1
|
Hou G, Li S, Liu J, Weng Y, Zhang L. Designing high performance polymer nanocomposites by incorporating robustness-controlled polymeric nanoparticles: insights from molecular dynamics. Phys Chem Chem Phys 2022; 24:2813-2825. [PMID: 35043809 DOI: 10.1039/d1cp04254h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Introducing polymeric nanoparticles into polymer matrices is an interesting topic, and the robustness of the polymeric nanoparticles is crucial for the properties of the polymer nanocomposites (PNCs). In this study, by incorporating star-shaped polymeric nanoparticles (SSPNs) into the polymer, the effect of the sphericity (η) and arm length (L) of the SSPNs on the mechanical properties of PNCs is systematically investigated, using a coarse-grained molecular dynamics simulation. In addition, the linear and spherical nanoparticles (NPs) are compared with SSPNs by fixing the approximate diameter and mass fraction of the NPs. The radial distribution function, the second virial coefficient, mean-squared displacement, bond autocorrelation function, and primitive path analysis are employed to systematically characterize the structure and dynamics of these new PNCs. It is found that the dispersion of the NPs is enhanced with the increase of η, and the entanglement density reaches maximum, which both contribute to the greatest mechanical reinforcing effect. More significantly, it is found that the classical Payne effect, namely the storage as a function of the strain amplitude, decreases remarkably, and with a much smaller loss factor for these SSPN filled polymer nanocomposites, compared to conventional PNCs filled with rigid NPs. Furthermore, the change of the arm length of the SSPNs is found to exhibit the same effect on the mechanical and viscoelastic properties, as the variation of the number of the arms. In general, this work shows that these new SSPN filled polymer nanocomposites can exceed conventional PNCs, by manipulating the robustness of the SSPNs using, for example, the number and length of the arms. This research may provide guidelines for the investigation of the structure-property relationships of the topological structure of polymeric nanoparticles.
Collapse
Affiliation(s)
- Guanyi Hou
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Sai Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China. .,Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China. .,Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China. .,Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
2
|
Ramakrishnan V, Goossens JGP, Hoeks TL, Peters GWM. Anomalous Terminal Shear Viscosity Behavior of Polycarbonate Nanocomposites Containing Grafted Nanosilica Particles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1839. [PMID: 34361225 PMCID: PMC8308399 DOI: 10.3390/nano11071839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022]
Abstract
Viscosity controls an important issue in polymer processing. This paper reports on the terminal viscosity behavior of a polymer melt containing grafted nanosilica particles. The melt viscosity behavior of the nanocomposites was found to depend on the interaction between the polymer matrix and the nanoparticle surface. In the case of polycarbonate (PC) nanocomposites, the viscosity decreases by approximately 25% at concentrations below 0.7 vol% of nanosilica, followed by an increase at higher concentrations. Chemical analysis shows that the decrease in viscosity can be attributed to in situ grafting of PC on the nanosilica surface, leading to a lower entanglement density around the nanoparticle. The thickness of the graft layer was found to be of the order of the tube diameter, with the disentangled zone being approximately equal to the radius of gyration (Rg) polymer chain. Furthermore, it is shown that the grafting has an effect on the motion of the PC chains at all timescales. Finally, the viscosity behavior in the PC nanocomposites was found to be independent of the molar mass of PC. The PC data are compared with polystyrene nanocomposites, for which the interaction between the polymer and nanoparticles is absent. The results outlined in this paper can be utilized for applications with low shear processing conditions, e.g., rotomolding, 3D printing, and multilayer co-extrusion.
Collapse
Affiliation(s)
- Vaidyanath Ramakrishnan
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands;
| | - Johannes G. P. Goossens
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands;
| | - Theodorus L. Hoeks
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands;
| | - Gerrit W. M. Peters
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands;
| |
Collapse
|
3
|
Lin EY, Frischknecht AL, Riggleman RA. Chain and Segmental Dynamics in Polymer–Nanoparticle Composites with High Nanoparticle Loading. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Emily Y. Lin
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amalie L. Frischknecht
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Robert A. Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Bailey EJ, Winey KI. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101242] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Lizundia E, Reizabal A, Costa CM, Maceiras A, Lanceros-Méndez S. Electroactive γ-Phase, Enhanced Thermal and Mechanical Properties and High Ionic Conductivity Response of Poly (Vinylidene Fluoride)/Cellulose Nanocrystal Hybrid Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E743. [PMID: 32041217 PMCID: PMC7040804 DOI: 10.3390/ma13030743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 01/30/2023]
Abstract
Cellulose nanocrystals (CNCs) were incorporated into poly (vinylidene fluoride) (PVDF) to tailor the mechanical and dielectric properties of this electroactive polymer. PVDF/CNC nanocomposites with concentrations up to 15 wt.% were prepared by solvent-casting followed by quick vacuum drying in order to ensure the formation of the electroactive γ-phase. The changes induced by the presence of CNCs on the morphology of PVDF and its crystalline structure, thermal properties, mechanical performance and dielectric behavior are explored. The results suggest a relevant role of the CNC surface -OH groups, which interact with PVDF fluorine atoms. The real dielectric constant ε' of nanocomposites at 200 Hz was found to increase by 3.6 times up to 47 for the 15 wt.% CNC nanocomposite due to an enhanced ionic conductivity provided by CNCs. The approach reported here in order to boost the formation of the γ-phase of PVDF upon the incorporation of CNCs serves to further develop cellulose-based multifunctional materials.
Collapse
Affiliation(s)
- Erlantz Lizundia
- Department of Graphic Design and Engineering Projects, Bilbao Faculty of Engineering, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
- BC Materials, Basque Center Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (A.R.); (A.M.); (S.L.-M.)
| | - Ander Reizabal
- BC Materials, Basque Center Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (A.R.); (A.M.); (S.L.-M.)
| | - Carlos M. Costa
- Centro de Física, Universidade do Minho, 4710-057 Braga, Portugal
- Centro de Química, Universidade do Minho, 4710-057 Braga, Portugal
| | - Alberto Maceiras
- BC Materials, Basque Center Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (A.R.); (A.M.); (S.L.-M.)
| | - Senentxu Lanceros-Méndez
- BC Materials, Basque Center Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (A.R.); (A.M.); (S.L.-M.)
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
6
|
Schweizer KS, Simmons DS. Progress towards a phenomenological picture and theoretical understanding of glassy dynamics and vitrification near interfaces and under nanoconfinement. J Chem Phys 2019; 151:240901. [PMID: 31893888 DOI: 10.1063/1.5129405] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nature of alterations to dynamics and vitrification in the nanoscale vicinity of interfaces-commonly referred to as "nanoconfinement" effects on the glass transition-has been an open question for a quarter century. We first analyze experimental and simulation results over the last decade to construct an overall phenomenological picture. Key features include the following: after a metrology- and chemistry-dependent onset, near-interface relaxation times obey a fractional power law decoupling relation with bulk relaxation; relaxation times vary in a double-exponential manner with distance from the interface, with an intrinsic dynamical length scale appearing to saturate at low temperatures; the activation barrier and vitrification temperature Tg approach bulk behavior in a spatially exponential manner; and all these behaviors depend quantitatively on the nature of the interface. We demonstrate that the thickness dependence of film-averaged Tg for individual systems provides a poor basis for discrimination between different theories, and thus we assess their merits based on the above dynamical gradient properties. Entropy-based theories appear to exhibit significant inconsistencies with the phenomenology. Diverse free-volume-motivated theories vary in their agreement with observations, with approaches invoking cooperative motion exhibiting the most promise. The elastically cooperative nonlinear Langevin equation theory appears to capture the largest portion of the phenomenology, although important aspects remain to be addressed. A full theoretical understanding requires improved confrontation with simulations and experiments that probe spatially heterogeneous dynamics within the accessible 1-ps to 1-year time window, minimal use of adjustable parameters, and recognition of the rich quantitative dependence on chemistry and interface.
Collapse
Affiliation(s)
- Kenneth S Schweizer
- Departments of Materials Science, Chemistry and Chemical & Biomolecular Engineering, Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - David S Simmons
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
7
|
Karatrantos A, Composto RJ, Winey KI, Kröger M, Clarke N. Modeling of Entangled Polymer Diffusion in Melts and Nanocomposites: A Review. Polymers (Basel) 2019; 11:E876. [PMID: 31091725 PMCID: PMC6571671 DOI: 10.3390/polym11050876] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 11/29/2022] Open
Abstract
This review concerns modeling studies of the fundamental problem of entangled (reptational) homopolymer diffusion in melts and nanocomposite materials in comparison to experiments. In polymer melts, the developed united atom and multibead spring models predict an exponent of the molecular weight dependence to the polymer diffusion very similar to experiments and the tube reptation model. There are rather unexplored parameters that can influence polymer diffusion such as polymer semiflexibility or polydispersity, leading to a different exponent. Models with soft potentials or slip-springs can estimate accurately the tube model predictions in polymer melts enabling us to reach larger length scales and simulate well entangled polymers. However, in polymer nanocomposites, reptational polymer diffusion is more complicated due to nanoparticle fillers size, loading, geometry and polymer-nanoparticle interactions.
Collapse
Affiliation(s)
- Argyrios Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland.
| | - Nigel Clarke
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK.
| |
Collapse
|
8
|
Orman S, Hofstetter C, Aksu A, Reinauer F, Liska R, Baudis S. Toughness enhancers for bone scaffold materials based on biocompatible photopolymers. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sandra Orman
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163, A‐1060, ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Christoph Hofstetter
- Institute of Materials Science and TechnologyTU WienGetreidemarkt 9/308, A‐1060, ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Adem Aksu
- Karl Leibinger Medizintechnik GmbH & Co. KGKolbinger Str. 10, D‐78570, Mühlheim Germany
| | - Frank Reinauer
- Karl Leibinger Medizintechnik GmbH & Co. KGKolbinger Str. 10, D‐78570, Mühlheim Germany
| | - Robert Liska
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163, A‐1060, ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Stefan Baudis
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163, A‐1060, ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| |
Collapse
|
9
|
Koodehi AV, Dadvand Koohi A. Optimization of Thermal Stability of High-Density Polyethylene Composite Using Antioxidant, Carbon Black and Nanoclay Addition by a Central Composite Design Method: X-ray Diffraction and Rheological Characterization. J MACROMOL SCI B 2018. [DOI: 10.1080/00222348.2018.1511030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Alaleh Vaghef Koodehi
- Chemical Engineering Department, Faculty of Engineering, University of Guilan, Rasht, Iran
| | - Ahmad Dadvand Koohi
- Chemical Engineering Department, Faculty of Engineering, University of Guilan, Rasht, Iran
| |
Collapse
|
10
|
You W, Yu W, Zhou C. Cluster size distribution of spherical nanoparticles in polymer nanocomposites: rheological quantification and evidence of phase separation. SOFT MATTER 2017; 13:4088-4098. [PMID: 28540378 DOI: 10.1039/c7sm00632b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Currently, it is a great challenge to characterize the dispersion quality of nanoparticles in nanocomposites through experimental techniques. In this work, we suggest a new rheological method based on the strain rate amplification effect to determine the cluster size distribution in polymer nanocomposites. The dispersion exponents of nanoparticles from this rheological method are in good agreement with the cluster analysis of transmission electron microscope (TEM) images. We also obtain a critical value of the dispersion exponent from the effective specific surface area of clusters, which separates the well-dispersed state and the phase-separated state. Our results indicate that rheology can be used as a convenient and effective structural analysis method to characterize the nanoparticle cluster size distribution in polymer nanocomposites.
Collapse
Affiliation(s)
- Wei You
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | | | | |
Collapse
|
11
|
Karatrantos A, Composto RJ, Winey KI, Clarke N. Polymer and spherical nanoparticle diffusion in nanocomposites. J Chem Phys 2017; 146:203331. [DOI: 10.1063/1.4981258] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Argyrios Karatrantos
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Russell J. Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nigel Clarke
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| |
Collapse
|
12
|
Zhao W, Su Y, Gao X, Qian Q, Chen X, Wittenbrink R, Wang D. Confined crystallization behaviors in polyethylene/silica nanocomposites: Synergetic effects of interfacial interactions and filler network. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weiwei Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yunlan Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
| | - Xia Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
| | - Qingyun Qian
- ExxonMobil Asia Pacific Research & Development Co., Ltd; No. 1099 Zixing Road, Minhang District Shanghai 200241 China
| | - Xin Chen
- ExxonMobil Asia Pacific Research & Development Co., Ltd; No. 1099 Zixing Road, Minhang District Shanghai 200241 China
| | - Robert Wittenbrink
- ExxonMobil Asia Pacific Research & Development Co., Ltd; No. 1099 Zixing Road, Minhang District Shanghai 200241 China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
13
|
Affiliation(s)
- Chia-Chun Lin
- Department of Materials Science
and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Emmabeth Parrish
- Department of Materials Science
and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Russell J. Composto
- Department of Materials Science
and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| |
Collapse
|
14
|
Karatrantos A, Clarke N, Composto RJ, Winey KI. Entanglements in polymer nanocomposites containing spherical nanoparticles. SOFT MATTER 2016; 12:2567-2574. [PMID: 26853774 DOI: 10.1039/c5sm02010g] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We investigate the polymer packing around nanoparticles and polymer/nanoparticle topological constraints (entanglements) in nanocomposites containing spherical nanoparticles in comparison to pure polymer melts using molecular dynamics (MD) simulations. The polymer-nanoparticle attraction leads to good dispersion of nanoparticles. We observe an increase in the number of topological constraints (decrease of total entanglement length Ne with nanoparticle loading in the polymer matrix) in nanocomposites due to nanoparticles, as evidenced by larger contour lengths of the primitive paths. An increase of the nanoparticle radius reduces the polymer-particle entanglements. These studies demonstrate that the interaction between polymers and nanoparticles does not affect the total entanglement length because in nanocomposites with small nanoparticles, the polymer-nanoparticles topological constraints dominate.
Collapse
Affiliation(s)
- Argyrios Karatrantos
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK.
| | - Nigel Clarke
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK.
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
15
|
Karatrantos A, Clarke N, Kröger M. Modeling of Polymer Structure and Conformations in Polymer Nanocomposites from Atomistic to Mesoscale: A Review. POLYM REV 2016. [DOI: 10.1080/15583724.2015.1090450] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Ligon-Auer SC, Schwentenwein M, Gorsche C, Stampfl J, Liska R. Toughening of photo-curable polymer networks: a review. Polym Chem 2016. [DOI: 10.1039/c5py01631b] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review surveys relevant scientific papers and patents on the development of crosslinked epoxies and also photo-curable polymers based on multifunctional acrylates with improved toughness.
Collapse
Affiliation(s)
- Samuel Clark Ligon-Auer
- Institute of Applied Synthetic Chemistry
- Technische Universität Wien
- 1060 Vienna
- Austria
- Christian Doppler Laboratory for Digital and Restorative Dentistry
| | | | - Christian Gorsche
- Institute of Applied Synthetic Chemistry
- Technische Universität Wien
- 1060 Vienna
- Austria
- Christian Doppler Laboratory for Digital and Restorative Dentistry
| | - Jürgen Stampfl
- Christian Doppler Laboratory for Digital and Restorative Dentistry
- Technische Universität Wien
- Vienna
- Austria
- Institute of Materials Science and Technology
| | - Robert Liska
- Institute of Applied Synthetic Chemistry
- Technische Universität Wien
- 1060 Vienna
- Austria
- Christian Doppler Laboratory for Digital and Restorative Dentistry
| |
Collapse
|
17
|
Affiliation(s)
- David S. Simmons
- Department of Polymer Engineering; University of Akron; 250 South Forge St Akron OH 44325 USA
| |
Collapse
|
18
|
Gorelov B, Gorb A, Korotchenkov O, Nadtochiy A, Polovina O, Sigareva N. Impact of titanium and silica/titanium fumed oxide nanofillers on the elastic properties and thermal decomposition of a polyester resin. J Appl Polym Sci 2015. [DOI: 10.1002/app.42010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Borys Gorelov
- Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine; Kyiv 03164 Ukraine
| | - Alla Gorb
- Taras Shevchenko Kyiv National University; Kyiv 03127 Ukraine
| | | | | | | | - Nadia Sigareva
- Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine; Kyiv 03164 Ukraine
| |
Collapse
|
19
|
Hattemer GD, Arya G. Viscoelastic Properties of Polymer-Grafted Nanoparticle Composites from Molecular Dynamics Simulations. Macromolecules 2015. [DOI: 10.1021/ma502086c] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gregory D. Hattemer
- Department
of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093, United States
| | - Gaurav Arya
- Department
of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093, United States
| |
Collapse
|
20
|
Termonia Y. Polymer chain properties and thermodynamic stability in oriented-platelet nanocomposites. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012603. [PMID: 23944482 DOI: 10.1103/physreve.88.012603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Indexed: 06/02/2023]
Abstract
We present a Monte Carlo study of the conformational properties of polymer chains in platelet nanocomposites. We find that high platelet orientation leads to an increase in chain confinement and to a substantial decrease in polymer entropy. The latter may be responsible for the observed aging of these systems in which the platelets gradually lose their orientation with time. As a test of our entropy-driven hypothesis, we suggest that aging could be substantially slowed down by the addition of small spherical nanoparticles. Using a generalized Stokes-Einstein relation, a calculation of the thermal random motion of the platelets predicts a fivefold increase in shear modulus during aging, in agreement with experimental observation on compatibilized layered silicate nanocomposites.
Collapse
Affiliation(s)
- Yves Termonia
- Central Research and Development, DuPont Nanocomposite Technologies, Building E304, Room C219, Experimental Station, E. I. DuPont de Nemours, Inc., Wilmington, Delaware 19880-0304, USA.
| |
Collapse
|
21
|
Yan LT, Xie XM. Computational modeling and simulation of nanoparticle self-assembly in polymeric systems: Structures, properties and external field effects. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2012.05.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Anogiannakis SD, Tzoumanekas C, Theodorou DN. Microscopic Description of Entanglements in Polyethylene Networks and Melts: Strong, Weak, Pairwise, and Collective Attributes. Macromolecules 2012. [DOI: 10.1021/ma300912z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefanos D. Anogiannakis
- School of Chemical Engineering, Zografou Campus, National Technical University of Athens, GR-15780 Athens,
Greece
| | - Christos Tzoumanekas
- School of Chemical Engineering, Zografou Campus, National Technical University of Athens, GR-15780 Athens,
Greece
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven,
The Netherlands
| | - Doros N. Theodorou
- School of Chemical Engineering, Zografou Campus, National Technical University of Athens, GR-15780 Athens,
Greece
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven,
The Netherlands
| |
Collapse
|
23
|
Karatrantos A, Composto RJ, Winey KI, Kröger M, Clarke N. Entanglements and Dynamics of Polymer Melts near a SWCNT. Macromolecules 2012. [DOI: 10.1021/ma3007637] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Argyrios Karatrantos
- Department
of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Russell J. Composto
- Department
of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
| | - Karen I. Winey
- Department
of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Nigel Clarke
- Department
of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| |
Collapse
|
24
|
Molecular dynamics study of epoxy/clay nanocomposites: rheology and molecular confinement. JOURNAL OF POLYMER RESEARCH 2012. [DOI: 10.1007/s10965-012-9897-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
|
26
|
Toepperwein GN, Karayiannis NC, Riggleman RA, Kröger M, de Pablo JJ. Influence of Nanorod Inclusions on Structure and Primitive Path Network of Polymer Nanocomposites at Equilibrium and Under Deformation. Macromolecules 2011. [DOI: 10.1021/ma102741r] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gregory N. Toepperwein
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691, United States
| | - Nikos Ch. Karayiannis
- Institute for Optoelectronics and Microsystems (ISOM) and ETSII, Universidad Politécnica de Madrid (UPM), 28006 Madrid, Spain
| | - Robert A. Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Martin Kröger
- Department of Materials, Polymer Physics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Juan J. de Pablo
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691, United States
| |
Collapse
|
27
|
Schmidt RG, Gordon GV, Dreiss CA, Cosgrove T, Krukonis VJ, Williams K, Wetmore PM. A Critical Size Ratio for Viscosity Reduction in Poly(dimethylsiloxane)−Polysilicate Nanocomposites. Macromolecules 2010. [DOI: 10.1021/ma1004919] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Glenn V. Gordon
- Dow Corning Corporation, Midland, Michigan 48686-0994, United States
| | - Cécile A. Dreiss
- Pharmaceutical Science Division, King's College London, SE1 9NH London, U.K
| | - Terence Cosgrove
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K
| | - Val J. Krukonis
- Phasex Corporation, Lawrence, Massachusetts 01843, United States
| | - Kara Williams
- Phasex Corporation, Lawrence, Massachusetts 01843, United States
| | - Paula M. Wetmore
- Phasex Corporation, Lawrence, Massachusetts 01843, United States
| |
Collapse
|
28
|
Termonia Y. Molecular modeling of particle reinforcement in elastomers: Effect of particle radius and volume fraction. POLYMER 2010. [DOI: 10.1016/j.polymer.2010.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|