1
|
Maingret V, Schmitt V, Héroguez V. Spatio-temporal control over destabilization of Pickering emulsions stabilized by light-sensitive dextran-based nanoparticles. Carbohydr Polym 2021; 269:118261. [PMID: 34294294 DOI: 10.1016/j.carbpol.2021.118261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022]
Abstract
The implementation of light-sensitive Pickering emulsions with spatio-temporal responsiveness in advanced applications like drug-delivery, colloidal or reaction engineering would open new avenues. However, curiously, light-sensitive Pickering emulsions are barely studied in the literature and their biocompatibility and/or degradability scarcely addressed. Thus, their development remains a major challenge. As an original strategy, we synthesized light-sensitive nanoparticles based on biocompatible Poly(NitroBenzylAcrylate) grafted dextran (Dex-g-PNBA) to stabilize O/W Pickering emulsions. The produced emulsions were stable in time and could undergo time and space-controlled destabilization under light stimulus. Irradiation time and alkaline pH-control of the aqueous phase were proved to be the actual key drivers of destabilization. As the nanoparticles themselves were photolyzed under light stimulus, possible harmful effects linked to accumulation of nanomaterials should be avoided. In addition to UV light (365 nm), visible light (405 nm) was successfully used for the spatio-temporal destabilization of the emulsions, offering perspectives for life science applications.
Collapse
Affiliation(s)
- Valentin Maingret
- Centre de Recherche Paul Pascal, UMR 5031, Univ. Bordeaux, CNRS, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France; Laboratoire de Chimie des Polymères Organiques, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal, UMR 5031, Univ. Bordeaux, CNRS, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France.
| | - Valérie Héroguez
- Laboratoire de Chimie des Polymères Organiques, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France.
| |
Collapse
|
2
|
|
3
|
El Founi M, Laroui H, Canup BSB, Ametepe JS, Vanderesse R, Acherar S, Babin J, Ferji K, Chevalot I, Six JL. Doxorubicin Intracellular Release Via External UV Irradiation of Dextran- g-poly( o-nitrobenzyl acrylate) Photosensitive Nanoparticles. ACS APPLIED BIO MATERIALS 2021; 4:2742-2751. [PMID: 35014313 DOI: 10.1021/acsabm.0c01644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study, innovative doxorubicin-loaded nanoparticles (NPs) made of a photosensitive poly(o-nitrobenzyl acrylate) (PNBA) hydrophobic matrix and an hydrophilic dextran (Dex) shell were first formulated by the emulsion-solvent evaporation process. Doxorubicin (DOX), a very well-known anticancer drug, was herein chosen as the model. DOX-loaded NPs were successfully produced by covering the hydrophobic PNBA core with Dex chains either physically adsorbed or covalently linked by changing process parameters as the presence of a catalyst (CuBr or CuSO4/ascorbic acid). It was then proved that the neutralization of DOX optimized drug loading. DOX loading and release were independent of the coverage mechanism if the catalyst used to covalently link the shell to the core was correctly chosen. Second, the kinetics of DOX release were investigated by simple diffusion or light irradiation of the NPs. Experiments showed that less than 20% of DOX was released by simple diffusion after 48 h in PBS or DMEM media when 45% of DOX released after only 30 s of light irradiation of the NPs. Finally, the impact of the phototriggered DOX release on cell viability was investigated on various cell lines [Caco-2, HepG2, HCT-116, and HT-29 cells as well as murine macrophages (RAW 264.7)]. Cellular mortality was evaluated to be dependent on the cell lines tested. Our approach provided an improved DOX release toward the human liver cancer cell line, and a high internalization of the PNBA-based NPs into HepG2 cells was observed using fluorescence microscopy.
Collapse
Affiliation(s)
| | - Hamed Laroui
- Department of Chemistry/Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Brandon S B Canup
- Department of Chemistry/Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Joseph S Ametepe
- Department of Chemistry/Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | | | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| | - Jérome Babin
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| | | | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| |
Collapse
|
4
|
Romano A, Roppolo I, Rossegger E, Schlögl S, Sangermano M. Recent Trends in Applying Rrtho-Nitrobenzyl Esters for the Design of Photo-Responsive Polymer Networks. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2777. [PMID: 32575481 PMCID: PMC7344511 DOI: 10.3390/ma13122777] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 01/08/2023]
Abstract
Polymers with light-responsive groups have gained increased attention in the design of functional materials, as they allow changes in polymers properties, on demand, and simply by light exposure. For the synthesis of polymers and polymer networks with photolabile properties, the introduction o-nitrobenzyl alcohol (o-NB) derivatives as light-responsive chromophores has become a convenient and powerful route. Although o-NB groups were successfully exploited in numerous applications, this review pays particular attention to the studies in which they were included as photo-responsive moieties in thin polymer films and functional polymer coatings. The review is divided into four different sections according to the chemical structure of the polymer networks: (i) acrylate and methacrylate; (ii) thiol-click; (iii) epoxy; and (iv) polydimethylsiloxane. We conclude with an outlook of the present challenges and future perspectives of the versatile and unique features of o-NB chemistry.
Collapse
Affiliation(s)
- Angelo Romano
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (A.R.); (I.R.)
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (A.R.); (I.R.)
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, Leoben 8700, Austria; (E.R.); (S.S.)
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, Leoben 8700, Austria; (E.R.); (S.S.)
| | - Marco Sangermano
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (A.R.); (I.R.)
| |
Collapse
|
5
|
An S, Kim H, Kim M, Kim S. Photoinduced Modulation of Polymeric Interfacial Behavior Controlling Thin-Film Block Copolymer Wetting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3046-3056. [PMID: 32151131 DOI: 10.1021/acs.langmuir.0c00266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The tunable surface-wetting properties of photosensitive random copolymer mats were used to spatially control the orientations of thin-film block copolymer (BCP) structures. A photosensitive mat was produced via thermal treatment on spin-coated random copolymers of poly(styrene-ran-2-nitrobenzyl methacrylate-ran-glycidyl methacrylate), synthesized via reversible-deactivation radical polymerization. The degree of UV-induced deprotection of the nitrobenzyl esters in the mat was precisely controlled through the amount of UV-irradiation energy imparted to the mat. The resulting polarity switching of the constituents collectively altered the interfacial wetting properties of the mat, and the tunability allowed lamellar or cylinder-forming poly(styrene-b-methyl methacrylate) BCP thin films, applied over the mat, to change the domain orientation from perpendicular to parallel at proper UV exposures. UV irradiation passing through a photomask was capable of generating defined regions of BCP domains with targeted orientations.
Collapse
Affiliation(s)
- Sol An
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Heein Kim
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Sangwon Kim
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea
| |
Collapse
|
6
|
Hegazy M, Zhou P, Rahoui N, Wu G, Taloub N, Lin Y, Huang X, Huang Y. A facile design of smart silica nanocarriers via surface-initiated RAFT polymerization as a dual-stimuli drug release platform. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Soliman SMA, El Founi M, Vanderesse R, Acherar S, Ferji K, Babin J, Six JL. Light-sensitive dextran-covered PNBA nanoparticles to continuously or discontinuously improve the drug release. Colloids Surf B Biointerfaces 2019; 182:110393. [DOI: 10.1016/j.colsurfb.2019.110393] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/07/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
|
8
|
Sedlacek O, Filippov SK, Svec P, Hruby M. SET‐LRP Synthesis of Well‐Defined Light‐Responsible Block Copolymer Micelles. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ondrej Sedlacek
- Institute of Macromolecular ChemistryAcademy of Sciences of the Czech Republic Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
- Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281 S4 B‐9000 Ghent Belgium
| | - Sergey K. Filippov
- Institute of Macromolecular ChemistryAcademy of Sciences of the Czech Republic Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
- School of Engineering and Applied ScienceHarvard University 9 Oxford Street Cambridge MA 02138 USA
| | - Pavel Svec
- Institute of Macromolecular ChemistryAcademy of Sciences of the Czech Republic Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Martin Hruby
- Institute of Macromolecular ChemistryAcademy of Sciences of the Czech Republic Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| |
Collapse
|
9
|
Sedlacek O, Monnery BD, Hoogenboom R. Synthesis of defined high molar mass poly(2-methyl-2-oxazoline). Polym Chem 2019. [DOI: 10.1039/c9py00013e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this communication, we report for the first time the synthesis of defined high molar mass poly(2-methyl-2-oxazoline) (PMeOx), a water-soluble polymer with excellent anti-fouling properties.
Collapse
Affiliation(s)
- Ondrej Sedlacek
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Bryn D. Monnery
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| |
Collapse
|
10
|
Moreno A, Galià M, Lligadas G, Percec V. SET-LRP in Biphasic Mixtures of the Nondisproportionating Solvent Hexafluoroisopropanol with Water. Biomacromolecules 2018; 19:4480-4491. [DOI: 10.1021/acs.biomac.8b01381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
11
|
Light-sensitive dextran-covered PNBA nanoparticles as triggered drug delivery systems: Formulation, characteristics and cytotoxicity. J Colloid Interface Sci 2018; 514:289-298. [DOI: 10.1016/j.jcis.2017.12.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/27/2022]
|
12
|
Sauvé ER, Tonge CM, Paisley NR, Cheng S, Hudson ZM. Cu(0)-RDRP of acrylates based on p-type organic semiconductors. Polym Chem 2018. [DOI: 10.1039/c8py00295a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of four acrylic monomers were synthesized based on p-type organic semiconductor motifs found commonly in organic light-emitting diodes (OLEDs), organic thin-film transistors (OTFTs) and organic photovoltaics (OPVs).
Collapse
Affiliation(s)
- Ethan R. Sauvé
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | | | - Nathan R. Paisley
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Susan Cheng
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Zachary M. Hudson
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
13
|
Grimm O, Wendler F, Schacher FH. Micellization of Photo-Responsive Block Copolymers. Polymers (Basel) 2017; 9:E396. [PMID: 30965699 PMCID: PMC6418654 DOI: 10.3390/polym9090396] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022] Open
Abstract
This review focuses on block copolymers featuring different photo-responsive building blocks and self-assembly of such materials in different selective solvents. We have subdivided the specific examples we selected: (1) according to the wavelength at which the irradiation has to be carried out to achieve photo-response; and (2) according to whether irradiation with light of a suitable wavelength leads to reversible or irreversible changes in material properties (e.g., solubility, charge, or polarity). Exemplarily, an irreversible change could be the photo-cleavage of a nitrobenzyl, pyrenyl or coumarinyl ester, whereas the photo-mediated transition between spiropyran and merocyanin form as well as the isomerization of azobenzenes would represent reversible response to light. The examples presented cover applications including drug delivery (controllable release rates), controlled aggregation/disaggregation, sensing, and the preparation of photochromic hybrid materials.
Collapse
Affiliation(s)
- Oliver Grimm
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany.
| | - Felix Wendler
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany.
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany.
| |
Collapse
|
14
|
Soliman SMA, Mohamed ME, Sabaa MW. Synthesis, characterization and application of gelatin-g-polyacrylonitrile and its nanoparticles. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2098-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Lligadas G, Grama S, Percec V. Recent Developments in the Synthesis of Biomacromolecules and their Conjugates by Single Electron Transfer-Living Radical Polymerization. Biomacromolecules 2017; 18:1039-1063. [PMID: 28276244 DOI: 10.1021/acs.biomac.7b00197] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X2. Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.
Collapse
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.,Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili , Tarragona, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
16
|
Li P, Zhang J, Dong CM. Photosensitive poly(o-nitrobenzyloxycarbonyl-l-lysine)-b-PEO polypeptide copolymers: synthesis, multiple self-assembly behaviors, and the photo/pH-thermo-sensitive hydrogels. Polym Chem 2017. [DOI: 10.1039/c7py01574g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We synthesize a photosensitive poly(o-nitrobenzyloxycarbonyl-l-lysine)-b-poly(ethylene glycol) block copolymer and fabricate three kinds of dual-sensitive (i.e., photo/pH-thermo) polypeptide normal and reverse micellar hydrogels.
Collapse
Affiliation(s)
- Pan Li
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jiacheng Zhang
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
17
|
Abstract
Photo-responsive polymers are able to change their structure, conformation and properties upon light irradiation.
Collapse
Affiliation(s)
- Olivier Bertrand
- Institute of Condensed Matter and Nanosciences (IMCN)
- Bio- and Soft Matter (BSMA)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| | - Jean-François Gohy
- Institute of Condensed Matter and Nanosciences (IMCN)
- Bio- and Soft Matter (BSMA)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| |
Collapse
|
18
|
Du X, Jiang Y, Zhuo R, Jiang X. Thermosensitive and photocleavable polyaspartamide derivatives for drug delivery. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao Du
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Yibo Jiang
- Agrotechnology and Food Sciences; Wageningen University; PO Box 17 6700 AA Wageningen The Netherlands
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| |
Collapse
|
19
|
Yamamoto S, Tochigi H, Yamazaki S, Nakahama S, Yamaguchi K. Synthesis of Amphiphilic Diblock Copolymer Using Heterobifunctional Linkers, Connected by a Photodegradable N-(2-Nitrobenzyl)imide Structure and Available for Two Different Click Chemistries. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20150445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | - Seiichi Nakahama
- Research Institute for Photofunctionalized Materials, Kanagawa University
| | - Kazuo Yamaguchi
- Department of Chemistry, Kanagawa University
- Research Institute for Photofunctionalized Materials, Kanagawa University
| |
Collapse
|
20
|
Anastasaki A, Nikolaou V, Haddleton DM. Cu(0)-mediated living radical polymerization: recent highlights and applications; a perspective. Polym Chem 2016. [DOI: 10.1039/c5py01916h] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cu(0)-mediated living radical polymerization or single electron transfer living radical polymerization (Cu(0)-mediated LRP or SET-LRP) is a versatile polymerization technique that has attracted considerable interest during the past few years for the facile preparation of advanced materials.
Collapse
Affiliation(s)
- Athina Anastasaki
- University of Warwick
- Chemistry Department
- Coventry
- UK
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | | | - David M. Haddleton
- University of Warwick
- Chemistry Department
- Coventry
- UK
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| |
Collapse
|
21
|
Soliman SMA, Colombeau L, Nouvel C, Babin J, Six JL. Amphiphilic photosensitive dextran-g-poly(o-nitrobenzyl acrylate) glycopolymers. Carbohydr Polym 2016; 136:598-608. [DOI: 10.1016/j.carbpol.2015.09.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 02/06/2023]
|
22
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
23
|
Ferji K, Nouvel C, Babin J, Li MH, Gaillard C, Nicol E, Chassenieux C, Six JL. Polymersomes from Amphiphilic Glycopolymers Containing Polymeric Liquid Crystal Grafts. ACS Macro Lett 2015; 4:1119-1122. [PMID: 35614815 DOI: 10.1021/acsmacrolett.5b00471] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For the first time, polymersomes were obtained by self-assembly in water of amphiphilic grafted glycopolymers based on dextran polysaccharidic backbone and polymeric liquid crystal grafts (poly(diethylene glycol cholesteryl ether acrylate), PDEGCholA). After measuring the properties of these glycopolymers in term of surfactancy, the influence of their structural parameters on their self-assemblies once dispersed in water was investigated by static and dynamic light scattering and by cryogenic transmission electron microscopy (cryo-TEM). Based on the results, a proper design of Dex-gN-PDEGCholAF leads to hollow vesicular structure formulation known as polymersome.
Collapse
Affiliation(s)
- Khalid Ferji
- Université de Lorraine, Laboratoire de Chimie Physique
Macromoléculaire LCPM, UMR 7375, Nancy F-54000, France
- CNRS, Laboratoire de Chimie
Physique Macromoléculaire
LCPM, UMR 7375, Nancy F-54000, France
- LUNAM Université, Université du Maine, Institut des Molécules et Matériaux du Mans UMR-CNRS
6283, Avenue Olivier Messiaen, F-72085 Le Mans cedex, France
| | - Cécile Nouvel
- Université de Lorraine, Laboratoire de Chimie Physique
Macromoléculaire LCPM, UMR 7375, Nancy F-54000, France
- CNRS, Laboratoire de Chimie
Physique Macromoléculaire
LCPM, UMR 7375, Nancy F-54000, France
| | - Jérôme Babin
- Université de Lorraine, Laboratoire de Chimie Physique
Macromoléculaire LCPM, UMR 7375, Nancy F-54000, France
- CNRS, Laboratoire de Chimie
Physique Macromoléculaire
LCPM, UMR 7375, Nancy F-54000, France
| | - Min-Hui Li
- Institut de Recherche
de Chimie Paris, UMR8247, CNRS - Chimie ParisTech (ENSCP), 11 rue Pierre et Marie Curie, F-75231 Paris, France
| | - Cédric Gaillard
- INRA, UR
1268
Unité Biopolymères Interactions Assemblages, F-44300 Nantes, France
| | - Erwan Nicol
- LUNAM Université, Université du Maine, Institut des Molécules et Matériaux du Mans UMR-CNRS
6283, Avenue Olivier Messiaen, F-72085 Le Mans cedex, France
| | - Christophe Chassenieux
- LUNAM Université, Université du Maine, Institut des Molécules et Matériaux du Mans UMR-CNRS
6283, Avenue Olivier Messiaen, F-72085 Le Mans cedex, France
| | - Jean-Luc Six
- Université de Lorraine, Laboratoire de Chimie Physique
Macromoléculaire LCPM, UMR 7375, Nancy F-54000, France
- CNRS, Laboratoire de Chimie
Physique Macromoléculaire
LCPM, UMR 7375, Nancy F-54000, France
| |
Collapse
|
24
|
Anastasaki A, Nikolaou V, Nurumbetov G, Wilson P, Kempe K, Quinn JF, Davis TP, Whittaker MR, Haddleton DM. Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis. Chem Rev 2015; 116:835-77. [DOI: 10.1021/acs.chemrev.5b00191] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Athina Anastasaki
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Vasiliki Nikolaou
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Gabit Nurumbetov
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Paul Wilson
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Kristian Kempe
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Thomas P. Davis
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Michael R. Whittaker
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - David M. Haddleton
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
25
|
Liu X, He J, Niu Y, Li Y, Hu D, Xia X, Lu Y, Xu W. Photo-responsive amphiphilic poly(α
-hydroxy acids) with pendent o
-nitrobenzyl ester constructed via copper-catalyzed azide-alkyne cycloaddition reaction. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3472] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiangyu Liu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Jingwen He
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Yile Niu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Yefei Li
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Ding Hu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Xinnian Xia
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Yanbing Lu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Weijian Xu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| |
Collapse
|
26
|
Bertrand O, Ernould B, Boujioui F, Vlad A, Gohy JF. Synthesis of polymer precursors of electroactive materials by SET-LRP. Polym Chem 2015. [DOI: 10.1039/c5py00896d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SET-LRP is used for the controlled copolymerisation of 2,2,6,6-tetramethylpiperidin-4-yl methacrylate (TMPM) with 3-azidopropyl methacrylate (AzPMA), followed by the oxidation of TMPM to produce electroactive poly(TEMPO methacrylate) (PTMA).
Collapse
Affiliation(s)
- Olivier Bertrand
- Institute of condensed Matter and Nanoscience (IMCN)
- Bio- and Soft Matter (BSMA)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| | - Bruno Ernould
- Institute of condensed Matter and Nanoscience (IMCN)
- Bio- and Soft Matter (BSMA)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| | - Fadoi Boujioui
- Institute of condensed Matter and Nanoscience (IMCN)
- Bio- and Soft Matter (BSMA)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| | - Alexandru Vlad
- Information and Communication Technologies
- Electronics and Applied Mathematics (ICTEAM)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| | - Jean-François Gohy
- Institute of condensed Matter and Nanoscience (IMCN)
- Bio- and Soft Matter (BSMA)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| |
Collapse
|