1
|
Alzahrani RA, Alshehri N, Alessa AA, Amer DA, Matiash O, De Castro CSP, Alam S, Jurado JP, Gorenflot J, Laquai F, Petoukhoff CE. On the Use of Reflection Polarized Optical Microscopy for Rapid Comparison of Crystallinity and Phase Segregation of P3HT:PCBM Thin Films. Macromol Rapid Commun 2024; 45:e2400577. [PMID: 39432144 DOI: 10.1002/marc.202400577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Rapid, nondestructive characterization techniques for evaluating the degree of crystallinity and phase segregation of organic semiconductor blend thin films are highly desired for in-line, automated optoelectronic device fabrication facilities. Here, it is demonstrated that reflection polarized optical microscopy (POM), a simple technique capable of imaging local anisotropy of materials, is capable of determining the relative degree of crystallinity and phase segregation of thin films of polymer:fullerene blends. While previous works on POM of organic semiconductors have largely employed the transmission geometry, it is demonstrated that reflection POM provides 3× greater contrast. The optimal configuration is described to maximize contrast from POM images of polymer:fullerene films, which requires Köhler illumination and slightly uncrossed polarizers, with an uncrossing angle of ±3°. It is quantitatively demonstrated that contrast in POM images directly correlates with 1) the degree of polymer crystallinity and 2) the degree of phase segregation between polymer and fullerene domains. The origin of the bright and dark domains in POM is identified as arising from symmetry-broken liquid crystalline phases (i.e., dark conglomerates), and it is proven that they have no correlation with surface topography. The use of reflection POM as a rapid diagnostic tool for automated device fabrication facilities is discussed.
Collapse
Affiliation(s)
- Rawan A Alzahrani
- Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Nisreen Alshehri
- Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Physics and Astronomy Department, College of Sciences, King Saud University, Riyadh, 12372, Kingdom of Saudi Arabia
| | - Alaa A Alessa
- Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Doha A Amer
- Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Oleksandr Matiash
- Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Catherine S P De Castro
- Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Shahidul Alam
- Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - José P Jurado
- Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Julien Gorenflot
- Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Frédéric Laquai
- Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Christopher E Petoukhoff
- Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Gill N, Srivastava I, Tropp J. Rational Design of NIR-II Emitting Conjugated Polymer Derived Nanoparticles for Image-Guided Cancer Interventions. Adv Healthc Mater 2024; 13:e2401297. [PMID: 38822530 DOI: 10.1002/adhm.202401297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Due to the reduced absorption, light scattering, and tissue autofluorescence in the NIR-II (1000-1700 nm) region, significant efforts are underway to explore diverse material platforms for in vivo fluorescence imaging, particularly for cancer diagnostics and image-guided interventions. Of the reported imaging agents, nanoparticles derived from conjugated polymers (CPNs) offer unique advantages to alternative materials including biocompatibility, remarkable absorption cross-sections, exceptional photostability, and tunable emission behavior independent of cell labeling functionalities. Herein, the current state of NIR-II emitting CPNs are summarized and structure-function-property relationships are highlighted that can be used to elevate the performance of next-generation CPNs. Methods for particle processing and incorporating cancer targeting modalities are discussed, as well as detailed characterization methods to improve interlaboratory comparisons of novel materials. Contemporary methods to specifically apply CPNs for cancer diagnostics and therapies are then highlighted. This review not only summarizes the current state of the field, but offers future directions and provides clarity to the advantages of CPNs over other classes of imaging agents.
Collapse
Affiliation(s)
- Nikita Gill
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Indrajit Srivastava
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, 79106, USA
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Joshua Tropp
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, 79106, USA
| |
Collapse
|
3
|
Sabury S, Xu Z, Saiev S, Davies D, Österholm AM, Rinehart JM, Mirhosseini M, Tong B, Kim S, Correa-Baena JP, Coropceanu V, Jurchescu OD, Brédas JL, Diao Y, Reynolds JR. Non-covalent planarizing interactions yield highly ordered and thermotropic liquid crystalline conjugated polymers. MATERIALS HORIZONS 2024; 11:3352-3363. [PMID: 38686501 DOI: 10.1039/d3mh01974h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Controlling the multi-level assembly and morphological properties of conjugated polymers through structural manipulation has contributed significantly to the advancement of organic electronics. In this work, a redox active conjugated polymer, TPT-TT, composed of alternating 1,4-(2-thienyl)-2,5-dialkoxyphenylene (TPT) and thienothiophene (TT) units is reported with non-covalent intramolecular S⋯O and S⋯H-C interactions that induce controlled main-chain planarity and solid-state order. As confirmed by density functional theory (DFT) calculations, these intramolecular interactions influence the main chain conformation, promoting backbone planarization, while still allowing dihedral rotations at higher kinetic energies (higher temperature), and give rise to temperature-dependent aggregation properties. Thermotropic liquid crystalline (LC) behavior is confirmed by cross-polarized optical microscopy (CPOM) and closely correlated with multiple thermal transitions observed by differential scanning calorimetry (DSC). This LC behavior allows us to develop and utilize a thermal annealing treatment that results in thin films with notable long-range order, as shown by grazing-incidence X-ray diffraction (GIXD). Specifically, we identified a first LC phase, ranging from 218 °C to 107 °C, as a nematic phase featuring preferential face-on π-π stacking and edge-on lamellar stacking exhibiting a large extent of disorder and broad orientation distribution. A second LC phase is observed from 107 °C to 48 °C, as a smectic A phase featuring sharp, highly ordered out-of-plane lamellar stacking features and sharp tilted backbone stacking peaks, while the structure of a third LC phase with a transition at 48 °C remains unclear, but resembles that of the solid state at ambient temperature. Furthermore, the significance of thermal annealing is evident in the ∼3-fold enhancement of the electrical conductivity of ferric tosylate-doped annealed films reaching 55 S cm-1. More importantly, thermally annealed TPT-TT films exhibit both a narrow distribution of charge-carrier mobilities (1.4 ± 0.1) × 10-2 cm2 V-1 s-1 along with a remarkable device yield of 100% in an organic field-effect transistor (OFET) configuration. This molecular design approach to obtain highly ordered conjugated polymers in the solid state affords a deeper understanding of how intramolecular interactions and repeat-unit symmetry impact liquid crystallinity, solution aggregation, solution to solid-state transformation, solid-state morphology, and ultimately device applications.
Collapse
Affiliation(s)
- Sina Sabury
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Zhuang Xu
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Shamil Saiev
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA
| | - Daniel Davies
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Anna M Österholm
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Joshua M Rinehart
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Motahhare Mirhosseini
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Benedict Tong
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Sanggyun Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Juan-Pablo Correa-Baena
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA
| | - Oana D Jurchescu
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - John R Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
4
|
Tropp J, Collins CP, Xie X, Daso RE, Mehta AS, Patel SP, Reddy MM, Levin SE, Sun C, Rivnay J. Conducting Polymer Nanoparticles with Intrinsic Aqueous Dispersibility for Conductive Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306691. [PMID: 37680065 PMCID: PMC11294187 DOI: 10.1002/adma.202306691] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Indexed: 09/09/2023]
Abstract
Conductive hydrogels are promising materials with mixed ionic-electronic conduction to interface living tissue (ionic signal transmission) with medical devices (electronic signal transmission). The hydrogel form factor also uniquely bridges the wet/soft biological environment with the dry/hard environment of electronics. The synthesis of hydrogels for bioelectronics requires scalable, biocompatible fillers with high electronic conductivity and compatibility with common aqueous hydrogel formulations/resins. Despite significant advances in the processing of carbon nanomaterials, fillers that satisfy all these requirements are lacking. Herein, intrinsically dispersible acid-crystalized PEDOT:PSS nanoparticles (ncrys-PEDOTX ) are reported which are processed through a facile and scalable nonsolvent induced phase separation method from commercial PEDOT:PSS without complex instrumentation. The particles feature conductivities of up to 410 S cm-1 , and when compared to other common conductive fillers, display remarkable dispersibility, enabling homogeneous incorporation at relatively high loadings within diverse aqueous biomaterial solutions without additives or surfactants. The aqueous dispersibility of the ncrys-PEDOTX particles also allows simple incorporation into resins designed for microstereolithography without sonication or surfactant optimization; complex biomedical structures with fine features (< 150 µm) are printed with up to 10% particle loading . The ncrys-PEDOTX particles overcome the challenges of traditional conductive fillers, providing a scalable, biocompatible, plug-and-play platform for soft organic bioelectronic materials.
Collapse
Affiliation(s)
- Joshua Tropp
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Caralyn P. Collins
- Department of Mechanical Engineering Northwestern University, Evanston, IL 60208, USA
| | - Xinran Xie
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Rachel E. Daso
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Abijeet Singh Mehta
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Shiv P. Patel
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Manideep M. Reddy
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Sophia E. Levin
- Department of Mechanical Engineering Northwestern University, Evanston, IL 60208, USA
| | - Cheng Sun
- Department of Mechanical Engineering Northwestern University, Evanston, IL 60208, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| |
Collapse
|
5
|
Yamada S, Yoshida K, Kataoka M, Hara M, Konno T. Donor-π-Acceptor-Type Fluorinated Tolane Containing a Semifluoroalkoxy Chain as a Condensed-Phase Luminophore. Molecules 2023; 28:molecules28062764. [PMID: 36985736 PMCID: PMC10055744 DOI: 10.3390/molecules28062764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Photoluminescent liquid-crystalline (PLLC) molecules, which can easily tune the PL behavior through the crystal (Cry)-LC phase transition, have attracted significant attention. Previously, we have demonstrated that the incorporation of a semifluoroalkoxy chain into π-conjugated mesogen is a promising approach for developing PLLC molecules with PL and SmA LC characteristics. We focused on the LC and PL characteristics of the molecules induced by the semifluoroalkoxy chain and fluorinated tolanes in the condensed phase. In this study, we developed cyano- or ethoxycarbonyl-terminated donor-π-acceptor-type fluorinated tolanes containing a semifluoroalkoxy flexible chain. The cyano-terminated fluorinated tolanes exhibited intense light-blue photoluminescence in the crystalline phase and did not exhibit any LC phase. In contrast, blue photoluminescence in the ethoxycarbonyl-terminated analogs was slightly weak; however, they exhibited Cry-SmA phase transition during the heating and cooling processes. The PL intensity of the ethoxycarbonyl-terminated fluorinated tolanes significantly decreased in the SmA phase; however, their PL colors changed during the Cry-SmA phase transition. This indicates that the developed tolanes are promising temperature-dependent PL materials, such as PL thermosensors or PL thermometers.
Collapse
Affiliation(s)
- Shigeyuki Yamada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Keigo Yoshida
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mitsuki Kataoka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mitsuo Hara
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Tsutomu Konno
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
6
|
Pirela V, Campoy-Quiles M, Müller AJ, Martín J. Unraveling the Influence of the Preexisting Molecular Order on the Crystallization of Semiconducting Semicrystalline Poly(9,9-di- n-octylfluorenyl-2,7-diyl (PFO). CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10744-10751. [PMID: 36530941 PMCID: PMC9754006 DOI: 10.1021/acs.chemmater.2c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Understanding the complex crystallization process of semiconducting polymers is key for the advance of organic electronic technologies as the optoelectronic properties of these materials are intimately connected to their solid-state microstructure. These polymers often have semirigid backbones and flexible side chains, which results in a strong tendency to organize/order in the liquid state. Therefore, crystallization of these materials frequently occurs from liquid states that exhibit-at least partial-molecular order. However, the impact of the preexisting molecular order on the crystallization process of semiconducting polymers- indeed, of any polymer-remained hitherto unknown. This study uses fast scanning calorimetry (FSC) to probe the crystallization kinetics of poly(9,9-di-n-octylfluorenyl-2,7-diyl (PFO) from both an isotropic disordered melt state (ISO state) and a liquid-crystalline ordered state (NEM state). Our results demonstrate that the preexisting molecular order has a profound impact on the crystallization of PFO. More specifically, it favors the formation of effective crystal nucleation centers, speeding up the crystallization kinetics at the early stages of phase transformation. However, samples crystallized from the NEM state require longer times to reach full crystallization (during the secondary crystallization stage) compared to those crystallized from the ISO state, likely suggesting that the preexisting molecular order slows down the advance in the latest stages of the crystallization, that is, those governed by molecular diffusion. The fitting of the data with the Avrami model reveals different crystallization mechanisms, which ultimately result in a distinct semicrystalline morphology and photoluminescence properties. Therefore, this work highlights the importance of understanding the interrelationships between processing, structure, and properties of polymer semiconductors and opens the door for performing fundamental investigations via newly developed FSC methodologies of such materials that otherwise are not possible with conventional techniques.
Collapse
Affiliation(s)
- Valentina Pirela
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San
Sebastián20018, Spain
| | - Mariano Campoy-Quiles
- Institute
of Materials Science of Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra08193, Spain
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San
Sebastián20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao48009, Spain
| | - Jaime Martín
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San
Sebastián20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao48009, Spain
- Universidade
da Coruña, Campus Industrial de Ferrol, CITENI, Esteiro, Ferrol15403, Spain
| |
Collapse
|
7
|
Zhang L, Li H, Zhao K, Zhang T, Liu D, Wang S, Wu F, Zhang Q, Han Y. Improving crystallinity and ordering of PBTTT by inhibiting nematic to smectic phase transition via rapid cooling. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Dumbravă O, Popovici D, Vasincu D, Popa O, Ochiuz L, Irimiciuc ȘA, Agop M, Negură A. Impact of the Liquid Crystal Order of Poly(azomethine-sulfone)s on the Semiconducting Properties. Polymers (Basel) 2022; 14:1487. [PMID: 35406361 PMCID: PMC9003125 DOI: 10.3390/polym14071487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Organic semiconductors are an attractive class of materials with large application in various fields, from optoelectronics to biomedicine. Usually, organic semiconductors have low electrical conductivity, and different routes towards improving said conductivity are being investigated. One such method is to increase their ordering degree, which not only improves electrical conduction but promotes cell growth, adhesion, and proliferation at the polymer-tissue interface. The current paper proposes a mathematical model for understanding the influence of the ordering state on the electrical properties of the organic semiconductors. To this end, a series of aromatic poly(azomethine)s were prepared as thin films in both amorphous and ordered states, and their supramolecular and electrical properties were analyzed by polarized light microscopy and surface type cells, respectively. Furthermore, the film surface characteristics were investigated by atomic force microscopy. It was established that the manufacture of thin films from mesophase state induced an electrical conductivity improvement of one order of magnitude. A mathematical model was developed in the framework of a multifractal theory of motion in its Schrodinger representation. The model used the order degree of the thin films as a fractality measure of the physical system's representation in the multifractal space. It proposed two types of conductivity, which manifest at different ranges of fractalization degrees. The mathematical predictions were found to be in line with the empirical data.
Collapse
Affiliation(s)
- Oana Dumbravă
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (O.D.); (D.P.)
| | - Dumitru Popovici
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (O.D.); (D.P.)
| | - Decebal Vasincu
- Department of Biophysics and Medical Physics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania;
| | - Ovidiu Popa
- Department of Emergency Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania;
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania;
| | - Ștefan-Andrei Irimiciuc
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Bucharest, Romania
| | - Maricel Agop
- Department of Physics, “Gh. Asachi” Technical University of Iasi, 700050 Iasi, Romania
- Romanian Scientists Academy, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Anca Negură
- Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 2A Carol Boulevard, 700505 Iasi, Romania;
| |
Collapse
|
9
|
Li T, He Q, Guan Y, Liao J, He Y, Luo X, Cao W, Cui Z, Jia S, Liu A, Yao S, Guan X, Zhang H, Lu D. Influence of molecular weight and the change of solvent solubility on β conformation and chains condensed state structure for poly (9,9-dioctylfluorene) (PFO) in solution. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Zhao K, Zhang T, Zhang L, Li J, Li H, Wu F, Chen Y, Zhang Q, Han Y. Role of Molecular Weight in Microstructural Transition and Its Correlation to the Mechanical and Electrical Properties of P(NDI2OD-T2) Thin Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kefeng Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Lu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Junhang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Hongxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Fan Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Yu Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Liu X, Yan Y, Zhang Q, Zhao K, Han Y. n-Type D-A Conjugated Polymers: Relationship Between Microstructure and Electrical/Mechanical Performance. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1269-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Ding Z, Liu D, Zhao K, Han Y. Optimizing Morphology to Trade Off Charge Transport and Mechanical Properties of Stretchable Conjugated Polymer Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Dongle Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
13
|
|
14
|
Ding Y, Jiang L, Du Y, Kim S, Wang X, Lu H, Zhang G, Cho K, Qiu L. Linear hybrid siloxane-based side chains for highly soluble isoindigo-based conjugated polymers. Chem Commun (Camb) 2020; 56:11867-11870. [PMID: 33021250 DOI: 10.1039/d0cc01497d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three isoindigo-based conjugated polymers modified with linear hybrid siloxane-based side chains were synthesized (PIID-Cm-Si7, m = 5-7). All polymers showed good solubilities in halogenated hydrocarbons, aromatic hydrocarbons, ethers, alkanes, and esters. The polymer films of PIID-C5-Si7, PIID-C6-Si7, and PIID-C7-Si7 achieved mobilities of 0.32, 0.82, and 1.58 cm2 V-1 s-1, respectively.
Collapse
Affiliation(s)
- Yafei Ding
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hajduk B, Bednarski H, Domański M, Jarząbek B, Trzebicka B. Thermal Transitions in P3HT:PC60BM Films Based on Electrical Resistance Measurements. Polymers (Basel) 2020; 12:E1458. [PMID: 32629756 PMCID: PMC7407113 DOI: 10.3390/polym12071458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 01/20/2023] Open
Abstract
In this paper, we present research on thermal transition temperature determination in poly (3-hexylthiophene-2,5-diyl) (P3HT), [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM), and their blends, which are materials that are conventionally used in organic optoelectronics. Here, for the first time the results of electrical resistance measurements are explored to detect thermal transitions temperatures, such as glass transition Tg and cold crystallization Tcc of the film. To confirm these results, the variable-temperature spectroscopic ellipsometry studies of the same samples were performed. The thermal transitions temperatures obtained with electrical measurements are well suited to phase diagram, constructed on the basis of ellipsometry in our previous work. The data presented here prove that electrical resistance measurements alone are sufficient for qualitative thermal analysis, which lead to the identification of characteristic temperatures in P3HT:PC60BM films. Based on the carried studies, it can be expected that the determination of thermal transition temperatures by means of electrical resistance measurements will also apply to other semi-conducting polymer films.
Collapse
Affiliation(s)
- Barbara Hajduk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marie Curie-Skłodowska str., 41-819 Zabrze, Poland; (H.B.); (M.D.); (B.J.)
| | | | | | | | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marie Curie-Skłodowska str., 41-819 Zabrze, Poland; (H.B.); (M.D.); (B.J.)
| |
Collapse
|