1
|
Ai S, Huang Z, Yu W, Huang C. Efficient dissolution of cellulose in slow-cooling alkaline systems and interacting modes between alkali and urea at the molecular level. Carbohydr Res 2024; 536:109054. [PMID: 38350405 DOI: 10.1016/j.carres.2024.109054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/15/2024]
Abstract
The dissolution of microcrystalline cellulose (MCC) in a urea-NaOH system is beneficial for its mechanical processing. The apparent MCC solubility was greatly improved to 14 wt% under a slow-cooling condition with a cooling rate of -0.3 °C/min. The cooling curve or thermal history played a crucial role in the dissolution process. An exotherm (-54.7 ± 3 J/g MCC) was detected by DSC only under the slow-cooling condition, and the cryogenic dissolution of MCC was attributed to the exothermic interaction between MCC and solvent. More importantly, the low cooling rate promoted the dissolution of MCC by providing enough time for the diffusion of OH- and urea into MCC granules at higher temperatures. The Raman spectral data showed that the intramolecularly and intermolecularly hydrogen bonds in cellulose were cleaved by NaOH and urea, respectively. XPS and solid-state 13C NMR results showed that hydrogen bonds were generated after dissolution, and a dual-hydrogen-bond binding mode between urea and cellulose was confirmed by DFT calculations. Both the decrease of enthalpy and increase of entropy dominated the spontaneity of MCC dissolution, and that is the reason for the indispensability of cryogenic environment. The high apparent solubility of MCC in the slow-cooling process and the dissolution mechanism are beneficial for the studies on cellulose modification and mechanical processing.
Collapse
Affiliation(s)
- Shuo Ai
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| | - Zhenhua Huang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Wanguo Yu
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| | - Chengdu Huang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| |
Collapse
|
2
|
Huang J, Gao J, Qi L, Gao Q, Fan L. Preparation and Properties of Starch-Cellulose Composite Aerogel. Polymers (Basel) 2023; 15:4294. [PMID: 37959975 PMCID: PMC10648849 DOI: 10.3390/polym15214294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, we conducted research on the preparation of aerogels using cellulose and starch as the primary materials, with the addition of N,N'-methylenebisacrylamide (MBA) as a cross-linking agent. The chemical, morphological and textural characteristics of the aerogels were found to be influenced by the proportions of cellulose, starch, and cross-linking agent that were utilized. An increase in the proportion of cellulose led to stronger adsorption forces within the aerogel structure. The aerogel showed a fine mesh internal structure, but the pores gradually increased with the further increase in cellulose. Notably, when the mass fractions of starch and cellulose were 5 wt% and 1 wt% respectively, the aerogels exhibited the smallest pore size and largest porosity. With an increase in the crosslinking agent, the internal structure of the aerogel first became dense and then loose, and the best internal structure was displayed at the addition of 3 wt%. Through texture analysis and the swelling test, the impact of the proportion of cellulose and MBA on the aerogel structure was significant. Dye adsorption experiments indicated that MBA affected the water absorption and expansion characteristics of the aerogel by improving the pore structure. Lastly, in tests involving the loading of vitamin E, the aerogels exhibited a higher capacity for incorporating vitamin E compared to native starch.
Collapse
Affiliation(s)
- Jihong Huang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China
| | - Jingyang Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (J.G.); (L.Q.)
| | - Liang Qi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (J.G.); (L.Q.)
| | - Qunyu Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (J.G.); (L.Q.)
| | - Ling Fan
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China
| |
Collapse
|
3
|
Gong Y, Yuan J, Pei Y, Liu S, Luo X. One-step quaternization and macromolecular reconstruction to prepare micro-/nano-porous cellulose beads from homogeneous solution for low-concentration amoxicillin removal. Carbohydr Polym 2023; 315:120985. [PMID: 37230622 DOI: 10.1016/j.carbpol.2023.120985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
Designing advanced functional cellulose-based materials by one-step homogeneous preparation technology is a great challenge since cellulose is insoluble in common solvents or difficult to regenerate and shape. Quaternized cellulose beads (QCB) were prepared from a homogeneous solution by one-step cellulose quaternization homogeneous modification and macromolecules' reconstruction technology. Morphological and structural characterizations of QCB were conducted by SEM, FTIR and XPS, etc. The adsorption behavior of QCB was studied using amoxicillin (AMX) as a model molecule. The adsorption of QCB for AMX was multilayer adsorption controlled by both physical adsorption and chemical adsorption. The removal efficiency for 60 mg L-1 AMX reached 98.60 % through electrostatic interaction, and the adsorption capacity reached 30.23 mg g-1. AMX adsorption was almost reversible without loss of binding efficiency after three cycles. This facile and green method may offer a promising strategy for the development of functional cellulose materials.
Collapse
Affiliation(s)
- Yaqi Gong
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China; Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China
| | - Jun Yuan
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China; Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou City 450001, Henan Province, PR China
| | - Shilin Liu
- School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou City 450001, Henan Province, PR China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430205, Hubei Province, PR China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China; Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China; School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou City 450001, Henan Province, PR China.
| |
Collapse
|
4
|
Vu AN, Le HNT, Phan TB, Le HV. Facile Hydrothermal Synthesis of Ag/Fe 3O 4/Cellulose Nanocomposite as Highly Active Catalyst for 4-Nitrophenol and Organic Dye Reduction. Polymers (Basel) 2023; 15:3373. [PMID: 37631430 PMCID: PMC10458654 DOI: 10.3390/polym15163373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Novel effluent treatment solutions for dangerous organic pollutants are crucial worldwide. In recent years, chemical reduction using noble metal-based nanocatalysts and NaBH4, a reducing agent, has become common practice for eliminating organic contaminants from aquatic environments. We suggest a straightforward approach to synthesizing magnetic cellulose nanocrystals (CNCs) modified with magnetite (Fe3O4) and silver nanoparticles (Ag NPs) as a catalyst for organic contamination removal. Significantly, the CNC surface was decorated with Ag NPs without using any reducing agents or stabilizers. PXRD, FE-SEM, TEM, EDX, VSM, BET, and zeta potential tests characterized the Ag/Fe3O4/CNC nanocomposite. The nanocomposite's catalytic activity was tested by eliminating 4-nitrophenol (4-NP) and the organic dyes methylene blue (MB) and methyl orange (MO) in an aqueous solution at 25 °C. The Ag/Fe3O4/CNC nanocomposite reduced 4-NP and decolored these hazardous organic dyes in a short time (2 to 5 min) using a tiny amount of catalyst (2.5 mg for 4-NP and 15 mg for MO and MB). The magnetic catalyst was removed and reused three times without losing catalytic activity. This work shows that the Ag/Fe3O4/CNC nanocomposite can chemically reduce harmful pollutants in effluent for environmental applications.
Collapse
Affiliation(s)
- An Nang Vu
- Faculty of Materials Science and Technology, University of Science, VNU-HCM, Ho Chi Minh City 700000, Vietnam; (A.N.V.); (H.N.T.L.)
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
| | - Hoa Ngoc Thi Le
- Faculty of Materials Science and Technology, University of Science, VNU-HCM, Ho Chi Minh City 700000, Vietnam; (A.N.V.); (H.N.T.L.)
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
- Laboratory of Multifunctional Materials, University of Science, VNU-HCM, Ho Chi Minh City 700000, Vietnam
| | - Thang Bach Phan
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
- Center for Innovative Materials and Architectures, VNU-HCM, Ho Chi Minh City 700000, Vietnam
| | - Hieu Van Le
- Faculty of Materials Science and Technology, University of Science, VNU-HCM, Ho Chi Minh City 700000, Vietnam; (A.N.V.); (H.N.T.L.)
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
- Laboratory of Multifunctional Materials, University of Science, VNU-HCM, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
5
|
Facile synthesis of self-dispersed β-cyclodextrin-coupled cellulose microgel for sustained release of vanillin. Int J Biol Macromol 2022; 208:70-79. [DOI: 10.1016/j.ijbiomac.2022.03.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/12/2022] [Accepted: 03/11/2022] [Indexed: 02/03/2023]
|
6
|
Liu L, Ji X, Mao L, Wang L, Chen K, Shi Z, Ahmed AAQ, Thomas S, Vasilievich RV, Xiao L, Li X, Yang G. Hierarchical-structured bacterial cellulose/potato starch tubes as potential small-diameter vascular grafts. Carbohydr Polym 2022; 281:119034. [DOI: 10.1016/j.carbpol.2021.119034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/17/2023]
|
7
|
KOH/thiourea aqueous solution: A potential solvent for studying the dissolution mechanism and chain conformation of corn starch. Int J Biol Macromol 2022; 195:86-92. [PMID: 34890635 DOI: 10.1016/j.ijbiomac.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022]
Abstract
Non-derivatizing, high-efficiency and low-toxicity solvents are important for studying the dissolution behavior and potential applications of starch. In this study, we investigated the starch dissolution mechanism and molecular conformation in KOH/thiourea aqueous solutions and compared these with KOH/urea and KOH aqueous solutions. Solubility analysis revealed that the KOH/thiourea solution demonstrates a better ability to dissolve corn starch than KOH/urea and KOH solutions. Rheological behavior and dynamic and static light scattering indicated that starch is stable in KOH/thiourea solution and exists as a regular star structure. Fourier transform infrared spectroscopy, 13C NMR, and molecular dynamics simulations indicated that hydrated K+ and OH- destroy the strong starch hydrogen bond interactions; thiourea hydrate self-assembles into a shell surrounding the starch-KOH complex through interaction with KOH, whereas there is no direct strong interaction between urea and KOH. Therefore, adding thiourea to a KOH solution can promote dissolution and prevent self-aggregation of the starch chain.
Collapse
|
8
|
Ge W, Shuai J, Wang Y, Zhou Y, Wang X. Progress on chemical modification of cellulose in “green” solvents. Polym Chem 2022. [DOI: 10.1039/d1py00879j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemical modification of cellulose in "green" solvents.
Collapse
Affiliation(s)
- Wenjiao Ge
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jianbo Shuai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuyuan Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuxi Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Pan H, Meng Q, Wang Q. Cellulose and chitosan based magnetic nanocomposite microspheres and its application. J Appl Polym Sci 2021. [DOI: 10.1002/app.51512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huiming Pan
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Qi Meng
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Qiyang Wang
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| |
Collapse
|
10
|
Jiang Z, Luo P, Xie C, Zhang A. Facile construction of cellulose/layered double hydroxides nanocomposite membranes with high strength and antibacterial properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.51845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhiwei Jiang
- School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou China
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South‐Central University for Nationalities Wuhan China
| | - Pan Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South‐Central University for Nationalities Wuhan China
| | - Chao Xie
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South‐Central University for Nationalities Wuhan China
| | - Aiqing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South‐Central University for Nationalities Wuhan China
| |
Collapse
|
11
|
Zhang Z, Sèbe G, Hou Y, Wang J, Huang J, Zhou G. Grafting polymers from cellulose nanocrystals via surface‐initiated atom transfer radical polymerization. J Appl Polym Sci 2021. [DOI: 10.1002/app.51458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhen Zhang
- SCNU‐TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics South China Normal University Guangzhou China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics South China Normal University Guangzhou China
| | - Gilles Sèbe
- Laboratoire de Chimie des Polymères Organiques University of Bordeaux, CNRS, Bordeaux INP Pessac France
| | - Yelin Hou
- Laboratoire de Chimie des Polymères Organiques University of Bordeaux, CNRS, Bordeaux INP Pessac France
| | | | - Jin Huang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing, and “the Belt and Road” International Joint Research Laboratory of Sustainable Materials Southwest University Chongqing China
- School of Chemistry and Chemical Engineering, and Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bintuan Shihezi University Shihezi China
| | - Guofu Zhou
- SCNU‐TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics South China Normal University Guangzhou China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics South China Normal University Guangzhou China
- Shenzhen Guohua Optoelectronics Tech. Co. Ltd. Shenzhen China
| |
Collapse
|
12
|
Lin L, Tsuchii K. Dissolution behavior of cellulose in a novel cellulose solvent. Carbohydr Res 2021; 511:108490. [PMID: 34952277 DOI: 10.1016/j.carres.2021.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
We have found that cellulose can be dissolved rapidly in the mixed solvent of tetrabutylammonium acetate (TBAA) and a polar aprotic solvents (PAS) at 50 °C and the obtained cellulose solution could be regenerated into cellulose film and fiber. The factors affecting the dissolution behavior of cellulose were investigated and it was found that the solubility and dissolution rate of cellulose in the mixed solvent are significantly dependent on the species of PAS and the molar ratio of PAS/TBAA. The suitable PAS are dimethyl sulfoxide, pyridine, dimethylacetamide, dimethylformamide and N-Methyl-2-pyrrolidone, and dimethyl sulfoxide is the best one in regard to the solubility and dissolution rate of cellulose. The optimal molar ratio of PAS/TBAA was determined by DN of the polar aprotic solvents. The dissolution behaviour of cellulose in the mixed solvent was proposed to involve the solvent diffusion, solvation of TBA+ as well as disruption of the intermolecular or intramolecular hydrogen bonds of cellulose.
Collapse
Affiliation(s)
- Lianzhen Lin
- Material Design & Application Research Laboratory, KRI, Inc., Kyoto Research Park, Kyoto, 600-8813, Japan.
| | - Kaname Tsuchii
- Material Design & Application Research Laboratory, KRI, Inc., Kyoto Research Park, Kyoto, 600-8813, Japan
| |
Collapse
|
13
|
Mendes ISF, Prates A, Evtuguin DV. Production of rayon fibres from cellulosic pulps: State of the art and current developments. Carbohydr Polym 2021; 273:118466. [PMID: 34560932 DOI: 10.1016/j.carbpol.2021.118466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 07/17/2021] [Indexed: 12/17/2022]
Abstract
The increasing demand for cellulosic fibres is continuously driven by the growing earth population and requirements of the textile industry. The annual cotton production of ca. 25 million tons is no longer enough to meet the market demands. This market gap of cellulosic fibres is progressively filled by regenerated cellulosic fibres derived from the dissolving pulp. The conventional industrial process of viscose production is far from being environmentally friendly due to the use of hazardous reagents. Alternatively, new trends in the production of regenerated fibres are related to the direct dissolution of cellulose in appropriate environmentally sound recyclable solvents, allowing high quality rayon fibres. This article reviews the sources of dissolving pulps used for the production of viscose and its quality parameters related to the performance of viscose production. The prospective cellulose regeneration processes, both commercialized and under development, are reviewed regarding current and future developments in the area.
Collapse
Affiliation(s)
- Inês S F Mendes
- CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - António Prates
- CAIMA-Indústria de Celulose S.A., P-2250 Constância, Portugal.
| | - Dmitry V Evtuguin
- CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
14
|
Yao Y, Zhou D, Shen Y, Wu H, Wang H. Morphology-controllable amphiphilic cellulose microgels made from self-assembly of hydrophobic long-chain bromide-alkylated-cellulose/gelatin copolymer. Carbohydr Polym 2021; 269:118265. [PMID: 34294297 DOI: 10.1016/j.carbpol.2021.118265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
A cellulose-based microgel is firstly synthesized via chemically coupling gelatin and cellulose, and then amphiphilic cellulose copolymers (HMGC) are prepared by alkylated cellulose-based microgel from different long-chain alkyl groups. The long-chain alkyl group is mainly bonded onto the residual hydroxyl group at C6 from the AGU of cellulose and the imino groups of gelatin, respectively. The results of self-assembly behavior of HMGC demonstrate that the critical aggregation concentrations of the microgels are in the range from 0.628 to 0.075 mg/mL, and the corresponding hydrodynamic diameters are between 104-1000 nm. Besides, the HMGC can self-assemble into microgels of various morphologies including cotton flocculence, sphere, rod-like, vesicle, flower-like cluster, snowflake-like, urchin-like, and coral shapes. These novel morphologies can be controlled by adjusting the degree of alkylation, the length of the alkyl chain, and the concentration of microgel. Furthermore, the possible formation mechanism of the multiform microgels is proposed from the chain conformation.
Collapse
Affiliation(s)
- Yijun Yao
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China.
| | - Dan Zhou
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Yanqin Shen
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Hailiang Wu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China.
| | - Hongru Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China
| |
Collapse
|
15
|
Gong Y, Liu L, Wang F, Pei Y, Liu S, Lyu R, Luo X. Aminated chitosan/cellulose nanocomposite microspheres designed for efficient removal of low-concentration sulfamethoxazole from water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Shi S, Cui M, Sun F, Zhu K, Iqbal MI, Chen X, Fei B, Li RKY, Xia Q, Hu J. An Innovative Solvent-Responsive Coiling-Expanding Stent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101005. [PMID: 34219279 DOI: 10.1002/adma.202101005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Indexed: 06/13/2023]
Abstract
Coronary artery disease is the "first killer" in the world, while the classical treatment for this disease is to implant stent. An ideal vascular stent should be nontoxic with self-expanding characteristics, quick expanding speed, and appropriate mechanical supporting property. However, no existing vascular stent covers all properties. Herein, a two-way shape-memory cellulose vascular stent, which can realize shape adjustments by mild solutions such as water and alcohol, is constructed. The shape-memory characteristics, mechanical properties, cell toxicity, and biocompatibility, are systemically investigated by ex vivo experiment as well as molecule simulation and theoretical modeling, revealing that the achieved bilayer two-way shape-memory films (BSMFs) can be used as an artificial vascular stent. In particular, this vascular stent made from BSMFs shows superb biocompatibility according to live/dead cell viability assays. Ex vivo experiments reveal that the novel vascular stent can support arteria coronaria sinistra, or the left main coronary artery, at the opening state while the cross-section of the vessel becomes two times larger than that of the initial state after implantation. Thus, it is believed that effective and scalable BSMFs can make meritorious fundamental contributions to biomaterials science and practical applications such as vascular stents.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Miao Cui
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fengxin Sun
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Kunkun Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Mohammad Irfan Iqbal
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong S.A.R, 999077, China
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bin Fei
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong S.A.R, 999077, China
| | - Robert K Y Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
- Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| |
Collapse
|
17
|
Hartati I, Sulistyo H, Sediawan WB, Azis MM, Fahrurrozi M. Microwave-Assisted Urea-Based-Hydrotropic Pretreatment of Rice Straw: Experimental Data and Mechanistic Kinetic Models. ACS OMEGA 2021; 6:13225-13239. [PMID: 34056472 PMCID: PMC8158827 DOI: 10.1021/acsomega.1c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The three major lignocellulose components can be transformed into various biomass-derived platform fuels, chemicals, and materials upon pretreatment and chemical upgrading. Lignocellulose pretreatment is an important step to obtain an eco-friendly, economical, and effective biomass utilization process. The combination of microwave heating and hydrotropic pretreatment is considered as a green method of lignocellulose pretreatment. Experimental data and two mechanistic kinetic models of microwave-assisted pretreatment of rice straw are presented. Here, the use of urea solution as the hydrotropic agent was examined to facilitate the degradation of three major lignocellulose components. The first kinetic model assumes that the soluble lignin does not undergo condensation, while the second one assumes that part of the soluble lignin condenses to a solid product. The mechanistic models were validated with a series of experimental data obtained from microwave-assisted hydrotropic pretreatment of rice straw. The results show that both models could generally describe the experimental data well. However, based on the evaluation of the results of the kinetic models, it turned out that the rate of lignin condensation was relatively slow compared to the rate of lignin degradation to soluble lignin (the value of k c is relatively small compared to the value of k l1). Hence, the kinetic model with exclusion of lignin condensation is suggested more since it is mathematically simpler. The proposed mechanistic model can also predict the cellulose and hemicellulose dissolution and thereby can be used as a process optimization tool. The microwave-assisted urea-based hydrotropic pretreatment conducted at a solid-liquid ratio of 1:35, a urea concentration of 36.8%, a reaction temperature of 90 °C, and a pretreatment duration of 73.6 min is predicted to give a solid residue with low lignin content and high cellulose content which resulted in a cellulose to lignin ratio of 5.53. Cellulosic biomass characterization revealed that microwave-assisted hydrotropic pretreatment was able to produce higher crystallinity and thermally stable cellulosic biomass.
Collapse
Affiliation(s)
- Indah Hartati
- Department
of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Chemical Engineering, Faculty
of Engineering, Universitas Wahid Hasyim, Semarang 50236, Indonesia
| | - Hary Sulistyo
- Department
of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Wahyudi Budi Sediawan
- Department
of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Muhammad Mufti Azis
- Department
of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Mohammad Fahrurrozi
- Department
of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
18
|
Abstract
Abstract
The presented chapter deals with structure, morphology, and properties aspects concerning cellulose-based polymers in both research and industrial production, such as cellulose fibers, cellulose membranes, cellulose nanocrystals, and bacterial cellulose, etc. The idea was to highlight the main cellulose-based polymers and cellulose derivatives, as well as the dissolution technologies in processing cellulose-based products. The structure and properties of cellulose are introduced briefly. The main attention has been paid to swelling and dissolution of cellulose in order to yield various kinds of cellulose derivatives through polymerization. The main mechanisms and methods are also presented. Finally, the environmental friendly and green cellulose-based polymers will be evaluated as one of the multifunctional and smart materials with significant progress.
Collapse
Affiliation(s)
- Xing Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
- School of Materials Science and Engineering, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Yaya Hao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Xin Zhang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Xinyu He
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Chaoqun Zhang
- College of Materials and Energy, South China Agricultural University , Guangzhou 510642 , P. R. China
| |
Collapse
|
19
|
Abstract
Desoxyribosenucleic acid, DNA, and cellulose molecules self-assemble in aqueous systems. This aggregation is the basis of the important functions of these biological macromolecules. Both DNA and cellulose have significant polar and nonpolar parts and there is a delicate balance between hydrophilic and hydrophobic interactions. The hydrophilic interactions related to net charges have been thoroughly studied and are well understood. On the other hand, the detailed roles of hydrogen bonding and hydrophobic interactions have remained controversial. It is found that the contributions of hydrophobic interactions in driving important processes, like the double-helix formation of DNA and the aqueous dissolution of cellulose, are dominating whereas the net contribution from hydrogen bonding is small. In reviewing the roles of different interactions for DNA and cellulose it is useful to compare with the self-assembly features of surfactants, the simplest case of amphiphilic molecules. Pertinent information on the amphiphilic character of cellulose and DNA can be obtained from the association with surfactants, as well as on modifying the hydrophobic interactions by additives.
Collapse
|
20
|
The effect of cellulose molecular weight on internal structure and properties of regenerated cellulose fibers as spun from the alkali/urea aqueous system. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Wu S, Gong Y, Liu S, Pei Y, Luo X. Functionalized phosphorylated cellulose microspheres: Design, characterization and ciprofloxacin loading and releasing properties. Carbohydr Polym 2021; 254:117421. [DOI: 10.1016/j.carbpol.2020.117421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/24/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
|
22
|
Joseph B, K SV, Sabu C, Kalarikkal N, Thomas S. Cellulose nanocomposites: Fabrication and biomedical applications. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2020. [DOI: 10.1016/j.jobab.2020.10.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
23
|
Wang G, Li F, Li L, Zhao J, Ruan X, Ding W, Cai J, Lu A, Pei Y. In Situ Synthesis of Ag-Fe 3O 4 Nanoparticles Immobilized on Pure Cellulose Microspheres as Recyclable and Biodegradable Catalysts. ACS OMEGA 2020; 5:8839-8846. [PMID: 32337446 PMCID: PMC7178767 DOI: 10.1021/acsomega.0c00437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/01/2020] [Indexed: 05/09/2023]
Abstract
The preparation of reusable and eco-friendly materials from renewable biomass resources such as cellulose is an inevitable choice for sustainable development. In this work, cellulose was dissolved in 7 wt % NaOH/12 wt % urea aqueous solution at -12 °C with rapid stirring. Cellulose microspheres (Cels) were fabricated by a sol-gel transition method. Subsequently, novel magnetic Ag-Fe3O4 nanoparticles (NPs) supported on cellulose microspheres were successfully constructed by an in situ one-pot synthesis. The magnetic cellulose microspheres (MCels) displayed a spherical shape with mesoporous structure and had a narrow particle size distribution (10-20 μm). Many nanopores with a pore diameter of 5-40 nm were observed in MCels. The Ag-Fe3O4 NPs were immobilized by anchoring with the hydroxyl groups on the surface of Cels. MCels were applied as a microreactor to evaluate their catalytic activities. 4-Nitrophenol (4-NP) could be reduced to 4-aminophenol (4-AP) in 5 min, catalyzed by MCels. Moreover, the magnetic microspheres exhibited a small hysteresis loop and low coercivity. Thus, MCels could be quickly gathered in water under a magnetic field in 10 s, as well as almost 9 cycle times, maintaining relatively high catalytic activity. In this work, cellulose matrix as the catalyst support could be biodegraded completely in the environment. It provided a green process for the utilization of biomass in nanocatalytic applications.
Collapse
Affiliation(s)
- Guozhen Wang
- Key
Laboratory for Deep Processing of Major Grain and Oil, College of
Food Science and Engineering, Wuhan Polytechnic
University, Wuhan 430023, China
| | - Fei Li
- Key
Laboratory for Deep Processing of Major Grain and Oil, College of
Food Science and Engineering, Wuhan Polytechnic
University, Wuhan 430023, China
| | - Lan Li
- Key
Laboratory for Deep Processing of Major Grain and Oil, College of
Food Science and Engineering, Wuhan Polytechnic
University, Wuhan 430023, China
| | - Jiayu Zhao
- Key
Laboratory for Deep Processing of Major Grain and Oil, College of
Food Science and Engineering, Wuhan Polytechnic
University, Wuhan 430023, China
| | - Xinxuan Ruan
- Key
Laboratory for Deep Processing of Major Grain and Oil, College of
Food Science and Engineering, Wuhan Polytechnic
University, Wuhan 430023, China
| | - Wenping Ding
- Key
Laboratory for Deep Processing of Major Grain and Oil, College of
Food Science and Engineering, Wuhan Polytechnic
University, Wuhan 430023, China
| | - Jie Cai
- Key
Laboratory for Deep Processing of Major Grain and Oil, College of
Food Science and Engineering, Wuhan Polytechnic
University, Wuhan 430023, China
| | - Ang Lu
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Ying Pei
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
| |
Collapse
|
24
|
Wang L, Yang C, Lu A, Liu S, Pei Y, Luo X. An easy and unique design strategy for insoluble humic acid/cellulose nanocomposite beads with highly enhanced adsorption performance of low concentration ciprofloxacin in water. BIORESOURCE TECHNOLOGY 2020; 302:122812. [PMID: 32007848 DOI: 10.1016/j.biortech.2020.122812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
In this work, two plant wastes were reused to fabricate the homogeneous 3D micro-nano porous structured humic acid/cellulose nanocomposite beads (IHA@CB) embedded with insoluble humic acid (IHA) particles. The subtle synthesis method attributed to the homogenous distribution of IHA particles in the cellulose matrix and improved the adsorption performance of IHA@CB for low concentration ciprofloxacin in water. Physical and chemical properties of the beads were characterized by SEM, EDX, XRD, FTIR, and the adsorption process of ciprofloxacin was studied by isotherm, kinetic and dynamic adsorption experiments. The maximum adsorption capacity of IHA@CB on CPX reached 10.87 mg g-1 under 318 K. The dynamic experiments were conducted by adjusting bed height, flow rate, initial concentration and pH values, and the regeneration experiments proved the adsorbent exhibited good repeatability. The adsorption mechanism was revealed that CPX was adsorbed by IHA@CB mainly through cation exchange.
Collapse
Affiliation(s)
- Langrun Wang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, China
| | - Cong Yang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City 450001, Henan Province, PR China
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City 450001, Henan Province, PR China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, China; School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City 450001, Henan Province, PR China.
| |
Collapse
|
25
|
Wang D, Wang Y, Yang J, He X, Wang RJ, Lu ZS, Qiao Y. Cellulose Aerogel Derived Hierarchical Porous Carbon for Enhancing Flavin-Based Interfacial Electron Transfer in Microbial Fuel Cells. Polymers (Basel) 2020; 12:E664. [PMID: 32192032 PMCID: PMC7183089 DOI: 10.3390/polym12030664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
The flavin-based indirect electron transfer process between electroactive bacteria and solid electrode is crucial for microbial fuel cells (MFCs). Here, a cellulose-NaOH-urea mixture aerogel derived hierarchical porous carbon (CPC) is developed to promote the flavin based interfacial electron transfer. The porous structure of the CPC can be tailored via adjusting the ratio of urea in the cellulose aerogel precursor to obtain CPCs with different type of dominant pores. According to the electrocatalytic performance of different CPC electrodes, the CPCs with higher meso- and macropore area exhibit greatly improved flavin redox reaction. While, the CPC-9 with appropriate porous structure achieves highest power density in Shewanella putrefaciens CN32 MFC due to larger active surface for flavin mediated interfacial electron transfer and higher biofilm loading. Considering that the CPC is just obtained from the pyrolysis of the cellulose-NaOH-urea aerogel, this work also provides a facile approach for porous carbon preparation.
Collapse
Affiliation(s)
- Deng Wang
- School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, Chongqing 400715, China
| | - Ying Wang
- School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, Chongqing 400715, China
| | - Jing Yang
- School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, Chongqing 400715, China
| | - Xiu He
- School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, Chongqing 400715, China
| | - Rui-Jie Wang
- School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, Chongqing 400715, China
| | - Zhi-Song Lu
- School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, Chongqing 400715, China
| | - Yan Qiao
- School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, Chongqing 400715, China
| |
Collapse
|
26
|
Wang J, Li X, Cheng Q, Lv F, Chang C, Zhang L. Construction of β-FeOOH@tunicate cellulose nanocomposite hydrogels and their highly efficient photocatalytic properties. Carbohydr Polym 2020; 229:115470. [DOI: 10.1016/j.carbpol.2019.115470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 01/24/2023]
|
27
|
Coagulation mechanism of cellulose/metal nanohybrids through a simple one-step process and their interaction with Cr (VI). Int J Biol Macromol 2020; 142:404-411. [DOI: 10.1016/j.ijbiomac.2019.09.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/27/2019] [Accepted: 09/15/2019] [Indexed: 11/18/2022]
|
28
|
Eco-friendly and biodegradable cellulose hydrogels produced from low cost okara: towards non-toxic flexible electronics. Sci Rep 2019; 9:18166. [PMID: 31796821 PMCID: PMC6890720 DOI: 10.1038/s41598-019-54638-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
With increasing resource shortage and environmental pollution, it is preferable to utilize materials which are sustainable and biodegradable. Side-streams products generated from the food processing industry is one potential avenue that can be used in a wide range of applications. In this study, the food by-product okara was effectively reused for the extraction of cellulose. Then, the okara cellulose was further employed to fabricate cellulose hydrogels with favorable mechanical properties, biodegrablability, and non-cytotoxicity. The results showed that it could be biodegraded in soil within 28 days, and showed no cytotoxicity on NIH3T3 cells. As a proof of concept, a demostration of wearable and biocompatible strain sensor was achieved, which allowed a good and stable detection of human body movement behaviors. The okara-based hydrogels could provide an alternative platform for further physical and/or chemical modification towards tissue engineering, medical supplies, or smart biomimetic soft materials.
Collapse
|
29
|
Luo X, Xia J, Jiang X, Yang M, Liu S. Cellulose-Based Strips Designed Based on a Sensitive Enzyme Colorimetric Assay for the Low Concentration of Glucose Detection. Anal Chem 2019; 91:15461-15468. [DOI: 10.1021/acs.analchem.9b03180] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No. 206, Guanggu First Road, Donghu New and High
Technology Development Zone, Wuhan 430205, Hubei Province, People’s Republic of China
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City 450001, Henan Province, People’s Republic of China
| | - Jian Xia
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No. 206, Guanggu First Road, Donghu New and High
Technology Development Zone, Wuhan 430205, Hubei Province, People’s Republic of China
| | - Xiangyang Jiang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No. 206, Guanggu First Road, Donghu New and High
Technology Development Zone, Wuhan 430205, Hubei Province, People’s Republic of China
| | - Mengru Yang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No. 206, Guanggu First Road, Donghu New and High
Technology Development Zone, Wuhan 430205, Hubei Province, People’s Republic of China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430205, Hubei Province, People’s Republic of China
| |
Collapse
|
30
|
Pei Y, Xu G, Wu X, Tang K, Wang G. Removing Pb(II) Ions from Aqueous Solution by a Promising Absorbent of Tannin-Immobilized Cellulose Microspheres. Polymers (Basel) 2019; 11:polym11030548. [PMID: 30960532 PMCID: PMC6473306 DOI: 10.3390/polym11030548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
Tannin/cellulose microspheres (T/C) were successfully prepared via a facile homogeneous reaction in a water/oil (W/O) emulsion for removing Pb(II) ions from aqueous solution. The structure of the microspheres was characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and a zeta potential test. The effects of pH, adsorbent dosage, contact time, and temperature on adsorption ability were investigated. The results showed that T/C microspheres could combine Pb(II)ions via electrostatic attractions and physical adsorption. Adsorption kinetics could be better described by the pseudo-second-order kinetic model. The adsorption behaviors were in agreement with the Langmuir adsorption isotherm model with a fitting correlation coefficient of 0.9992. The maximum adsorption capacity was 23.75 mg/g from the Langmuir isotherm evaluation at 308K with an initial pH of 5. The results suggested that tannin/cellulose microspheres could be a low-cost and effective adsorbent for removing Pb(II) ions from aqueous solution.
Collapse
Affiliation(s)
- Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
- School of Food Science and Engineering, Wuhan Polytechnic University, Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, China.
| | - Gaoqiang Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiao Wu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Guozhen Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, China.
| |
Collapse
|
31
|
Huang CF, Tu CW, Lee RH, Yang CH, Hung WC, Andrew Lin KY. Study of various diameter and functionality of TEMPO-oxidized cellulose nanofibers on paraquat adsorptions. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.01.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Yao Y, Wang H, Wang R, Chai Y. Novel cellulose-gelatin composite films made from self-dispersed microgels: Structure and properties. Int J Biol Macromol 2019; 123:991-1001. [DOI: 10.1016/j.ijbiomac.2018.11.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/30/2018] [Accepted: 11/18/2018] [Indexed: 12/26/2022]
|
33
|
Luo X, Liu L, Wang L, Liu X, Cai Y. Facile synthesis and low concentration tylosin adsorption performance of chitosan/cellulose nanocomposite microspheres. Carbohydr Polym 2019; 206:633-640. [DOI: 10.1016/j.carbpol.2018.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 01/12/2023]
|
34
|
Geng H. A facile approach to light weight, high porosity cellulose aerogels. Int J Biol Macromol 2018; 118:921-931. [PMID: 29964109 DOI: 10.1016/j.ijbiomac.2018.06.167] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/22/2018] [Accepted: 06/27/2018] [Indexed: 11/16/2022]
Abstract
This work reported a facile approach to make cellulose-based aerogels in NaOH/urea aqueous solution via freeze-drying hydrogels, which were obtained by mixing N,N'-methylene bisacrylamide (MBA) with cellulose solution at room temperature. The cellulose solution showed pronounced MBA-induced gelation behaviors. The obtained cellulose aerogels possessed a three dimensional network with macroporous structure (20-600 μm), low density (0.0820-0.0083 g/cm3), high porosity (90.3%-99.02%), moderate thermal stability (275 °C) and certain absorbency to Cu (II) (85 mg/g) and methylene blue (MB) (115 mg/g). Cellulose aerogels with different morphologies can be obtained by adjusting the cross-linking degree and the concentration of cellulose. This kind of aerogel provides an excellent matrix for the functionalization of cellulose-based aerogel.
Collapse
Affiliation(s)
- Hongjuan Geng
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199, PR China.
| |
Collapse
|
35
|
Qiu C, Zhu K, Yang W, Wang Y, Zhang L, Chen F, Fu Q. Super Strong All-Cellulose Composite Filaments by Combination of Inducing Nanofiber Formation and Adding Nanofibrillated Cellulose. Biomacromolecules 2018; 19:4386-4395. [DOI: 10.1021/acs.biomac.8b01262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Cuibo Qiu
- College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People’s Republic of China
| | - Kunkun Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, No. 16 Luojiashan Street, Wuhan 430072, People’s Republic of China
| | - Weixing Yang
- College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People’s Republic of China
| | - Yi Wang
- College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People’s Republic of China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, No. 16 Luojiashan Street, Wuhan 430072, People’s Republic of China
| | - Feng Chen
- College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People’s Republic of China
| | - Qiang Fu
- College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People’s Republic of China
| |
Collapse
|
36
|
Gao H, Duan B, Lu A, Deng H, Du Y, Shi X, Zhang L. Fabrication of cellulose nanofibers from waste brown algae and their potential application as milk thickeners. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.01.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Geng H. A one-step approach to make cellulose-based hydrogels of various transparency and swelling degrees. Carbohydr Polym 2018; 186:208-216. [PMID: 29455980 DOI: 10.1016/j.carbpol.2018.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/07/2018] [Accepted: 01/10/2018] [Indexed: 11/26/2022]
Abstract
This work reports a "one-step" approach to make cellulose-based hydrogels in NaOH/urea aqueous solution via mixing N,N'-methylene bisacrylamide (MBA) with cellulose solution at room temperature. The hydrogels were revealed to be formed by an addition reaction between the double bonds of MBA and the hydroxyl groups of cellulose. Two states of hydrogels, i.e. the freshly prepared hydrogels and the hydrogels at swelling equilibrium state in deionized water, were prepared. Water retention of the hydrogels can reach up to 330 g H2O/g dry hydrogel. The freshly prepared hydrogels showed increased mechanical strength and high transparency (94%) with the addition of MBA. The hydrogels at swelling equilibrium state displayed macroporous structures with the pore diameter up to 0.65 mm and showed significantly varied properties with various amount of MBA. The obtained hydrogel could be used as a good blank template for the functionalization of cellulose-based hydrogel.
Collapse
Affiliation(s)
- Hongjuan Geng
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250199, PR China.
| |
Collapse
|
38
|
Controlled Synthesis of Cu and Cu₂O NPs and Incorporation of Octahedral Cu₂O NPs in Cellulose II Films. NANOMATERIALS 2018; 8:nano8040238. [PMID: 29661992 PMCID: PMC5923568 DOI: 10.3390/nano8040238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 11/25/2022]
Abstract
In this study, Cu and Cu2O nanoparticles (NPs) were synthesized through chemical reduction of soluble copper-chelating ligand complexes using formaldehyde as a reducing agent. The influence of various chelating ligands, such as ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and a surface-active derivative of DTPA (C12-DTPA), as well as surfactants (i.e., hexadecyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium chloride (DoTAC), sodium dodecyl sulfate (SDS), and dimethyldodecylamine-N-oxide (DDAO)), on morphology and the composition of produced NPs was investigated. In the absence of surfactants, spherical copper particles with polycrystalline structure could be obtained. X-ray diffraction (XRD) analysis revealed that, in the presence of EDTA, the synthesized NPs are mainly composed of Cu with a crystallite size on the order of 35 nm, while with DTPA and C12-DTPA, Cu2O is also present in the NPs as a minority phase. The addition of ionic surfactants to the copper–EDTA complex solution before reduction resulted in smaller spherical particles, mainly composed of Cu. However, when DDAO was added, pure Cu2O nano-octahedrons were formed, as verified by high-resolution scanning electron microscopy (HR-SEM) and XRD. Furthermore, a hybrid material could be successfully prepared by mixing the octahedral Cu2O NPs with cellulose dissolved in a LiOH/urea solvent system, followed by spin-coating on silica wafers. It is expected that this simple and scalable route to prepare hybrid materials could be applied to a variety of possible applications.
Collapse
|
39
|
Luan Q, Zhou W, Zhang H, Bao Y, Zheng M, Shi J, Tang H, Huang F. Cellulose-Based Composite Macrogels from Cellulose Fiber and Cellulose Nanofiber as Intestine Delivery Vehicles for Probiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:339-345. [PMID: 29224351 DOI: 10.1021/acs.jafc.7b04754] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cellulose-based composite macrogels made by cellulose fiber/cellulose nanofiber (CCNM) were used as an intestine delivery vehicle for probiotics. Cellulose nanofiber (CNF) was prepared by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation system, and the carboxyl groups in CNF acted as pore size and pH responsibility regulators in CCNMs to regulate the probiotics loading and controlled release property. The macrogel presented a porosity of 92.68% with a CNF content of 90%, and the corresponding released viable Lactobacillus plantarum (L. plantarum) was up to 2.68 × 108 cfu/mL. The porous structure and high porosity benefited L. plantarum cells to infiltrate into the core of macrogels. In addition, the macrogels made with high contents of CNF showed sustainable release of L. plantarum cells and delivered enough viable cells to the desired region of intestine tracts. The porous cellulose macrogels prepared by a green and environmental friendly method show potential in the application of fabricating targeted delivery vehicles of bioactive agents.
Collapse
Affiliation(s)
- Qian Luan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Weijie Zhou
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Hao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Yuping Bao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Mingming Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Jie Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Hu Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| |
Collapse
|
40
|
Wang Y, Liu L, Chen P, Zhang L, Lu A. Cationic hydrophobicity promotes dissolution of cellulose in aqueous basic solution by freezing–thawing. Phys Chem Chem Phys 2018; 20:14223-14233. [DOI: 10.1039/c8cp01268g] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydrophobic cations accumulate at the cellulose interface, favouring the physical dissolution of cellulose in aqueous quaternary ammonium hydroxides.
Collapse
Affiliation(s)
- Yang Wang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Lijuan Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Pan Chen
- Wallenberg Wood Science Center, and the Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- SE-10044 Stockholm
- Sweden
- State Key Laboratory of Pulp and Paper Engineering
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Ang Lu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
41
|
Zhang H, Luo X, Tang H, Zheng M, Huang F. A novel candidate for wound dressing: Transparent porous maghemite/cellulose nanocomposite membranes with controlled release of doxorubicin from a simple approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Wang W, Bai Q, Liang T, Bai H, Liu X. Preparation of amino-functionalized regenerated cellulose membranes with high catalytic activity. Int J Biol Macromol 2017; 102:944-951. [DOI: 10.1016/j.ijbiomac.2017.04.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
|
43
|
Lei X, Dai X, Long S, Cai N, Ma Z, Luo X. Facile Design of Green Engineered Cellulose/Metal Hybrid Macrogels for Efficient Trace Phosphate Removal. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00587] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaojuan Lei
- Key
Laboratory for Green Chemical Process of Ministry of Education, Hubei
Key Laboratory for Novel Reactor and Green Chemistry Technology, School
of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei, China
| | - Xuehai Dai
- Key
Laboratory for Green Chemical Process of Ministry of Education, Hubei
Key Laboratory for Novel Reactor and Green Chemistry Technology, School
of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei, China
| | - Sihui Long
- Key
Laboratory for Green Chemical Process of Ministry of Education, Hubei
Key Laboratory for Novel Reactor and Green Chemistry Technology, School
of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei, China
| | - Ning Cai
- Key
Laboratory for Green Chemical Process of Ministry of Education, Hubei
Key Laboratory for Novel Reactor and Green Chemistry Technology, School
of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei, China
| | - Zhaocheng Ma
- Key
Laboratory of Horticultural Plant Biology (Ministry of Education),
College of Horticulture and Forestry, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan 430070, Hubei, China
| | - Xiaogang Luo
- Key
Laboratory for Green Chemical Process of Ministry of Education, Hubei
Key Laboratory for Novel Reactor and Green Chemistry Technology, School
of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei, China
| |
Collapse
|
44
|
Pei Y, Chu S, Chen Y, Li Z, Zhao J, Liu S, Wu X, Liu J, Zheng X, Tang K. Tannin-immobilized cellulose hydrogel fabricated by a homogeneous reaction as a potential adsorbent for removing cationic organic dye from aqueous solution. Int J Biol Macromol 2017; 103:254-260. [PMID: 28526343 DOI: 10.1016/j.ijbiomac.2017.05.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 11/17/2022]
Abstract
Tannin-immobilized cellulose (CT) hydrogels were successfully fabricated by homogeneous immobilization and crosslinking reaction via a simple method. The structures and properties of hydrogels were characterized by SEM and mechanical test. Methlyene Blue (MB) was selected as a cationic dye model, and the adsorption ability of CT hydrogel was evaluated. Tannins immobilized acted as adsorbent sites which combined MB by electrostatic attraction, resulting in the attractive adsorption ability of CT hydrogel. Adsorption kinetics could be better described by the pseudo-second-order model, and the absorption behaviors were in agreement with a Langmuir isotherm. The adsorption-desorption cycle of CT hydrogel was repeated six times without significant loss of adsorption capacity. In this work, both tannin immobilization and hydrogel formation were achieved simultaneously by a facile homogeneous reaction, providing a new pathway to fabricate tannin-immobilized materials for water treatment.
Collapse
Affiliation(s)
- Ying Pei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, PR China
| | - Shan Chu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yue Chen
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, PR China
| | - Zhidong Li
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, PR China
| | - Jin Zhao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, PR China
| | - Shuqi Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, PR China
| | - Xingjun Wu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, PR China
| | - Jie Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, PR China
| | - Xuejing Zheng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Keyong Tang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
45
|
Jiang X, Kitamura S, Sato T, Terao K. Chain Dimensions and Stiffness of Cellulosic and Amylosic Chains in an Ionic Liquid: Cellulose, Amylose, and an Amylose Carbamate in BmimCl. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00389] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- XinYue Jiang
- Department
of Macromolecular Science, Graduate School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shinichi Kitamura
- Graduate
School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho,
Nakaku, Sakai 599-8531, Japan
| | - Takahiro Sato
- Department
of Macromolecular Science, Graduate School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ken Terao
- Department
of Macromolecular Science, Graduate School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
46
|
Creation of the tunable color light emission of cellulose hydrogels consisting of primary rare-earth compounds. Carbohydr Polym 2017; 161:235-243. [DOI: 10.1016/j.carbpol.2017.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/17/2016] [Accepted: 01/05/2017] [Indexed: 11/16/2022]
|
47
|
Jiang X, Ryoki A, Terao K. Dimensional and hydrodynamic properties of cellulose tris(alkylcarbamate)s in solution: Side chain dependent conformation in tetrahydrofuran. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
A facile and efficient strategy for the fabrication of porous linseed gum/cellulose superabsorbent hydrogels for water conservation. Carbohydr Polym 2017; 157:1830-1836. [DOI: 10.1016/j.carbpol.2016.11.070] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 11/17/2022]
|
49
|
Duan J, Liang X, Zhu K, Guo J, Zhang L. Bilayer hydrogel actuators with tight interfacial adhesion fully constructed from natural polysaccharides. SOFT MATTER 2017; 13:345-354. [PMID: 27901170 DOI: 10.1039/c6sm02089e] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Smart hydrogel actuators with excellent biocompatibility and biodegradation are extremely desired for biomedical applications. Herein, we have constructed bio-hydrogel actuators inspired by the bilayer structures of plant organs from chitosan and cellulose/carboxymethylcellulose (CMC) solution in an alkali/urea aqueous system containing epichlorohydrin (ECH) as a crosslinker, and demonstrated tight adhesion between two layers through strong electrostatic attraction and chemical crosslinking. The bilayer hydrogels with excellent mechanical properties could carry out rapid, reversible, and repeated self-rolling deformation actuated by pH-triggered swelling/deswelling, and transformed into rings, tubules, and flower-, helix-, bamboo-, and wave-like shapes by effectively designing the geometric shape and size. The significant difference in the swelling behavior between the positively charged chitosan and the negatively charged cellulose/CMC layers generated enough force to actuate the performance of the hydrogels as soft grippers, smart encapsulators, and bioinspired lenses, showing potential applications in a wide range of fields including biomedicine, biomimetic machines, etc.
Collapse
Affiliation(s)
- Jiangjiang Duan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xichao Liang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Kunkun Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jinhua Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
50
|
Luo X, Lei X, Xie X, Yu B, Cai N, Yu F. Adsorptive removal of Lead from water by the effective and reusable magnetic cellulose nanocomposite beads entrapping activated bentonite. Carbohydr Polym 2016; 151:640-648. [DOI: 10.1016/j.carbpol.2016.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
|