is needed to identify a plausible route for life to originate in it.
Collapse
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.J.P.); (Z.Z.); (S.S.)
- School of Physics & Astronomy, Cardiff University, 4 The Parade, Cardiff CF24 3AA, UK
| | - Janusz Jurand Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.J.P.); (Z.Z.); (S.S.)
| | - Zhuchang Zhan
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.J.P.); (Z.Z.); (S.S.)
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.J.P.); (Z.Z.); (S.S.)
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Poly (4-styrenesulfonic acid): A recoverable and reusable catalyst for acid hydrolysis of polyethylene terephthalate. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Golubenko D, Yaroslavtsev A. Development of surface-sulfonated graft anion-exchange membranes with monovalent ion selectivity and antifouling properties for electromembrane processes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118408] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Zhu M, Hao N, Zaheer M, Yang J, Li L. Preparation of Functional Long-Subchain Hyperbranched Polystyrenes via Post-polymerization Modification: Study on the Critical Role of Chemical Stability of Branching Linkage. ChemistryOpen 2020; 9:967-974. [PMID: 33005561 PMCID: PMC7512117 DOI: 10.1002/open.202000143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Indexed: 11/25/2022] Open
Abstract
Post-polymerization modification (PPM) is one of the most powerful strategy for preparing polymers with functional groups that cannot be synthesized by direct polymerization. So far, numerous experimental efforts have been devoted to the stability issue of monomer structures during the PPM process, but little attention was paid to chemical linkages. However, for hyperbranched polymers, a minor change of linkage unit could lead to a significant influence on the overall stability and performance of polymer materials. In this work, we investigated the chemical stability of long-subchain hyperbranched polystyrenes with ester, aryl ether, and carbon-carbon bonds as branching linkages under a few most popular PPM conditions, including NaOH hydrolysis reaction, TFA-promoted hydrolysis reaction, BBr3-catalyzed methoxy-hydroxyl conversion reaction, and LiAlH4 carbonyl reduction reaction. Related results are summarized into a synthetic route map that can provide practical and intuitive guidance for preparing functional long-subchain hyperbranched polystyrenes and other type of polymers by PPM for future applications.
Collapse
Affiliation(s)
- Mo Zhu
- Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefeiChina
| | - Nairong Hao
- Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefeiChina
| | - Muhammad Zaheer
- Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefeiChina
| | - Jinxian Yang
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina
| | - Lianwei Li
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina
| |
Collapse
|
25
|
Balding P, Li MC, Wu Q, Volkovinsky R, Russo P. Cellulose Nanocrystal-Polyelectrolyte Hybrids for Bentonite Water-Based Drilling Fluids. ACS APPLIED BIO MATERIALS 2020; 3:3015-3027. [PMID: 35025348 DOI: 10.1021/acsabm.0c00071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellulose nanocrystals (CNCs), with their rodlike shape and nanoscale dimensions, greatly improve the filtration performance of bentonite-containing, water-based drilling fluids (BT-WDFs) through interactions with the BT platelets. When these WDFs are exposed to high salt concentrations, though, their fluid retention properties are greatly diminished due to reduced CNC-BT interaction and BT aggregation/flocculation. Consequently, we reduce BT-BT interaction at high salt by grafting polyelectrolytes (PE) to CNC particles (CNC-PE) to enhance CNC-BT interactions when incorporating these hybrid particles with BT-WDFs. The particles sterically and electrostatically screen BT platelets from associating, thus improving fluid filtration performance at high salt. Three types of CNC modifications were carried out: grafting from direct surface initiation, modification with vinyl-terminated glycidyl methacrylate (GMA) before grafting, and physical mixing of CNC with a polymer. These modifications were performed using three polyelectrolyte materials: anionic polystyrene sulfonate (PSS), cationic polyacrylamide (PAM), and a random copolymer of PSS and PAM (PSS-co-PAM). Formulations containing CNC-PEs prepared by covalent grafting exhibited superior filtration properties compared to those in which CNCs and PEs were physically mixed. The higher graft loading achieved with the GMA method resulted in poorer filtration results compared to the direct grafting method due to CNC-PE interparticle cross-linking. PSS-modified CNC-PEs appeared to attach to BT edges, while PAM-modified CNC-PEs attached to the BT faces. These interactions disrupted BT aggregation, with the PSS-co-PAM CNC hybrid displaying the most desired filtration properties. The results highlight the importance of steric and charge stabilization of the BT particle edges and faces to achieve high-performance WDFs for well excavation.
Collapse
Affiliation(s)
- Paul Balding
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mei-Chun Li
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, Louisiana 70803, United States
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, Louisiana 70803, United States
| | - Ron Volkovinsky
- Chattahoochee High School, Johns Creek, Georgia 30022, United States.,Open Polymer Active Learning Laboratory, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Paul Russo
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
26
|
On the sulfonation of fluorinated aromatic polymers: Synthesis, characterization and effect of fluorinated side groups on sulfonation degree. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Kline AG, Lim MX, Jaeger HM. Precision measurement of tribocharging in acoustically levitated sub-millimeter grains. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:023908. [PMID: 32113436 DOI: 10.1063/1.5133049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Contact electrification of dielectric grains forms the basis for a myriad of physical phenomena. However, even the basic aspects of collisional charging between grains are still unclear. Here, we develop a new experimental method, based on acoustic levitation, which allows us to controllably and repeatedly collide two sub-millimeter grains and measure the evolution of their electric charges. This is, therefore, the first tribocharging experiment to provide complete electric isolation for the grain-grain system from its surroundings. We use this method to measure collisional charging rates between pairs of grains for three different material combinations: polyethylene-polyethylene, polystyrene-polystyrene, and polystyrene-sulfonated polystyrene. The ability to directly and noninvasively collide particles of different constituent materials, chemical functionality, size, and shape opens the door to detailed studies of collisional charging in granular materials.
Collapse
Affiliation(s)
- Adam G Kline
- Department of Physics and James Franck Institute, The University of Chicago, 929 E 57th St., Chicago, Illinois 60637, USA
| | - Melody X Lim
- Department of Physics and James Franck Institute, The University of Chicago, 929 E 57th St., Chicago, Illinois 60637, USA
| | - Heinrich M Jaeger
- Department of Physics and James Franck Institute, The University of Chicago, 929 E 57th St., Chicago, Illinois 60637, USA
| |
Collapse
|
28
|
Yu Z, Wang J, Hu Z, Hu C, Ding D, Yang B, Hu T, Gong X, Wu C, Hara M. Inside the Ionic Aggregates Constrained by Covalently Attached Polymer Chain Segments: Order or Disorder? ACS Macro Lett 2019; 8:841-845. [PMID: 35619506 DOI: 10.1021/acsmacrolett.9b00296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When a small-molecule ionic crystal is group-substituted with polymer chain-segments to form an ionomer, do its constrained ionic aggregates maintain ordered internal structures? This work presents, for a Na-salt sulfonated-polystyrene ionomer, reconciled TEM electron-diffraction schlieren textures and WAXS Bragg-type reflections from the ionic-aggregate nanodomains, which solidly prove the aggregates' internal (mono)crystalline order. The observed DSC endotherm of the ionomer, identified by WAXS as an order-disorder transition interior to its aggregates, gradually becomes enhanced over a 3-month, room-temperature physical aging process, indicating that the aggregates' ordering is a slow relaxation process in which the degree of order increases with time. This work corroborates an uncommon form of order, i.e., polymer-bound small-molecule ionic (quasi)crystal, which is supplementary to the order phenomena in small molecules, polymers, and liquid crystals.
Collapse
Affiliation(s)
- Zixin Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jie Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zhen Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chuanqun Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Dachuan Ding
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Bin Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Tao Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xinghou Gong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chonggang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Masanori Hara
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
29
|
Si J, Hao N, Zhang M, Cheng S, Liu A, Li L, Ye X. Universal Synthetic Strategy for the Construction of Topological Polystyrenesulfonates: The Importance of Linkage Stability during Sulfonation. ACS Macro Lett 2019; 8:730-736. [PMID: 35619531 DOI: 10.1021/acsmacrolett.9b00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polystyrenesulfonate (PSS), as one of the most important categories of polyelectrolytes, has received increasing attention due to its great potential in the applications of energy- and biomedical-related fields. However, most of the previous studies only focused on linear PSS and its derivatives, but little attention was paid to nonlinear topological PSSs. So far, the synthesis of nonlinear PSSs with well-defined structures is still a challenging task, and the main obstacle lies in the stability issue of functional chemical linkages during the sulfonation process of polystyrene (PS) precursors, such as the carbon-oxygen-containing linkages. Herein, by rationally designing the chemical structure of the functional linkage, we introduce a versatile and efficient strategy for the preparation of topological PSSs. Specifically, by embedding firm triazole linkages (without carbon-oxygen linkages) into the backbone structure of cyclic and hyperbranched PS precursors, the backbone and functional linkages are found to present excellent chemical stability under certain sulfonation conditions, which eventually lead to the successful preparation of cyclic and hyperbranched PSSs. By using two sets of PSS samples with varied molar masses, the scaling relations between the number of repeating units and the sedimentation coefficient are established for both linear and cyclic PSSs. We believe that our proposed synthetic strategy is universal and could be extended to the synthesis of other types of topological PSSs.
Collapse
|
30
|
Self-Assembly Investigations of Sulfonated Poly(methyl methacrylate-block-styrene) Diblock Copolymer Thin Films. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/4375838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Poly(methyl methacrylate-block-styrene) block copolymers (BCs) of low dispersity were selectively sulfonated on the styrenic segment. Several combinations of degree of polymerization and volume fraction of each block were investigated to access different self-assembled morphologies. Thin films of the sulfonated block copolymers were prepared by spin-coating and exposed to solvent vapor (SVA) or thermal annealing (TA) to reach equilibrium morphologies. Atomic force microscopy (AFM) was employed for characterizing the films, which exhibited a variety of nanometric equilibrium and nonequilibrium morphologies. Highly sulfonated samples revealed the formation of a honeycomb-like morphology obtained in solution rather than by the self-assembly of the BC in the solid state. The described morphologies may be employed in applications such as templates for nanomanufacturing and as cover and binder of catalytic particles in fuel cells.
Collapse
|
31
|
Kashima K, Fujisaki T, Serrano-Luginbühl S, Kissner R, Janošević Ležaić A, Bajuk-Bogdanović D, Ćirić-Marjanović G, Busato S, Ishikawa T, Walde P. Effect of Template Type on the Trametes versicolor Laccase-Catalyzed Oligomerization of the Aniline Dimer p-Aminodiphenylamine (PADPA). ACS OMEGA 2019; 4:2931-2947. [PMID: 31459521 PMCID: PMC6648283 DOI: 10.1021/acsomega.8b03441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/21/2019] [Indexed: 06/10/2023]
Abstract
Many previous studies have shown that (i) the oxidation of aniline or the aniline dimer p-aminodiphenylamine (PADPA) in a slightly acidic aqueous solution can be catalyzed with heme peroxidases or multicopper laccases and that (ii) subsequent reactions lead to oligomeric or polymeric products, which resemble chemically synthesized polyaniline in its conductive emeraldine salt form (PANI-ES), provided that (iii) an anionic "template" is present in the reaction medium. Good templates are anionic polyelectrolytes, micelles, or vesicles. Under optimal conditions, their presence directs the reactions in a positive way toward the desired formation of PANI-ES-type products. The effect of four different types of anionic templates on the formation of PANI-ES-like products from PADPA was investigated and compared by using Trametes versicolor laccase (TvL) as a catalyst in an aqueous pH 3.5 solution at room temperature. All four templates contain sulfonate groups: the sodium salt of the polyelectrolyte sulfonated polystyrene (SPS), micelles from sodium dodecylbenzenesulfonate (SDBS), vesicles from a 1:1 molar mixture of SDBS and decanoic acid, and vesicles from sodium bis(2-ethylhexyl)sulfosuccinate (AOT). Although with all four templates, stable, inkjet-printable solutions or suspensions consisting of PANI-ES-type products were obtained under optimized conditions, considerably higher amounts of TvL were required with SDBS micelles to achieve comparable monomer conversion to PANI-ES-like products during the same time period when compared to those with SPS or the two types of vesicles. This makes SDBS micelles less attractive as templates for the investigated reaction. In situ UV/vis/near-infrared, electron paramagnetic resonance (EPR), and Raman spectroscopy measurements in combination with an high-performance liquid chromatography analysis of extracted reaction products, which were deprotonated and chemically reduced, showed seemingly small but significant differences in the composition of the mixtures obtained when reaching reaction equilibrium after 24 h. With the two vesicle systems, the content of unwanted substituted phenazine units was lower than in the case of SPS polyelectrolyte and SDBS micelles. The EPR spectra indicate a more localized, narrower distribution of electronic states of the paramagnetic centers of the PANI-ES-type products synthesized in the presence of the two vesicle systems when compared to that of the similar products obtained with the SPS polyelectrolyte and SDBS micelles as templates. Overall, the data obtained from the different complementary methods indicate that with the two vesicle systems structurally more uniform (regular) PANI-ES-type products formed. Among the two investigated vesicle systems, for the investigated reaction (oxidation of PADPA with TvL and O2), AOT appears a somewhat better choice as it leads to a higher content of the PANI-ES polaron form.
Collapse
Affiliation(s)
- Keita Kashima
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Department
of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, 771 Nakakuki, Oyama, Tochigi 323-0806, Japan
| | - Tomoyuki Fujisaki
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Department
of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, 771 Nakakuki, Oyama, Tochigi 323-0806, Japan
| | | | - Reinhard Kissner
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | | | - Danica Bajuk-Bogdanović
- Faculty
of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Gordana Ćirić-Marjanović
- Faculty
of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Stephan Busato
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Takashi Ishikawa
- Department
of Biology and Chemistry, Paul Scherrer
Institute (PSI), CH-5231 Villigen, Switzerland
| | - Peter Walde
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
32
|
Hofman AH, Fokkink R, Kamperman M. A mild and quantitative route towards well-defined strong anionic/hydrophobic diblock copolymers: synthesis and aqueous self-assembly. Polym Chem 2019. [DOI: 10.1039/c9py01227c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Well-defined hydrophobic/strong anionic diblock copolymers were synthesized through a protected hydrophobic intermediate. Their self-assembly in aqueous solution was subsequently studied.
Collapse
Affiliation(s)
- Anton H. Hofman
- Physical Chemistry and Soft Matter
- Wageningen University
- 6708 WE Wageningen
- The Netherlands
- Polymer Science
| | - Remco Fokkink
- Physical Chemistry and Soft Matter
- Wageningen University
- 6708 WE Wageningen
- The Netherlands
| | - Marleen Kamperman
- Polymer Science
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
33
|
Ghoussoub YE, Fares HM, Delgado JD, Keller LR, Schlenoff JB. Antifouling Ion-Exchange Resins. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41747-41756. [PMID: 30456944 DOI: 10.1021/acsami.8b12865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Large quantities of organic ion-exchange resins are used worldwide for water decontamination and polishing. Fouling by microorganisms and decomposition products of natural organic matter severely limits the lifetime of these resins. Much research has thus been invested in polymer-based antifouling coatings. In the present study, poly(4-styrenesulfonate) (PSS) and a co-polymer of PSS and a zwitterionic group were used to spontaneously coat commercial Dowex 1X8 anion-exchange resin. UV-visible spectroscopy provided a precise measure of the kinetics and amount of PSS sorbed onto or into resin beads. When challenged with Chlamydomonas reinhardtii algae, uncoated resin was rapidly fouled by algae. Coating the resin with either the homopolymer of PSS or the co-polymer with zwitterion eliminated fouling. Using narrow- and wide-molecular-weight distribution PSS, a cutoff molecular weight of about 240 repeat units was found, above which PSS was unable to diffuse into the resin. Thus, only one monolayer of added PSS was sufficient to confer a highly desirable antifouling property on this resin while consuming less than 0.1% of the exchanger capacity. Radioactive sulfate ions were used to probe the kinetics of (self)exchange, which were virtually unaffected by the PSS coating. This resin treatment is a fast, ultra-low-cost step for potentially enhancing the lifetime of ion exchangers.
Collapse
|
34
|
Schulze-Zachau F, Bachmann S, Braunschweig B. Effects of Ca 2+ Ion Condensation on the Molecular Structure of Polystyrene Sulfonate at Air-Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11714-11722. [PMID: 30188134 PMCID: PMC6170951 DOI: 10.1021/acs.langmuir.8b02631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/05/2018] [Indexed: 06/02/2023]
Abstract
The structure of poly(sodium 4-styrenesulfonate) (NaPSS) polyelectrolytes at air-water interfaces was investigated with tensiometry, ellipsometry, and vibrational sum-frequency generation (SFG) in the presence of low and high CaCl2 concentrations. In addition, we have studied the foaming behavior of 20 mM NaPSS solutions to relate the PSS molecular structure at air-water interfaces to foam properties. PSS polyelectrolytes without additional salt exhibited significant surface activity, which can be tuned further by additions of CaCl2. The hydrophobicity of the backbone due to incomplete sulfonation during synthesis is one origin, whereas the effective charge of the polyelectrolyte chain is shown to play another major role. At low salt concentrations, we propose that the polyelectrolyte is forming a layered structure. The hydrophobic parts are likely to be located directly at the interface in loops, whereas the hydrophilic parts are at low concentrations stretched out into near-interface regions in tails. Increasing the Ca2+ concentration leads to ion condensation, a collapse of the tails, and likely to Ca2+ intra- and intermolecular bridges between polyelectrolytes at the interface. The increase in both surface excess and foam stability originates from changes in the polyelectrolyte's hydrophobicity due to Ca2+ condensation onto the PSS polyanions. Consequently, charge screening at the interface is enhanced and repulsive electrostatic interactions are reduced. Furthermore, SFG spectra of O-H stretching bands reveal a decrease in intensity of the low-frequency branch when c(Ca2+) is increased whereas the high-frequency branch of O-H stretching modes persists even for 1 M CaCl2. This originates from the remaining net charge of the PSS polyanions at the air-water interface that is not fully compensated by condensation of Ca2+ ions and leads to electric-field-induced contributions to the SFG spectra of interfacial H2O. A charge reversal of the PSS net charge at the air-water interface is not observed and is consistent with bulk electrophoretic mobility measurements.
Collapse
Affiliation(s)
- Felix Schulze-Zachau
- Institute
of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Silvia Bachmann
- Institute
of Particle Technology (LFG), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany
| | - Björn Braunschweig
- Institute
of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
35
|
Ghavidel Darestani N, Tikka A, Fatehi P. Sulfonated Lignin- g-Styrene Polymer: Production and Characterization. Polymers (Basel) 2018; 10:E928. [PMID: 30960853 PMCID: PMC6403612 DOI: 10.3390/polym10080928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 11/17/2022] Open
Abstract
Among sustainable alternatives for replacing fossil-based chemicals, lignin is widely available on earth, albeit the least utilized component of biomass. In this work, lignin was polymerized with styrene in aqueous emulsion systems. The reaction afforded a yield of 20 wt % under the conditions of 100 g/L lignin concentration, pH 2.5, 0.35 mol/L sodium dodecyl sulfate concentration, 5 mol/mol styrene/lignin ratio, 5 wt % initiator, 90 °C, and 2 h. The lignin-g-styrene product under the selected conditions had a grafting degree of 31 mol % of styrene, which was determined by quantitative proton nuclear magnetic resonance (NMR). The solvent addition to the reaction mixture and deoxygenation did not improve the yield of the polymerization reaction. The produced lignin-g-styrene polymer was then sulfonated using concentrated sulfuric acid. By introducing sulfonate group on the lignin-g-styrene polymers, the solubility and anionic charge density of 92 wt % (in a 10 g/L solution) and -2.4 meq/g, respectively, were obtained. Fourier-transform infrared (FTIR), static light scattering, two-dimensional COSY NMR, elemental analyses, and differential scanning calorimetry (DSC) were also employed to characterize the properties of the lignin-g-styrene and sulfonate lignin-g-styrene products. Overall, sulfonated lignin-g-styrene polymer with a high anionicity and water solubility was produced.
Collapse
Affiliation(s)
- Nasim Ghavidel Darestani
- Chemical Engineering and Chemistry Departments, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| | - Adrianna Tikka
- Chemical Engineering and Chemistry Departments, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| | - Pedram Fatehi
- Chemical Engineering and Chemistry Departments, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
36
|
Gallyamov MO, Nikolaev AY, Nikitin LN. Polystyrene Foamed with Supercritical CO2 as Possible Model System of the Membrane Materials for Flow Batteries. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18040028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Kendrick A, Neary WJ, Delgado JD, Bohlmann M, Kennemur JG. Precision Polyelectrolytes with Phenylsulfonic Acid Branches at Every Five Carbons. Macromol Rapid Commun 2018; 39:e1800145. [DOI: 10.1002/marc.201800145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/07/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Aaron Kendrick
- Department of Chemistry and Biochemistry; Florida State University; 95 Chieftan Way, DLC 118 Tallahassee FL 32306 USA
| | - William J. Neary
- Department of Chemistry and Biochemistry; Florida State University; 95 Chieftan Way, DLC 118 Tallahassee FL 32306 USA
| | - Jose D. Delgado
- Department of Chemistry and Biochemistry; Florida State University; 95 Chieftan Way, DLC 118 Tallahassee FL 32306 USA
| | - Michele Bohlmann
- Department of Chemistry and Biochemistry; Florida State University; 95 Chieftan Way, DLC 118 Tallahassee FL 32306 USA
| | - Justin G. Kennemur
- Department of Chemistry and Biochemistry; Florida State University; 95 Chieftan Way, DLC 118 Tallahassee FL 32306 USA
| |
Collapse
|
38
|
Kelly KD, Fares HM, Abou Shaheen S, Schlenoff JB. Intrinsic Properties of Polyelectrolyte Multilayer Membranes: Erasing the Memory of the Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3874-3883. [PMID: 29560720 DOI: 10.1021/acs.langmuir.8b00336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Polyelectrolyte multilayers (PEMUs) are ultrathin membranes made by alternating adsorption of oppositely charged polyelectrolytes on substrates. Although PEMUs have shown exceptional selectivity for certain ion-filtering applications, they usually contain an excess of one of the polyelectrolytes due to the history- and condition-dependent mode of PEMU assembly. This excess charge provides fixed sites for ion exchange, enhancing the concentration of oppositely charged ions. Thus, the ion-permselective properties of PEMUs cannot be compared unless they are assembled under identical conditions. This work demonstrates the enhanced permeability of PEMUs as-made from poly(diallyldimethylammonium) (PDADMA), and poly(styrene sulfonate) (PSS) to ferricyanide as an example of an anion. Annealing by NaCl followed by pairing of excess PDADMA with additional PSS produces an almost stoichiometric film that better reflects the intrinsic transport properties of PEMUs. This pairing, observed in real time using electrochemical methods, occurs at the PEMU/solution interface under countercurrent transport of PSS from solution and excess PDADMA paired with a counterion, termed PDADMA*, from the PEMU bulk. A quantitative comparison of PSS and PDADMA* diffusion reveals the conditions under which PEMU assembly depends on PSS molecular weight and concentration.
Collapse
Affiliation(s)
- Kristopher D Kelly
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306-4390 , United States
| | - Hadi M Fares
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306-4390 , United States
| | - Samir Abou Shaheen
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306-4390 , United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306-4390 , United States
| |
Collapse
|
39
|
Functionalization of Syndiotactic Polystyrene via Superacid-Catalyzed Friedel–Crafts Alkylation. Top Catal 2018. [DOI: 10.1007/s11244-018-0913-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Fares HM, Schlenoff JB. Diffusion of Sites versus Polymers in Polyelectrolyte Complexes and Multilayers. J Am Chem Soc 2017; 139:14656-14667. [PMID: 28981268 DOI: 10.1021/jacs.7b07905] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has long been assumed that the spontaneous formation of materials such as complexes and multilayers from charged polymers depends on (inter)diffusion of these polyelectrolytes. Here, we separately examine the mass transport of polymer molecules and extrinsic sites-charged polyelectrolyte repeat units balanced by counterions-within thin films of polyelectrolyte complex, PEC, using sensitive isotopic labeling techniques. The apparent diffusion coefficients of these sites within PEC films of poly(diallyldimethylammonium), PDADMA, and poly(styrenesulfonate), PSS, are at least 2 orders of magnitude faster than the diffusion of polyelectrolytes themselves. This is because site diffusion requires only local rearrangements of polyelectrolyte repeat units, placing far fewer kinetic limitations on the assembly of polyelectrolyte complexes in all of their forms. Site diffusion strongly depends on the salt concentration (ionic strength) of the environment, and diffusion of PDADMA sites is faster than that of PSS sites, accounting for the asymmetric nature of multilayer growth. Site diffusion is responsible for multilayer growth in the linear and into the exponential regimes, which explains how PDADMA can mysteriously "pass through" layers of PSS. Using quantitative relationships between site diffusion coefficient and salt concentration, conditions were identified that allowed the diffusion length to always exceed the film thickness, leading to full exponential growth over 3 orders of magnitude thickness. Both site and polymer diffusion were independent of molecular weight, suggesting that ion pairing density is a limiting factor. Polyelectrolyte complexes are examples of a broader class of dynamic bulk polymeric materials that (self-) assemble via the transport of cross-links or defects rather than actual molecules.
Collapse
Affiliation(s)
- Hadi M Fares
- Department of Chemistry and Biochemistry, The Florida State University , Tallahassee, Florida 32306-4390, United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University , Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
41
|
Braglia M, Ferrari IV, Djenizian T, Kaciulis S, Soltani P, Di Vona ML, Knauth P. Bottom-Up Electrochemical Deposition of Poly(styrene sulfonate) on Nanoarchitectured Electrodes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22902-22910. [PMID: 28608670 DOI: 10.1021/acsami.7b04335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The cathodic deposition of poly(styrene sulfonate) on nanoarchitectured TiO2 electrodes is explored by cyclic voltammetry and potentiostatic and galvanostatic experiments, showing a diffusion-controlled deposition described by Cottrell's law. The structure and composition of the polymer is evidenced by various spectroscopic techniques, including nuclear magnetic resonance, Fourier transform infrared, and X-ray photoelectron spectroscopy, and its morphology is studied by scanning electron microscopy. The average chain length can be estimated from the NMR spectra. The electropolymerization mechanism initiates by radical anion formation. The cycling behavior in half-cell batteries against Li metal is excellent, especially at high rates explored up to 10 C. The areal insertion capacity is above recent literature results, up to 80 μA h cm-2. The combination of normalized areal power density and areal energy density is one of the best reported in the literature.
Collapse
Affiliation(s)
- Michele Braglia
- Aix Marseille Univ (AMU) , CNRS, Madirel (UMR 7246), Electrochemistry of Materials Group, site St Jérôme, 13397 Marseille, France
- University of Rome Tor Vergata , Department of Industrial Engineering, Via del Politecnico 1, 00133 Rome, Italy
- International Associated Laboratory (L.I.A.): Ionomer Materials for Energy, Marseille, France and Rome, Italy
| | - Ivan Vito Ferrari
- Aix Marseille Univ (AMU) , CNRS, Madirel (UMR 7246), Electrochemistry of Materials Group, site St Jérôme, 13397 Marseille, France
- University of Rome Tor Vergata , Department of Industrial Engineering, Via del Politecnico 1, 00133 Rome, Italy
- International Associated Laboratory (L.I.A.): Ionomer Materials for Energy, Marseille, France and Rome, Italy
| | - Thierry Djenizian
- Flexible Electronics Department, Ecole Nationale Supérieure des Mines de Saint-Etienne , Center Microelectronics Provence, 13541 Gardanne, France
| | - Saulius Kaciulis
- Institute for the Study of Nanostructured Materials, ISMN - CNR , P.O. Box 10, 00015 Monterotondo Stazione, Rome, Italy
| | - Peiman Soltani
- Institute for the Study of Nanostructured Materials, ISMN - CNR , P.O. Box 10, 00015 Monterotondo Stazione, Rome, Italy
| | - Maria Luisa Di Vona
- University of Rome Tor Vergata , Department of Industrial Engineering, Via del Politecnico 1, 00133 Rome, Italy
- International Associated Laboratory (L.I.A.): Ionomer Materials for Energy, Marseille, France and Rome, Italy
| | - Philippe Knauth
- Aix Marseille Univ (AMU) , CNRS, Madirel (UMR 7246), Electrochemistry of Materials Group, site St Jérôme, 13397 Marseille, France
- International Associated Laboratory (L.I.A.): Ionomer Materials for Energy, Marseille, France and Rome, Italy
| |
Collapse
|
42
|
Affiliation(s)
- Hadi M. Fares
- Department of Chemistry and
Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and
Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
43
|
Electric Field-Driven Assembly of Sulfonated Polystyrene Microspheres. MATERIALS 2017; 10:ma10040329. [PMID: 28772690 PMCID: PMC5507009 DOI: 10.3390/ma10040329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 11/21/2022]
Abstract
A designed assembly of particles at liquid interfaces offers many advantages for development of materials, and can be performed by various means. Electric fields provide a flexible method for structuring particles on drops, utilizing electrohydrodynamic circulation flows, and dielectrophoretic and electrophoretic interactions. In addition to the properties of the applied electric field, the manipulation of particles often depends on the intrinsic properties of the particles to be assembled. Here, we present an easy approach for producing polystyrene microparticles with different electrical properties. These particles are used for investigations into electric field-guided particle assembly in the bulk and on surfaces of oil droplets. By sulfonating polystyrene particles, we produce a set of particles with a range of dielectric constants and electrical conductivities, related to the sulfonation reaction time. The paper presents diverse particle behavior driven by electric fields, including particle assembly at different droplet locations, particle chaining, and the formation of ribbon-like structures with anisotropic properties.
Collapse
|
44
|
Wan W, Yang X, Smith RC. Convenient route to tetraarylphosphonium polyelectrolytes via metal-catalysed P–C coupling polymerisation of aryl dihalides and diphenylphosphine. Chem Commun (Camb) 2017; 53:252-254. [DOI: 10.1039/c6cc08938k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A P–C bond-forming reaction has been applied to the convenient preparation of tetraarylphosphonium polyelectrolytes (TPELs) from aryl dihalides and diphenylphosphine.
Collapse
Affiliation(s)
- Wang Wan
- Department of Chemistry
- Clemson University
- Clemson
- USA
| | - Xiaoyan Yang
- Department of Chemistry
- Clemson University
- Clemson
- USA
| | - Rhett C. Smith
- Department of Chemistry
- Clemson University
- Clemson
- USA
- Centre for Optical Materials Science and Engineering Technologies
| |
Collapse
|
45
|
Huberty W, Tong X, Balamurugan S, Deville K, Russo PS, Zhang D. Colorful Polyelectrolytes: An Atom Transfer Radical Polymerization Route to Fluorescent Polystyrene Sulfonate. J Fluoresc 2016; 26:609-15. [PMID: 26745991 DOI: 10.1007/s10895-015-1747-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/07/2015] [Indexed: 12/01/2022]
Abstract
A labeled green fluorescent polystyrene sulfonate (LNaPSS) has been synthesized using atom transfer radical polymerization of a styrene sulfonate monomer with a fluorescent co-monomer, fluorescein thiocyanate-vinyl aniline. As a result this 100 % sulfonated polymer contains no hydrophobic patches along the chain backbone besides the fluorescent marker itself. The concentration of the fluorescent monomer was kept low to maintain the characteristic properties of the anionic polyelectrolyte, LNaPSS. ATRP conditions facilitated the production of polymers spanning a range of molecular weights from 35,000 to 175,000 in gram-scale batches with polydispersity indices of 1.01-1.24. Molecular weight increased with the monomer to initiator ratio. Gel permeation chromatography results show a unimodal distribution, and the polymer structure was also confirmed by (1)H NMR and FT-IR spectroscopy. Fluorescence spectroscopy confirmed covalent bonding of fluorescein isothiocyanate to the polymer, indicating that the polymer is suitable as a probe in fluorescence microscopy. To demonstrate this ability, the polymer was used to locate structural features in salt crystals formed during drying, as in the evaporation of sea mist. A second application to probe diffusion studies is also demonstrated.
Collapse
Affiliation(s)
- Wayne Huberty
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Xiaowei Tong
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Sreelatha Balamurugan
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kyle Deville
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Paul S Russo
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, LA, 70803, USA. .,School of Materials Science & Engineering, Georgia Institute of Technology, MRDC Building, 801 Ferst Drive, Atlanta, GA, 30332-0245, USA.
| | - Donghui Zhang
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
46
|
Wan WM, Baggett AW, Cheng F, Lin H, Liu SY, Jäkle F. Synthesis by free radical polymerization and properties of BN-polystyrene and BN-poly(vinylbiphenyl). Chem Commun (Camb) 2016; 52:13616-13619. [DOI: 10.1039/c6cc07332h] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Free radical polymerization of B-vinyl- and B-styryl-functionalized azaborinine monomers gives organic–inorganic hybrid polymers with distinctly different materials properties compared to the corresponding carbonaceous polystyrene derivatives.
Collapse
Affiliation(s)
- Wen-Ming Wan
- Department of Chemistry
- Rutgers University Newark
- Newark
- USA
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology
| | | | - Fei Cheng
- Department of Chemistry
- Rutgers University Newark
- Newark
- USA
| | - Huina Lin
- Department of Chemistry
- Rutgers University Newark
- Newark
- USA
| | - Shih-Yuan Liu
- Department of Chemistry
- Boston College
- Chestnut Hill
- USA
| | - Frieder Jäkle
- Department of Chemistry
- Rutgers University Newark
- Newark
- USA
| |
Collapse
|
47
|
Kolomanska J, Johnston P, Gregori A, Fraga Domínguez I, Egelhaaf HJ, Perrier S, Rivaton A, Dagron-Lartigau C, Topham PD. Design, synthesis and thermal behaviour of a series of well-defined clickable and triggerable sulfonate polymers. RSC Adv 2015. [DOI: 10.1039/c5ra13867a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the printing industry, the exploitation of triggerable materials that can have their surface properties altered on application of a post-deposition external stimulus has been crucial for the production of robust layers and patterns.
Collapse
Affiliation(s)
- Joanna Kolomanska
- Chemical Engineering and Applied Chemistry
- Aston University
- Birmingham
- UK
| | | | - Alberto Gregori
- Chemical Engineering and Applied Chemistry
- Aston University
- Birmingham
- UK
- Université de Pau et des Pays de l'Adour
| | - Isabel Fraga Domínguez
- Chemical Engineering and Applied Chemistry
- Aston University
- Birmingham
- UK
- Institut de Chimie de Clermont-Ferrand
| | | | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
- Monash University
| | - Agnès Rivaton
- Institut de Chimie de Clermont-Ferrand
- Equipe Photochimie
- UMR 6296
- Université Blaise Pascal
- 63171 Aubière Cedex
| | - Christine Dagron-Lartigau
- Université de Pau et des Pays de l'Adour
- Institut Plurisdisciplinaire de Recherche sur l'Environnement et les Matériaux
- UMR 5254
- 64 053 Pau Cedex 09
- France
| | - Paul D. Topham
- Chemical Engineering and Applied Chemistry
- Aston University
- Birmingham
- UK
| |
Collapse
|
48
|
Buonerba A, Speranza V, Canton P, Capacchione C, Milione S, Grassi A. Novel nanostructured semicrystalline ionomers by chemoselective sulfonation of multiblock copolymers of syndiotactic polystyrene with polybutadiene. RSC Adv 2014. [DOI: 10.1039/c4ra13253j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Akhavan B, Jarvis K, Majewski P. Development of oxidized sulfur polymer films through a combination of plasma polymerization and oxidative plasma treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1444-1454. [PMID: 24428447 DOI: 10.1021/la4045489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel two-step process consisting of plasma polymerization and oxidative plasma treatment is introduced in this article for the first time for the fabrication of -SO(x)(H)-functionalized surfaces. Plasma-polymerized thiophene (PPT) was initially deposited onto silicon wafers and subsequently SO(x)(H)-functionalized using air or oxygen plasma. The effectiveness of both air and oxygen plasma treatments in introducing sulfur-oxygen groups into the PPT film was investigated as the plasma input specific energy and treatment time were varied. The surface chemistries of untreated and treated PPT coatings were analyzed by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (ToF-SIMS), whereas spectroscopic ellipsometry was used to evaluate the film thickness and ablation rate. Surface chemistry analyses revealed that high concentrations of -SO(x)(H) functionalities were generated on the surface upon either air or oxygen plasma treatment. It was found that, at low plasma input energies, the oxidation process was dominant whereas, at higher energies, ablation of the film became more pronounced. The combination of thiophene plasma polymerization and air/oxygen plasma treatment was found to be a successful approach to the fabrication of -SO(x)(H)-functionalized surfaces.
Collapse
Affiliation(s)
- Behnam Akhavan
- School of Engineering, Mawson Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | | | | |
Collapse
|