1
|
Zhang W, Chen Y. Self-assembled Janus base nanotubes: chemistry and applications. Front Chem 2024; 11:1346014. [PMID: 38374885 PMCID: PMC10876059 DOI: 10.3389/fchem.2023.1346014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
Janus base nanotubes are novel, self-assembled nanomaterials. Their original designs were inspired by DNA base pairs, and today a variety of chemistries has developed, distinguishing them as a new family of materials separate from DNA origami, carbon nanotubes, polymers, and lipids. This review article covers the principal examples of self-assembled Janus base nanotubes, which are driven by hydrogen-bond and π-π stacking interactions in aqueous environments. Specifically, self-complementary hydrogen bonds organize molecules into ordered arrays, forming macrocycles, while π-π interactions stack these structures to create tubular forms. This review elucidates the molecular interactions that govern the assembly of nanotubes and advances our understanding of nanoscale self-assembly in water.
Collapse
Affiliation(s)
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
2
|
Chen Z, Zhi Y, Li W, Li S, Liu Y, Tang X, Hu T, Shi L, Shan S. One-step synthesis of nitrogen-rich organic polymers for efficient catalysis of CO 2 cycloaddition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67290-67302. [PMID: 37103698 DOI: 10.1007/s11356-023-26728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/26/2023] [Indexed: 05/25/2023]
Abstract
Nitrogen-rich organic polymer poly(chloride triazole) (PCTs) was synthesized by a one-step method as metal-halogen-free heterogeneous catalyst for the solvent-free CO2 cycloaddition. PCTs had abundant nitrogen sites and hydrogen bond donors, exhibited great activity for the cycloaddition of CO2 and epichlorohydrin, and achieved 99.6% yield of chloropropene carbonate under the conditions of 110 ℃, 6 h, and 0.5 MPa CO2. The activation of epoxides and CO2 by hydrogen bond donor and nitrogen sites was further explained by density functional theory (DFT) calculations. In summary, this study showed that nitrogen-rich organic polymer is a versatile platform for CO2 cycloaddition, and this paper provides a reference for the design of CO2 cycloaddition catalysts.
Collapse
Affiliation(s)
- Zewen Chen
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Yunfei Zhi
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Wenlong Li
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Shuangjiang Li
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Yi Liu
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Xiaoning Tang
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Tianding Hu
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Lan Shi
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Shaoyun Shan
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
3
|
Schuster GB, Hud NV, Alenaizan A. Structural and Thermodynamic Control of Supramolecular Polymers and DNA Assemblies with Cyanuric Acid: Influence of Substituents and Intermolecular Interactions. J Phys Chem B 2022; 126:10758-10767. [PMID: 36502412 DOI: 10.1021/acs.jpcb.2c05934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the interactions and thermodynamic parameters that govern the structure and stability of supramolecular polymers is challenging because of their flexible nature and high sensitivity to weak intermolecular interactions. The application of both experimental and computational analyses reveals the role that substituents on cyanuric acid (Cy), and other nitrogen-containing heterocycles, play in the formation of novel helical supramolecular structures. In this report, we focus on how noncovalent interactions, including steric and stacking interactions, modulate the structural and physical properties of these assemblies. In-depth analyses and several examples of critical steric and electrostatic effects provide insight into the relationship between intermolecular interactions of Cy with nucleic acids and the structure and thermodynamic stability of the supramolecular polymers they form.
Collapse
Affiliation(s)
- Gary B Schuster
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Asem Alenaizan
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
4
|
Alenaizan A. Structural Analysis of the Poly(thymidine)-Melamine Assembly. J Phys Chem B 2022; 126:6948-6954. [PMID: 36027577 DOI: 10.1021/acs.jpcb.2c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen bonding between the DNA nucleobases and small organic molecules, such as melamine, is a new strategy for the design of novel DNA materials. Poly(thymidine) DNA and melamine self-assemble into a duplex structure containing two antiparallel DNA strands hydrogen bonded to central melamine units. In this Article, molecular dynamics simulations rationalize the observed antiparallel duplex structure. Alternative duplex and triplex structures with parallel and antiparallel strand orientations are shown to be unstable because of the increase in unfavorable interactions between the DNA backbones.
Collapse
Affiliation(s)
- Asem Alenaizan
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia 31261
| |
Collapse
|
5
|
Schuster GB, Cafferty BJ, Karunakaran SC, Hud NV. Water-Soluble Supramolecular Polymers of Paired and Stacked Heterocycles: Assembly, Structure, Properties, and a Possible Path to Pre-RNA. J Am Chem Soc 2021; 143:9279-9296. [PMID: 34152760 DOI: 10.1021/jacs.0c13081] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hypothesis that RNA and DNA are products of chemical and biological evolution has motivated our search for alternative nucleic acids that may have come earlier in the emergence of life-polymers that possess a proclivity for covalent and non-covalent self-assembly not exhibited by RNA. Our investigations have revealed a small set of candidate ancestral nucleobases that self-assemble into hexameric rosettes that stack in water to form long, twisted, rigid supramolecular polymers. These structures exhibit properties that provide robust solutions to long-standing problems that have stymied the search for a prebiotic synthesis of nucleic acids. Moreover, their examination by experimental and computational methods provides insight into the chemical and physical principles that govern a particular class of water-soluble one-dimensional supramolecular polymers. In addition to efficient self-assembly, their lengths and polydispersity are modulated by a wide variety of positively charged, planar compounds; their assembly and disassembly are controlled over an exceedingly narrow pH range; they exhibit spontaneous breaking of symmetry; and homochirality emerges through non-covalent cross-linking during hydrogel formation. Some of these candidate ancestral nucleobases spontaneously form glycosidic bonds with ribose and other sugars, and, most significantly, functionalized forms of these heterocycles form supramolecular structures and covalent polymers under plausibly prebiotic conditions. This Perspective recounts a journey of discovery that continues to reveal attractive answers to questions concerning the origins of life and to uncover the principles that control the structure and properties of water-soluble supramolecular polymers.
Collapse
Affiliation(s)
- Gary B Schuster
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Brian J Cafferty
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Suneesh C Karunakaran
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Yin M, Chen X, Wan Y, Zhang W, Feng L, Zhang L, Wang H. Doping Carbon Nitride Quantum Dots into Melamine‐Silver Matrix: An Efficient Photocatalyst with Tunable Morphology and Photocatalysis for H
2
O
2
Evolution under Visible Light. ChemCatChem 2020. [DOI: 10.1002/cctc.201902045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mengyuan Yin
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical EngineeringQufu Normal University Qufu City 273165 P. R. China
| | - Xi Chen
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150090 P. R. China
| | - Yuqi Wan
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical EngineeringQufu Normal University Qufu City 273165 P. R. China
| | - Wenwen Zhang
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical EngineeringQufu Normal University Qufu City 273165 P. R. China
| | - Luping Feng
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150090 P. R. China
| | - Lixiang Zhang
- School of EnvironmentHarbin Institute of Technology Harbin 150090 P. R. China
| | - Hua Wang
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical EngineeringQufu Normal University Qufu City 273165 P. R. China
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150090 P. R. China
- School of EnvironmentHarbin Institute of Technology Harbin 150090 P. R. China
| |
Collapse
|
7
|
Zhu L, Xiao Y, Zhang J, Zheng S, Lang M. Melamine-mediated supramolecular assembly of nucleobase-modified poly(l-lysine). Polym Chem 2019. [DOI: 10.1039/c9py01413f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Melamine (M) was used to drive the supramolecular assembly of thymine (T)-modified poly(l-lysine) into fibers or spherical micelles through simply adjusting the substitution degree of T and the concentration of M.
Collapse
Affiliation(s)
- Luqi Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Jiaxiao Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Siqi Zheng
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| |
Collapse
|