1
|
Xu J, Liang W, Zhang J, Dong Z, Lei C. Synthesis of Side-Chain Functional Poly(ε-caprolactone) via the Versatile and Robust Organo-Promoted Esterification Reaction. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
2
|
Abstract
ConspectusMarine organisms such as barnacle larvae and spores of algae adhere to underwater surfaces leading to marine biofouling. This phenomenon has numerous adverse impacts on marine industries and maritime activities. Due to the diversity of fouling organisms and the complexity of the marine environment, it is a huge challenge to combat marine biofouling, which limits the development and utilization of marine resources. Since the International Marine Organization banned the use of tributyltin self-polishing copolymer (SPC) coatings in 2008, the development of an environmentally friendly and efficient anti-biofouling polymer has been the most important task in this field. Tin-free SPC is a well-established and widely used polymer binder for anti-biofouling coating today. Being a nondegradable vinyl polymer, SPC exhibits poor anti-biofouling performance in static conditions. Even more, such nondegradable polymers were considered to be a source of microplastics by the International Union for the Conservation of Nature in 2019. Recently, numerous degradable polymers, which can form dynamic surface through main chain scission, have been developed for preventing marine biofouling in static conditions. Nevertheless, the regulation of their degradation and mechanical properties is limited, and they are also difficult to functionalize. A new polymer combining the advantages of vinyl polymers and degradable polymers is needed. However, such a combination is a challenge since the former are synthesized via free radical polymerization whereas the latter are synthesized via ring-opening polymerization.In this Account, we review our recent progress toward degradable vinyl polymers for marine anti-biofouling in terms of polymerization methods and structures and properties of polymers. First, we introduce the strategies for preparing degradable vinyl polymers with an emphasis on hybrid copolymerization. Then, we present the synthesis and performance of degradable and hydrolyzable polyacrylates, degradable polyurethanes with hydrolyzable side groups, and surface-fragmenting hyperbranched polymers. Polymers with degradable main chains and hydrolyzable side groups combine the advantages of SPC and degradable polymers, so they are degradable and functional. They are becoming new-generation polymers with great potential for preparing high-efficiency, long-lasting, environmentally friendly and broad-spectrum coatings to inhibit marine biofouling. They can also find applications in wastewater treatment, biomedical materials, and other fields.
Collapse
Affiliation(s)
- Jiansen Pan
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoqing Ai
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Wang R, Zhang H, Jiang M, Wang Z, Zhou G. Dynamics-Driven Controlled Polymerization to Synthesize Fully Renewable Poly(ester–ether)s. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rui Wang
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Houyu Zhang
- JiLin University, State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Min Jiang
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Zhipeng Wang
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Guangyuan Zhou
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, Liaoning, China
- Jiangsu Sino-Tech Polymerization New Materials Industry Technology Research Institute, 6 Qingyang Road, Changzhou 213125, Jiangsu, China
| |
Collapse
|
4
|
Flexible Gradient Poly(ether-ester) from the Copolymerization of Epoxides and ε-Caprolactone Mediated by a Hetero-bimetallic Complex. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2559-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Comparative study of enzyme-catalyzed biodegradation and crystallization behavior of PCL-PTEGMA amphiphilic hypergraft copolymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Mechanism-inspired Design of Heterodinuclear Catalysts for Copolymerization of Epoxide and Lactone. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2413-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Zhu S, Wang Y, Ding W, Zhou X, Liao Y, Xie X. Lewis pair catalyzed highly selective polymerization for the one-step synthesis of AzCy(AB)xCyAz pentablock terpolymers. Polym Chem 2020. [DOI: 10.1039/c9py01508f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A Et3B/DBU pair with a 2/1 feed ratio allowed for the chemoselective control and kinetic control over terpolymerization of epoxides, anhydrides and rac-lactides, affording unique AzCy(AB)xCyAz pentablock terpolymers in a one-step procedure.
Collapse
Affiliation(s)
- Shuaishuai Zhu
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Yong Wang
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Wanzhi Ding
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Xingping Zhou
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Yonggui Liao
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Xiaolin Xie
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| |
Collapse
|
8
|
Trimethoxysilyl end-capped hyperbranched polyglycidol/polycaprolactone copolymers for cell delivery and tissue repair: synthesis, characterisation and aqueous solution properties. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Clayman NE, Morris LS, LaPointe AM, Keresztes I, Waymouth RM, Coates GW. Dual catalysis for the copolymerisation of epoxides and lactones. Chem Commun (Camb) 2019; 55:6914-6917. [DOI: 10.1039/c9cc00493a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using a dual catalysis approach, epoxide/lactone copolymers were synthesized with control over tacticity, molecular weight, crystallinity, and comonomer content.
Collapse
Affiliation(s)
- Naomi E. Clayman
- Department of Chemistry, Stanford University
- Stanford
- California 94305-5080
- USA
| | | | - Anne M. LaPointe
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Ivan Keresztes
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University
- Stanford
- California 94305-5080
- USA
| | | |
Collapse
|
10
|
Xia Y, Zhao J. Macromolecular architectures based on organocatalytic ring-opening (co)polymerization of epoxides. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
|
12
|
Chwatko M, Lynd NA. Statistical Copolymerization of Epoxides and Lactones to High Molecular Weight. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00410] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Malgorzata Chwatko
- McKetta Department of Chemical
Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathaniel A. Lynd
- McKetta Department of Chemical
Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Organocatalytic copolymerization of mixed type monomers. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1925-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Hou W, Wang Q, Guo Z, Li J, Zhou Y, Wang J. Nanobelt α-CuV2O6 with hydrophilic mesoporous poly(ionic liquid): a binary catalyst for synthesis of 2,5-diformylfuran from fructose. Catal Sci Technol 2017. [DOI: 10.1039/c6cy02561g] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The task-specific binary catalyst composed of nanobelt α-CuV2O6 and hydrophilic mesoporous poly(ionic liquid) exhibited high efficiency and stable activity in the direct synthesis of 2,5-diformylfuran (DFF) from fructose.
Collapse
Affiliation(s)
- Wei Hou
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Zengjing Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Jing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| |
Collapse
|
15
|
Ling J, Wang X, You L, Shen Z. Thermoplastic elastomers based on poly(l-Lysine)-Poly(ε-Caprolactone) multi-block copolymers. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Xiaoqing Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Lixin You
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
16
|
Gosecki M, Gadzinowski M, Gosecka M, Basinska T, Slomkowski S. Polyglycidol, Its Derivatives, and Polyglycidol-Containing Copolymers-Synthesis and Medical Applications. Polymers (Basel) 2016; 8:E227. [PMID: 30979324 PMCID: PMC6432134 DOI: 10.3390/polym8060227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/24/2022] Open
Abstract
Polyglycidol (or polyglycerol) is a biocompatible polymer with a main chain structure similar to that of poly(ethylene oxide) but with a ⁻CH₂OH reactive side group in every structural unit. The hydroxyl groups in polyglycidol not only increase the hydrophilicity of this polymer but also allow for its modification, leading to polymers with carboxyl, amine, and vinyl groups, as well as to polymers with bonded aliphatic chains, sugar moieties, and covalently immobilized bioactive compounds in particular proteins. The paper describes the current state of knowledge on the synthesis of polyglycidols with various topology (linear, branched, and star-like) and with various molar masses. We provide information on polyglycidol-rich surfaces with protein-repelling properties. We also describe methods for the synthesis of polyglycidol-containing copolymers and the preparation of nano- and microparticles that could be derived from these copolymers. The paper summarizes recent advances in the application of polyglycidol and polyglycidol-containing polymers as drug carriers, reagents for diagnostic systems, and elements of biosensors.
Collapse
Affiliation(s)
- Mateusz Gosecki
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Mariusz Gadzinowski
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Monika Gosecka
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Teresa Basinska
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Stanislaw Slomkowski
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|
17
|
Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem Rev 2015; 116:2170-243. [PMID: 26713458 DOI: 10.1021/acs.chemrev.5b00441] [Citation(s) in RCA: 456] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The review summarizes current trends and developments in the polymerization of alkylene oxides in the last two decades since 1995, with a particular focus on the most important epoxide monomers ethylene oxide (EO), propylene oxide (PO), and butylene oxide (BO). Classical synthetic pathways, i.e., anionic polymerization, coordination polymerization, and cationic polymerization of epoxides (oxiranes), are briefly reviewed. The main focus of the review lies on more recent and in some cases metal-free methods for epoxide polymerization, i.e., the activated monomer strategy, the use of organocatalysts, such as N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) as well as phosphazene bases. In addition, the commercially relevant double-metal cyanide (DMC) catalyst systems are discussed. Besides the synthetic progress, new types of multifunctional linear PEG (mf-PEG) and PPO structures accessible by copolymerization of EO or PO with functional epoxide comonomers are presented as well as complex branched, hyperbranched, and dendrimer like polyethers. Amphiphilic block copolymers based on PEO and PPO (Poloxamers and Pluronics) and advances in the area of PEGylation as the most important bioconjugation strategy are also summarized. With the ever growing toolbox for epoxide polymerization, a "polyether universe" may be envisaged that in its structural diversity parallels the immense variety of structural options available for polymers based on vinyl monomers with a purely carbon-based backbone.
Collapse
Affiliation(s)
- Jana Herzberger
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| | - Kerstin Niederer
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Hannah Pohlit
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany.,Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany.,Department of Dermatology, University Medical Center , Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Jan Seiwert
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Matthias Worm
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany
| | - Frederik R Wurm
- Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany.,Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| |
Collapse
|
18
|
Saito T, Aizawa Y, Tajima K, Isono T, Satoh T. Organophosphate-catalyzed bulk ring-opening polymerization as an environmentally benign route leading to block copolyesters, end-functionalized polyesters, and polyester-based polyurethane. Polym Chem 2015. [DOI: 10.1039/c5py00533g] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To expand the potential of an organophosphate catalyst, ring-opening polymerization of cyclic esters, cyclic ester-ether, and cyclic carbonate was demonstrated under bulk conditions.
Collapse
Affiliation(s)
- Tatsuya Saito
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo, 060-8628
- Japan
| | - Yusuke Aizawa
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo, 060-8628
- Japan
| | - Kenji Tajima
- Division of Biotechnology and Macromolecular Chemistry
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Takuya Isono
- Division of Biotechnology and Macromolecular Chemistry
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Toshifumi Satoh
- Division of Biotechnology and Macromolecular Chemistry
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| |
Collapse
|