1
|
Cimatu KLA, Premadasa UI, Ambagaspitiya TD, Adhikari NM, Jang JH. Evident phase separation and surface segregation of hydrophobic moieties at the copolymer surface using atomic force microscopy and SFG spectroscopy. J Colloid Interface Sci 2020; 580:645-659. [PMID: 32712471 DOI: 10.1016/j.jcis.2020.07.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
HYPOTHESIS Copolymers are developed to enhance the overall physical and chemical properties of polymers. The surface nature of a copolymer is relevant to creating efficient materials to improve adhesion and biocompatibility. We hypothesize that the improved adhesion, as a surface property, is due to phase separation, surface segregation, and the overall molecular organization of different polymer components at the copolymer surface. EXPERIMENTS The surface structure of a copolymer composed of 2-hydroxyethyl methacrylate (HEMA) monomer and 2-phenoxyethyl methacrylate (PhEMA) monomer was analyzed in comparison to the polyHEMA and polyPhEMA homopolymers using atomic force microscopy (AFM) and sum frequency generation (SFG) spectroscopy. FINDINGS The contrast in the phase images was due to the variance in the hydrophobic level provided by the hydroxyl and phenoxy modified monomers in the copolymer. The distribution of the adhesion values, supporting the presence of hydrophobic moieties, across the polymer surface defined the surface segregation of these two components. SFG spectra of the copolymer thin film showed combined spectral features of both polyHEMA and polyPhEMA thin films at the polymer surface. The tilt angles of the alpha-methyl group of homopolymers using the polarization intensity ratio analysis and the polarization mapping method were estimated to be in the range from 48° to 66°.
Collapse
Affiliation(s)
- Katherine Leslee A Cimatu
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States.
| | - Uvinduni I Premadasa
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States
| | - Tharushi D Ambagaspitiya
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States
| | - Narendra M Adhikari
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States
| | - Joon Hee Jang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, United States
| |
Collapse
|
2
|
Koguchi R, Jankova K, Hayasaka Y, Kobayashi D, Amino Y, Miyajima T, Kobayashi S, Murakami D, Yamamoto K, Tanaka M. Understanding the Effect of Hydration on the Bio-inert Properties of 2-Hydroxyethyl Methacrylate Copolymers with Small Amounts of Amino- or/and Fluorine-Containing Monomers. ACS Biomater Sci Eng 2020; 6:2855-2866. [PMID: 33463271 DOI: 10.1021/acsbiomaterials.0c00230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Materials exhibiting "bio-inert properties" are essential for developing medical devices because they are less recognized as foreign substances by proteins and cells in the living body. We have reported that the presence of intermediate water (IW) with the water molecules loosely bound to a polymer is a useful index of the bio-inertness of materials. Here, we analyzed the hydration state and the responses to biomolecules of poly(2-hydroxyethyl methacrylate) (PHEMA) copolymers including small amounts of 2-(dimethylamino)ethyl methacrylate (DMAEMA) (N-series) or/and 2,2,2-trifluoroethyl methacrylate (TFEMA) (F-series). The hydration structure was analyzed by differential scanning calorimetry (DSC), the molecular mobility of the produced copolymers by temperature derivative of DSC (DDSC), and the water mobility by solid 1H pulse nuclear magnetic resonance (NMR). Although the homopolymers did not show bio-inert properties, the binary and ternary PHEMA copolymers with low comonomer contents showed higher bio-inert properties than those of PHEMA homopolymers. The hydration state of PHEMA was changed by introducing a small amount of comonomers. The mobility of both water molecules and hydrated polymers was changed in the N-series nonfreezing water (NFW) with the water molecules tightly bound to a polymer and was shifted to high-mobility IW and free water (FW) with the water molecules scarcely bound to a polymer. On the other hand, in the F-series, FW turned to IW and NFW. Additionally, a synergetic effect was postulated when both comonomers coexist in the copolymers of HEMA, which was expressed by widening the temperature range of cold crystallization, contributing to further improvement of the bio-inert properties.
Collapse
Affiliation(s)
- Ryohei Koguchi
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,AGC Inc. Organic Materials Division, Materials Integration Laboratories, AGC Inc., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755, Japan
| | - Katja Jankova
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Build. 375, 2800 Kongens Lyngby, Denmark
| | - Yuki Hayasaka
- AGC Inc. Common Base Technology Division, Innovative Technology Laboratories, AGC Inc., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755, Japan
| | - Daisuke Kobayashi
- AGC Inc. Common Base Technology Division, Innovative Technology Laboratories, AGC Inc., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755, Japan
| | - Yosuke Amino
- AGC Inc. Common Base Technology Division, Innovative Technology Laboratories, AGC Inc., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755, Japan
| | - Tatsuya Miyajima
- AGC Inc. Common Base Technology Division, Innovative Technology Laboratories, AGC Inc., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755, Japan
| | - Shingo Kobayashi
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Murakami
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kyoko Yamamoto
- AGC Inc. Organic Materials Division, Materials Integration Laboratories, AGC Inc., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755, Japan
| | - Masaru Tanaka
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Ratner BD, Hoffman AS, McArthur SL. Physicochemical Surface Modification of Materials Used in Medicine. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Biocompatibility of Plasma-Treated Polymeric Implants. MATERIALS 2019; 12:ma12020240. [PMID: 30642038 PMCID: PMC6356963 DOI: 10.3390/ma12020240] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/25/2018] [Accepted: 01/02/2019] [Indexed: 01/16/2023]
Abstract
Cardiovascular diseases are one of the main causes of mortality in the modern world. Scientist all around the world are trying to improve medical treatment, but the success of the treatment significantly depends on the stage of disease progression. In the last phase of disease, the treatment is possible only by implantation of artificial graft. Most commonly used materials for artificial grafts are polymer materials. Despite different industrial procedures for graft fabrication, their properties are still not optimal. Grafts with small diameters (<6 mm) are the most problematic, because the platelets are more likely to re-adhere. This causes thrombus formation. Recent findings indicate that platelet adhesion is primarily influenced by blood plasma proteins that adsorb to the surface immediately after contact of a synthetic material with blood. Fibrinogen is a key blood protein responsible for the mechanisms of activation, adhesion and aggregation of platelets. Plasma treatment is considered as one of the promising methods for improving hemocompatibility of synthetic materials. Another method is endothelialization of materials with Human Umbilical Vein Endothelial cells, thus forming a uniform layer of endothelial cells on the surface. Extensive literature review led to the conclusion that in this area, despite numerous studies there are no available standardized methods for testing the hemocompatibility of biomaterials. In this review paper, the most promising methods to gain biocompatibility of synthetic materials are reported; several hypotheses to explain the improvement in hemocompatibility of plasma treated polymer surfaces are proposed.
Collapse
|
5
|
Parameswaran-Thankam A, Al-Anbaky Q, Al-Karakooly Z, RanguMagar AB, Chhetri BP, Ali N, Ghosh A. Fabrication and characterization of hydroxypropyl guar-poly (vinyl alcohol)-nano hydroxyapatite composite hydrogels for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2083-2105. [PMID: 29962278 DOI: 10.1080/09205063.2018.1494437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biocompatible bone implants composed of natural materials are highly desirable in orthopedic reconstruction procedures. In this study, novel and ecofriendly bionanocomposite hydrogels were synthesized using a blend of hydroxypropyl guar (HPG), poly vinyl alcohol (PVA), and nano-hydroxyapatite (n-HA) under freeze-thaw and mild reaction conditions. The hydrogel materials were characterized using various techniques. TGA studies indicate that both composites, HPG/PVA and HPG/PVA/n-HA, have higher thermal stability compared to HPG alone whereas HPG/PVA/n-HA shows higher stability compared to PVA alone. The HPG/PVA hydrogel shows porous morphology as revealed by the SEM, which is suitable for bone tissue regeneration. Additionally, the hydrogels were found to be transparent and flexible in nature. In vitro biomineralization study performed in simulated body fluid shows HPG/PVA/n-HA has an apatite like structure. The hydrogel materials were employed as extracellular matrices for biocompatibility studies. In vitro cell viability studies using mouse osteoblast MC3T3 cells were performed by MTT, Trypan blue exclusion, and ethidium bromide/acridine orange staining methods. The cell viability studies reveal that composite materials support cell growth and do not show any signs of cytotoxicity compared to pristine PVA. Osteoblastic activity was confirmed by an increased alkaline phosphatase enzyme activity in MC3T3 bone cells grown on composite hydrogel matrices.
Collapse
Affiliation(s)
- Anil Parameswaran-Thankam
- a Department of Chemistry , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Qudes Al-Anbaky
- b Department of Biology , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Zeiyad Al-Karakooly
- b Department of Biology , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Ambar B RanguMagar
- a Department of Chemistry , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Bijay P Chhetri
- a Department of Chemistry , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Nawab Ali
- b Department of Biology , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Anindya Ghosh
- a Department of Chemistry , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| |
Collapse
|
6
|
Hakani M, Haddadi-Asl V, Zargarian SS, Moghadasi MH. Preparation of hydrophilic blood compatible polypropylene/pluronics F127 films. J Biomed Mater Res A 2017; 106:652-662. [PMID: 29027360 DOI: 10.1002/jbm.a.36269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/13/2017] [Accepted: 08/30/2017] [Indexed: 11/08/2022]
Abstract
In order to improve surface hydrophilicity, blood compatibility and cell-antiadhesion of polypropylene (PP) film, polypropylene oxide (PPO)-polyethylene oxide-PPO used as macromolecular surface modifier through physical blending. Surface properties of blended PP/Pluronic F127 (PF127) samples were investigated by attenuated total reflection infrared spectroscopy and water contact angle measurements. Results demonstrated that PF127 migrated to the surface. Thus, mechanical properties of blended PP/PF127 samples with the aim of the revealing the effects of the presence of modifier in the bulk were investigated through differential scanning calorimetry, X-ray diffraction, and tensile tests. The biocompatibility and hemocompatibility of modified PP films were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, platelet-rich plasma, and hemolysis tests. These results showed excellent anticell and antiplatelet adhesion which deems the prepared blended films proper biomaterials. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 652-662, 2018.
Collapse
Affiliation(s)
- Mahsa Hakani
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Seyed Shahrooz Zargarian
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Mohamad Hossein Moghadasi
- Department of Medical laboratory, Labbafinejad Hospital, Iranian Social Security Organization, Tehran, Iran
| |
Collapse
|
7
|
Abstract
Toward improving implantable medical devices as well as diagnostic performance, the development of polymeric biomaterials having resistance to proteins remains a priority. Herein, we highlight key strategies reported in the recent literature that have relied upon improvement of surface hydrophilicity via direct surface modification methods or with bulk modification using surface modifying additives (SMAs). These approaches have utilized a variety of techniques to incorporate the surface hydrophilization agent, including physisorption, hydrogel network formation, surface grafting, layer-by-layer (LbL) assembly and blending base polymers with SMAs. While poly(ethylene glycol) (PEG) remains the gold standard, new alternatives have emerged such as polyglycidols, poly(2-oxazoline)s (POx), polyzwitterions, and amphiphilic block copolymers. While these new strategies provide encouraging results, the need for improved correlation between in vitro and in vivo protein resistance is critical. This may be achieved by employing complex protein solutions as well as strides to enhance the sensitivity of protein adsorption measurements.
Collapse
Affiliation(s)
- Bryan Khai D. Ngo
- Department of Biomedical Engineering and ‡Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Melissa A. Grunlan
- Department of Biomedical Engineering and ‡Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
8
|
|
9
|
Reviakine I, Jung F, Braune S, Brash JL, Latour R, Gorbet M, van Oeveren W. Stirred, shaken, or stagnant: What goes on at the blood-biomaterial interface. Blood Rev 2016; 31:11-21. [PMID: 27478147 DOI: 10.1016/j.blre.2016.07.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 01/15/2023]
Abstract
There is a widely recognized need to improve the performance of vascular implants and external medical devices that come into contact with blood by reducing adverse reactions they cause, such as thrombosis and inflammation. These reactions lead to major adverse cardiovascular events such as heart attacks and strokes. Currently, they are managed therapeutically. This need remains unmet by the biomaterials research community. Recognized stagnation of the blood-biomaterial interface research translates into waning interest from clinicians, funding agencies, and practitioners of adjacent fields. The purpose of this contribution is to stir things up. It follows the 2014 BloodSurf meeting (74th International IUVSTA Workshop on Blood-Biomaterial Interactions), offers reflections on the situation in the field, and a three-pronged strategy integrating different perspectives on the biological mechanisms underlying blood-biomaterial interactions. The success of this strategy depends on reengaging clinicians and on the renewed cooperation of the funding agencies to support long-term efforts.
Collapse
Affiliation(s)
- Ilya Reviakine
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
| | - Steffen Braune
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
| | - John L Brash
- Department of Chemical Engineering, School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Robert Latour
- Rhodes Engineering Research Center, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Maud Gorbet
- Department of Systems Design Engineering, Biomedical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Wim van Oeveren
- HaemoScan, Stavangerweg 23-23, 9723JC Groningen, The Netherlands
| |
Collapse
|
10
|
Aljawish A, Muniglia L, Chevalot I. Growth of human mesenchymal stem cells (MSCs) on films of enzymatically modified chitosan. Biotechnol Prog 2016; 32:491-500. [DOI: 10.1002/btpr.2216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/19/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Abdulhadi Aljawish
- Université De Lorraine, Laboratoire D'ingénierie Des Biomolécules (LIBio); TSA40602-F-54518 Vandœuvre-lès-Nancy France
| | - Lionel Muniglia
- Université De Lorraine, Laboratoire D'ingénierie Des Biomolécules (LIBio); TSA40602-F-54518 Vandœuvre-lès-Nancy France
| | - Isabelle Chevalot
- Université De Lorraine, Laboratoire Réactions Et Génie Des Procédés (LRGP-CNRS-UMR 7274); TSA40602-F-54518 Vandœuvre-lès-Nancy France
| |
Collapse
|
11
|
Liu Y, Duan LJ, Kim MJ, Kim JH, Chung DJ. In situ sodium alginate-hyaluronic acid hydrogel coating method for clinical applications. Macromol Res 2013. [DOI: 10.1007/s13233-014-2001-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Kirschner CM, Anseth KS. Hydrogels in Healthcare: From Static to Dynamic Material Microenvironments. ACTA MATERIALIA 2013; 61:931-944. [PMID: 23929381 PMCID: PMC3735227 DOI: 10.1016/j.actamat.2012.10.037] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Advances in hydrogel design have revolutionized the way biomaterials are applied to address biomedical needs. Hydrogels were introduced in medicine over 50 years ago and have evolved from static, bioinert materials to dynamic, bioactive microenvironments, which can be used to direct specific biological responses such as cellular ingrowth in wound healing or on-demand delivery of therapeutics. Two general classes of mechanisms, those defined by the user and those dictated by the endogenous cells and tissues, can control dynamic hydrogel microenvironments. These highly tunable materials have provided bioengineers and biological scientists with new ways to not only treat patients in the clinic but to study the fundamental cellular responses to engineered microenvironments as well. Here, we provide a brief history of hydrogels in medicine and follow with a discussion of the synthesis and implementation of dynamic hydrogel microenvironments for healthcare-related applications.
Collapse
Affiliation(s)
- Chelsea M. Kirschner
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
- Biofrontiers Institute, University of Colorado, Boulder, Colorado, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
13
|
|
14
|
Tanaka M, Mochizuki A. Clarification of the Blood Compatibility Mechanism by Controlling the Water Structure at the Blood–Poly(meth)acrylate Interface. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 21:1849-63. [DOI: 10.1163/092050610x517220] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Masaru Tanaka
- a Department of Biochemical Engineering, Graduate School of Science and Technology, Yamagata University, Yonezawa 992-8510, Japan
| | - Akira Mochizuki
- b Department of Bio-Medical Engineering, School of High-Technology for Human Welfare, Tokai University, 317 Nishino, Numazu, Shizuoka 410-03, Japan
| |
Collapse
|
15
|
Thrombin production and human neutrophil elastase sequestration by modified cellulosic dressings and their electrokinetic analysis. J Funct Biomater 2011; 2:391-413. [PMID: 24956451 PMCID: PMC4030916 DOI: 10.3390/jfb2040391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/03/2011] [Accepted: 12/07/2011] [Indexed: 01/01/2023] Open
Abstract
Wound healing is a complex series of biochemical and cellular events. Optimally, functional material design addresses the overlapping acute and inflammatory stages of wound healing based on molecular, cellular, and bio-compatibility issues. In this paper the issues addressed are uncontrolled hemostasis and inflammation which can interfere with the orderly flow of wound healing. In this regard, we review the serine proteases thrombin and elastase relative to dressing functionality that improves wound healing and examine the effects of charge in cotton/cellulosic dressing design on thrombin production and elastase sequestration (uptake by the wound dressing). Thrombin is central to the initiation and propagation of coagulation, and elastase is released from neutrophils that can function detrimentally in a stalled inflammatory phase characteristic of chronic wounds. Electrokinetic fiber surface properties of the biomaterials of this study were determined to correlate material charge and polarity with function relative to thrombin production and elastase sequestration. Human neutrophil elastase sequestration was assessed with an assay representative of chronic wound concentration with cotton gauze cross-linked with three types of polycarboxylic acids and one phosphorylation finish; thrombin production, which was assessed in a plasma-based assay via a fluorogenic peptide substrate, was determined for cotton, cotton-grafted chitosan, chitosan, rayon/polyester, and two kaolin-treated materials including a commercial hemorrhage control dressing (QuickClot Combat Gauze). A correlation in thrombin production to zeta potential was found. Two polycarboxylic acid cross linked and a phosphorylated cotton dressing gave high elastase sequestration.
Collapse
|
16
|
Li S, Hu J, Li J, Tian J, Han Z, Zhou X, Chen Y. Anisotropic wet etched silicon substrates for reoriented and selective growth of ZnO nanowires and enhanced hydrophobicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6549-6553. [PMID: 21539351 DOI: 10.1021/la201157m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Herein we report the fabrication of ZnO nanowires on anisotropic wet etched silicon substrates by selective hydrothermal growth. <100> oriented silicon wafers were first patterned by anisotropic wet etch with a KOH solution, resulting in V-shaped stripes of different periods. Then, a thin layer of gold was deposited and annealed to promote the hydrothermal growth of ZnO nanowires. It was found that the growth rate of ZnO nanowires on <111> surfaces was much higher than that on <100> surfaces. As a first application of such micro- and nanostructured surfaces, we show enhanced wetting properties by measuring the contact angle of water droplets on the samples obtained under different patterning and growth conditions. Our results also demonstrated the possibility of tuning the contact angle of the sample in the range between 115° and 155°, by changing either the pattern of the silicon template or the hydrothermal growth conditions.
Collapse
Affiliation(s)
- Sisi Li
- Ecole Normale Supérieure, CNRS-ENS-UPMC 8640, 24 rue Lhomond, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Effect of nitrogen on blood compatibility of nickel-free high nitrogen stainless steel for biomaterial. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2010.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Kabanov VY. Preparation of polymeric biomaterials with the aid of radiation-chemical methods. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1998v067n09abeh000433] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Polymers for Biomedical Applications: Improvement of the Interface Compatibility. ADVANCES IN POLYMER SCIENCE 2007. [DOI: 10.1007/3-540-48838-3_1] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Miura M, Fujimoto K. Subcellular topological effect of particle monolayers on cell shapes and functions. Colloids Surf B Biointerfaces 2006; 53:245-53. [PMID: 17084598 DOI: 10.1016/j.colsurfb.2006.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 09/16/2006] [Accepted: 10/01/2006] [Indexed: 11/18/2022]
Abstract
We studied topological effects of subcellular roughness displayed by a closely packed particle monolayer on adhesion and growth of endothelial cells. Poly(styrene-co-acrylamide) (SA) particles were prepared by soap-free emulsion copolymerization. Particle monolayers were prepared by Langmuir-Blodgett deposition using particles, which were 527 (SA053) and 1270 nm (SA127) in diameter. After 24-h incubation, cells tightly adhered on a tissue culture polystyrene dish and randomly spread. On the other hand, cells attached on particle monolayers were stretched into a narrow stalk-like shape. Lamellipodia spread from the leading edge of cells attached on SA053 monolayer to the top of the particles and gradually gathered to form clusters. This shows that cell-cell adhesion became stronger than cell-substrate interaction. Cells attached to SA127 monolayer extended to the reverse side of a particle monolayer and engulfed particles. They remained immobile without migration 24h after incubation. This shows that the inhibition of extensions on SA127 monolayer could inhibit cell migration and cell proliferation. Cell growth on the particle monolayers was suppressed compared with a flat TCPS dish. The number of cells on SA053 gradually increased, whereas that on SA127 decreased with time. When the cell seeding density was increased to 200,000 cells cm(-2), some adherent cells gradually became into contact with adjacent cells. F-actin condensations were formed at the frame of adherent cells and the thin filaments grew from the edges to connect each other with time. For the cell culture on SA053 monolayer, elongated cells showed a little alignment. Cells showed not arrangement of actin stress fibers but F-actin condensation at the contact regions with neighboring cells. Interestingly, the formed cell monolayer could be readily peeled from the particle monolayer. These results indicate that endothelial cells could recognize the surface roughness displayed by particle monolayers and the response was dependent on the pitch of particle monolayers.
Collapse
Affiliation(s)
- Manabu Miura
- The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | | |
Collapse
|
21
|
Bajpai AK, Mishra DD. Adsorption of fibrinogen onto macroporous, biocompatible sponges based on poly(2-hydroxyethyl methacrylate). J Appl Polym Sci 2006. [DOI: 10.1002/app.24127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Wang LF, Wei YH, Chen KY, Lin JC, Kuo JF. Properties of phospholipid monolayer deposited on a fluorinated polyurethane. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2005; 15:957-69. [PMID: 15461183 DOI: 10.1163/1568562041526513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A simple procedure for surface modification of polyurethane by the Langmuir-Blodgett (LB) method using the amphiphile 1,2-distearoyl-sn-glycero-3-phosphocholine dihydrate (DSPC) was developed. The polyurethane containing the fluorinated moiety was prepared via the perfluoro-containing chain extender 2,2,3,3-tetrafluoro-1,4-butanediol. The fluorinated polyurethane (FPU) films were prepared by spin coating and dipping methods. The spin-coated FPU films exhibited hydrophobic characteristic and, thus, enhanced the transferability of DSPC. Held at constant pressure of 45 mN/m, the DSPC monolayer was transferred successfully to FPU films with a near-unity transfer ratio. The in vitro platelet adhesion assay revealed that the FPU modified with DSPC monolayer was more platelet compatible than the unmodified FPU substrates with no pseudopods and flattening of adherent platelets as well as lower platelet adhesion density. Moreover, the DSPC monolayer remained intact after platelet adhesion testing. In addition, the platelet compatibility of the unmodified FPU was affected by the film preparation methods. This might be attributed to the distinctive surface micromorphology formed. This simple DSPC deposition scheme by a LB technique would be very useful to further enhance the platelet compatibility of hydrophobic substrate and can be utilized for biomedical application in which the flow shear rate is not too high.
Collapse
Affiliation(s)
- Li-Fen Wang
- Department of Applied Chemistry, Fooyin University, Kaohsiung, Taiwan 831, ROC.
| | | | | | | | | |
Collapse
|
23
|
Khorasani MT, Mirzadeh H. Laser surface modification of silicone rubber to reduce platelet adhesion in vitro. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2004; 15:59-72. [PMID: 15027843 DOI: 10.1163/156856204322752237] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To improve the blood compatibility, the surface of polydimethylsiloxane (PDMS) films were irradiated using a CO2-pulsed laser. Acrylamide (AAm) was grafted onto a pre-irradiated surface. The AAm-grafted and laser-treated films were characterized using different techniques. Platelet adhesion and activation onto the AAm-grafted PDMS, laser-treated (ungrafted) and unmodified PDMS film surfaces were compared. Data from in vitro assays indicated that the platelet adhesion was reduced on the AAm-grafted PDMS and laser treated PDMS films in comparison with the unmodified PDMS. The laser-irradiated sample showed the minimum platelet adhesion. It seems that laser irradiation onto a silicone rubber surface is a versatile technique to produce anti-thrombogenic surface for biomaterial applications.
Collapse
Affiliation(s)
- M T Khorasani
- Biomaterial Department, Iran Polymer and Petrochemical Institute, PO Box 14185/0515, Tehran, IR of Iran.
| | | |
Collapse
|
24
|
Vasilets VN, Kuznetsov AV, Sevastianov VI. Vacuum ultraviolet treatment of polyethylene to change surface properties and characteristics of protein adsorption. ACTA ACUST UNITED AC 2004; 69:428-35. [PMID: 15127389 DOI: 10.1002/jbm.a.30005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effects of vacuum ultraviolet (VUV) treatment on surface chemical composition morphology and albumin adsorption for low-density polyethylene (LDPE) and high-density polyethylene (HDPE) were investigated. The attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra and contact angle measurements indicated the formation of oxygen-containing polar groups and double bonds under VUV photooxidation in the presence of air or under VUV irradiation in vacuum. Scanning electron microscopy revealed the development of regular structure with the period about 1 microm on the surface of LDPE and HDPE during VUV photooxidation. The correlation between amount of tightly adsorbed albumin and surface concentration of carboxyl groups generated by VUV irradiation was found. The aging effect for protein adsorption during long storage of VUV irradiated samples in air or phosphate-buffered saline (PBS) was studied. The obtained results prove the VUV irradiation provides a high potential to regulate protein adsorption on polymers for biomedical applications.
Collapse
Affiliation(s)
- Viktor N Vasilets
- Research Center for Biomaterials, Research Institute of Transplantology and Artificial Organs, Shukinskaya 1, 123182 Moscow, Russia
| | | | | |
Collapse
|
25
|
Jun Z, Youling Y, Kehua W, Jian S, Sicong L. Surface modification of segmented poly(ether urethane) by grafting sulfo ammonium zwitterionic monomer to improve hemocompatibilities. Colloids Surf B Biointerfaces 2003. [DOI: 10.1016/s0927-7765(02)00116-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Fallahi D, Mirzadeh H, Khorasani MT. Physical, mechanical, and biocompatibility evaluation of three different types of silicone rubber. J Appl Polym Sci 2003. [DOI: 10.1002/app.11952] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Gupta B, Anjum N. Plasma and Radiation-Induced Graft Modification of Polymers for Biomedical Applications. RADIATION EFFECTS ON POLYMERS FOR BIOLOGICAL USE 2003. [DOI: 10.1007/3-540-45668-6_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Yamamoto T, Fujii T, Nojima T. PDMS-glass hybrid microreactor array with embedded temperature control device. Application to cell-free protein synthesis. LAB ON A CHIP 2002; 2:197-202. [PMID: 15100810 DOI: 10.1039/b205010b] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A microreactor array was developed which enables high-throughput cell-free protein synthesis. The microreactor array is composed of a temperature control chip and a reaction chamber chip. The temperature control chip is a glass-made chip on which temperature control devices, heaters and temperature sensors, are fabricated with an ITO (indium tin oxide) resistive material. The reaction chamber chip is fabricated by micromolding of PDMS (polydimethylsiloxane), and is designed to have an array of reaction chambers and flow channels for liquid introduction. The microreactor array is assembled by placing the reaction chamber chip on the temperature control chip. The small thermal mass of the reaction chamber resulted in a short thermal time constant of 170 ms for heating and 3 s for cooling. The performance of the microreactor array was examined through the experiments of cell-free protein synthesis. By measuring the fluorescence emission from the products, it was confirmed that GFP (Green Fluorescent Protein) and BFP (Blue Fluorescent Protein) were successfully synthesized using Escherichia coli extract.
Collapse
Affiliation(s)
- Takatoki Yamamoto
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | | | | |
Collapse
|
29
|
Hacioğlu B, Berchtold KA, Lovell LG, Nie J, Bowman CN. Polymerization kinetics of HEMA/DEGDMA: using changes in initiation and chain transfer rates to explore the effects of chain-length-dependent termination. Biomaterials 2002; 23:4057-64. [PMID: 12182307 DOI: 10.1016/s0142-9612(02)00138-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of kinetic chain length and chain transfer on the polymerization kinetics and network structure in polymerizations of loosely crosslinked 2-hydroxyethyl methacrylate/di(ethylene glycol) dimethacrylate mixtures was explored. Polymerization behavior of the monomer mixture in the presence and absence of a chain transfer agent was monitored at various initiation rates and chain transfer agent concentration levels. Dependence of the polymerization rate on the initiation rate was found to deviate from the classical square-root relationship because of chain-length-dependent termination. This effect was further confirmed by addition of a chain transfer agent. The presence of a chain transfer agent led to the formation of shorter kinetic chains, which enhanced termination and slowed the polymerization. Investigation of the polymerization kinetics after cessation of irradiation yielded kt/kp[M] values for both systems. Prior to the onset of reaction diffusion-controlled termination, the system that included a chain transfer agent exhibited much higher kt/kp[M] values than the polymerization system without added chain transfer agent. In addition, the onset of reaction diffusion-controlled termination was delayed to higher conversions in the system containing chain transfer agent. The impact of a chain transfer agent on the polymerization behavior and kinetics demonstrates that the chain-length-dependent termination phenomenon is indeed important and must be considered in kinetic modeling of loosely crosslinked systems.
Collapse
Affiliation(s)
- Bilge Hacioğlu
- Department of Chemical Engineering, University of Colorado at Boulder, Engineering Center, 80309-0424, USA
| | | | | | | | | |
Collapse
|
30
|
Iwasaki Y, Nakabayashi N, Ishihara K. Preservation of platelet function on 2-methacryloyloxyethyl phosphorylcholine-graft polymer as compared to various water-soluble graft polymers. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 57:72-8. [PMID: 11416851 DOI: 10.1002/1097-4636(200110)57:1<72::aid-jbm1143>3.0.co;2-g] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The chemical structures of water-soluble polymers grafted onto PE surfaces affect platelet function when the platelets contact the polymer surfaces. To improve our understanding of this effect, this study sought to control the blood/materials interaction on the surfaces of polyethylene (PE) by grafting with various water-soluble polymers. Such polymers as poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(acrylamide) (PAAm), poly(N-vinylpyrrolidone) (PVPy), and poly[monomethacryloyl poly(ethylene glycol)] (PMPEG) were grafted on low-density PE sheets by photoinduced graft polymerization. Both the PE bags modified with water-soluble polymers and those nonmodified were prepared by heat processing. Activation of platelets after storage in the PE bags was evaluated by measuring the cytoplasmic free calcium ion concentration ([Ca(2+)]i). The concentration of [Ca(2+)]i of platelets in contact with the PE surface grafted with PMPC was the same as that of native platelets and significantly less than that in contact with other PE surfaces grafted with water-soluble polymers. The number of adherent platelets was effectively decreased on PE surfaces grafted with PMPC and PMPEG, as compared with nontreated PE. The aggregation ability of platelets was also measured after storage of platelet-rich plasma in the PE bags. The PE surface grafted with PMPC effectively maintained aggregation ability as compared with both the nontreated PE and with PE grafted with PAAm, PVPy, and PMPEG. It was concluded that for preserving platelet function, PMPC was the most effective of these water-soluble polymers used for surface modification.
Collapse
Affiliation(s)
- Y Iwasaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | | | |
Collapse
|
31
|
Abstract
This perspective on blood- materials interactions is intended to introduce the set of papers stemming from the symposium, "Devices and Diagnostics in Contact with Blood: Issues in Blood Compatibility at the Close of the 20th Century," organized on August 4-6, 1999 at the University of Washington by the University of Washington Engineered Biomaterials (UWEB) Engineering Research Center. This article outlines some of the history of blood contacting materials, overviews the work that has originated at the University of Washington over the past 28 years, speculates on the origins of the controversies on blood compatibility and considers the issues that should be addressed in future studies.
Collapse
Affiliation(s)
- B D Ratner
- University of Washington Engineered Biomaterrials (UWEB), University of Washington, Seattle 98195, USA
| |
Collapse
|
32
|
Furukawa KS, Ushida T, Sugano H, Tamaki T, Ohshima N, Tateishi T. Effect of shear stress on platelet adhesion to expanded polytetrafluoroethylene, a silicone sheet, and an endothelial cell monolayer. ASAIO J 2000; 46:696-701. [PMID: 11110266 DOI: 10.1097/00002480-200011000-00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We visualized in real-time platelets adhering to the surface of three representative biomaterials, by using an apparatus consisting of a modified cone and plate rheometer combined with an upright epifluorescence microscope under two shear flows (0.1 and 5.0 dyne/cm2). The materials were expanded polytetrafluoroethylene (ePTFE), silicone sheet, and a monolayer of bovine endothelial cells (ECs) formed on glass, all of which are opaque materials used for artificial blood vessels and medical devices. According to quantitative analysis, the monolayer of ECs formed on glass had better blood compatibility than did either the ePTFE or the silicone sheet under shear flow conditions. Under a shear flow condition of 0.1 dyne/cm2, platelet adhesion was silicone sheet > ePTFE. In contrast, under a shear flow condition of 5.0 dyne/cm2, ePTFE > silicone sheet. These results indicate that the intensity of shear stress could modify the order of hemocompatibility of the materials. Therefore, direct observation of platelet adhesion under shear flow conditions is indispensable for testing and screening biomaterials and for providing a precise quantitative evaluation of platelet adhesion.
Collapse
Affiliation(s)
- K S Furukawa
- Department of Mechanical Engineering, School of Engineering, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance. Colloids Surf B Biointerfaces 2000; 18:325-335. [PMID: 10915954 DOI: 10.1016/s0927-7765(99)00158-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phospholipid polymer, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)], was grafted with polyethylene (PE) membrane using photoinduced polymerization technique to make the membrane resistant to cell adhesion. The water contact angle on the PE membrane grafted with poly(MPC) decreased with an increase in the photopolymerization time. This decrease corresponded to the increase in the amount of poly(MPC) grafted on the PE surface. The same graft polymerization procedure was applied using other hydrophilic monomers, such as acrylamide (AAm), N-vinylpyrrolidone (VPy) and methacryloyl poly(ethylene glycol) (MPEG). These monomers were also polymerized to form grafted chains on the PE membrane, and the grafting was confirmed with X-ray photoelectron spectroscopy. Analysis of amount and distribution of plasma proteins at the plasma-contacting surface of the original and the modified PE membranes were analyzed using immunogold assay. The grafting of poly(MPC) and poly(VPy) on PE membrane reduced the plasma protein adsorption significantly compared with that on the original PE membrane. However, the PE membranes grafted with poly(AAm) or poly(MPEG) did not show any effects on protein adsorption. Platelet adhesion on the original and modified PE membranes from platelet-rich plasma was also examined. A large number of platelets adhered and activated on the original PE membrane. Grafting with poly(AAm) did not suppress platelet adhesion, but grafting with poly(MPC) or poly(VPy) on the PE membrane was effective in preventing platelet adhesion. It is concluded that the introduction of the phosphorylcholine group on the surface could decrease the cell adhesion to substrate polymer.
Collapse
|
34
|
Ishihara K, Iwasaki Y. Biocompatible elastomers composed of segmented polyurethane and 2-methacryloyloxyethyl phosphorylcholine polymer. POLYM ADVAN TECHNOL 2000. [DOI: 10.1002/1099-1581(200008/12)11:8/12<626::aid-pat13>3.0.co;2-g] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Sherman MA, Kennedy JP, Ely DL, Smith D. Novel polyisobutylene/polydimethylsiloxane bicomponent networks: III. Tissue compatibility. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1999; 10:259-69. [PMID: 10189095 DOI: 10.1163/156856299x00333] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The tissue biocompatibility of a series of novel rubbery polyisobutylene (PIB)/polydimethylsiloxane (PDMS) bicomponent networks was investigated by in vivo implantation into rats. Bicomponent networks of varying composition (PIB wt%/PDMS wt% = 70/30, 50/50, 35/65) as well as a standard polyethylene control were implanted intraperitoneally. After eight weeks the implants and surrounding tissue were removed for histological evaluation. In all scoring categories (i.e. collagen thickness, fibrous tissue orientation, collagen deposition in muscle tissue, lymphocyte infiltration, angiogenesis) the PIB/PDMS bicomponent network implants elicited either less or similar tissue and cellular response than polyethylene. To determine which implant elicited the least tissue and cellular response overall, a weighted score including collagen thickness, lymphocyte infiltration, and angiogenesis was calculated for each implant. According to these preliminary investigations, PIB/PDMS bicomponent networks are suitable for implant applications.
Collapse
Affiliation(s)
- M A Sherman
- Department of Polymer Science, The University of Akron, OH 44325, USA
| | | | | | | |
Collapse
|
36
|
Kawamoto N, Mori H, Yui N, Terano M. Mechanistic aspects of blood-contacting properties of polypropylene surfaces--from the viewpoint of macromolecular entanglement and hydrophobic interaction via water molecules. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1998; 9:543-59. [PMID: 9659599 DOI: 10.1163/156856298x00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polypropylene surfaces with a particular crystalline-amorphous microstructure have been demonstrated to reduce protein adsorption and platelet activation. Such blood-contacting properties may be affected by the crystalline-amorphous microstructure of the surfaces, although wettability such as dynamic contact angles and surface free energy components were almost constant, being independent from the variation in the microstructure. In order to clarify the mechanistic aspects on their blood-contacting properties, the physicochemical properties of the surfaces were evaluated for a series of compression-molded polypropylene sheets in terms of the work of adhesion and the structure of sorbed water. The work of adhesion of the compression-molded sheets increased with decreasing surface layer crystallinity, presumably due to macromolecular entanglement with a polymeric glue used. The work of adhesion involving macromolecular entanglement may occur between proteins and the surfaces. Thus, a decrease in the surface layer crystallinity is considered to cause an increase in the protein adsorption. The structure of water sorbed into the sheets changed--it was more gaseous (isolated) at the surfaces with a higher crystallinity. This suggests that the hydrophobic interaction via water molecules increased with surface layer crystallinity, resulting in increasing protein adsorption and denaturation. Thus, it is considered that both macromolecular entanglement and hydrophobic interaction are important on the mechanistic aspects of blood-contacting properties of polypropylene surfaces. In order to confirm this hypothesis, the evaluation of the physicochemical properties and blood-contacting properties was also performed on a series of uniaxially drawn polypropylene films. A decrease in the work of adhesion and the hydrophobic interaction at the surfaces was observed with increasing draw ratio, and the protein adsorption and platelet activation were effectively prevented with increasing draw ratio. This result supports our hypothesis. Therefore, it is concluded that the excellent blood-contacting properties of polypropylene surfaces can be achieved by reducing the macromolecular entanglement and the hydrophobic interaction with proteins.
Collapse
Affiliation(s)
- N Kawamoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | | | | | | |
Collapse
|
37
|
|
38
|
Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption? JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1998; 39:323-30. [PMID: 9457564 DOI: 10.1002/(sici)1097-4636(199802)39:2<323::aid-jbm21>3.0.co;2-c] [Citation(s) in RCA: 745] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The amount of plasma protein adsorbed on a phospholipid polymer having a 2-methacryloyloxyethyl phosphorylcholine (MPC) moiety was reduced compared to the amount of protein adsorbed onto poly[2-hydroxyethyl methacrylate (HEMA)], poly[n-butyl methacrylate (BMA)], and BMA copolymers with acrylamide (AAm) or N-vinyl pyrrolidone (VPy) moieties having a hydrophilic fraction. To clarify the reason for the reduced protein adsorption on the MPC polymer, the water structure in the hydrated polymer was examined with attention to the free water fraction. Hydration of the polymers occurred when they were immersed in water. The differential scanning calorimetric analysis of these hydrated polymers revealed that the free water fractions in the poly(MPC-co-BMA) and poly(MPC-co-n-dodecyl methacrylate) with a 0.30 MPC mole fraction were above 0.70. On the other hand, the free water fractions in the poly(HEMA), poly(AAm-co-BMA), and poly(VPy-co-BMA) were below 0.42. The conformational change in proteins adsorbed on the MPC polymers and poly(HEMA) were determined using ultraviolet and circular dichroism spectroscopic measurements. Proteins adsorbed on poly(HEMA) changed considerably, but those adsorbed on poly(MPC-co-BMA) with a 0.30 MPC mole fraction differed little from the native state. We concluded from these results that fewer proteins are adsorbed and their original conformation is not changed on polymer surfaces that possess a high free water fraction.
Collapse
Affiliation(s)
- K Ishihara
- Division of Organic Materials, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption? ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-4636(199802)39:2%3c323::aid-jbm21%3e3.0.co;2-c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Iwasaki Y, Mikami A, Kurita K, Yui N, Ishihara K, Nakabayashi N. Reduction of surface-induced platelet activation on phospholipid polymer. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-4636(19970915)36:4%3c508::aid-jbm8%3e3.0.co;2-i] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Iwasaki Y, Mikami A, Kurita K, Yui N, Ishihara K, Nakabayashi N. Reduction of surface-induced platelet activation on phospholipid polymer. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1997; 36:508-15. [PMID: 9294766 DOI: 10.1002/(sici)1097-4636(19970915)36:4<508::aid-jbm8>3.0.co;2-i] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
omega-Methacryloyloxyalkyl phosphorylcholine (MA-PC) polymers which have been synthesized with attention to the surface structure of a biomembrane show excellent blood compatibility, i.e., resistance to protein adsorption and blood cell adhesion. To clarify the stability of platelets in contact with the MAPC polymer surfaces, cytoplasmic free calcium concentration ([Ca2+],) in the platelets was measured. A platelet suspension was passed through a column packed with various polymer beads after treatment with plasma, and the [Ca2+]i in the platelets eluted from the column was measured. The [Ca2+]i in contact with the MAPC polymers, i.e., poly[2-methacryloyloxyethyl phosphorylcholine-co-nbutyl methacrylate (BMA)] (PMEB) and poly(6-methacryloyloxyhexyl phosphorylcholine-co-BMA) (PMHB), was less than that in contact with poly(BMA). However, poly(10-methacryloyloxydecyl phosphorylcholine-co-BMA) (PMDB) was not effective in suppressing the increase in [Ca2+]i, and thus was at the same level as in the poly(BMA). This result indicated that platelets in contact with PMEB or PMHB were less activated compared with those in contact with PMDB and poly(BMA). Moreover, the state of the platelets adhered to these polymer surfaces, both morphologically and immunologically, was examined. Scanning electron microscopic observation of the polymer surface after contact with a platelet suspension revealed that many platelets adhered and changed their shape on the poly(BMA). The numbers of adhetent platelets were reduced on all MAPC polymer surface. The relative amount of alpha-granule membrane glycoprotein (GMP-140) which appears on the cell membrane by activation of platelets on the PMEB surfaces was less than that on poly(BMA) and poly(2-hydroxyethyl methacrylate). These results suggest that PMEB and PMHB suppressed not only platelet adhesion but also activation of the platelets in contact with these surface.
Collapse
Affiliation(s)
- Y Iwasaki
- Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Iwasaki Y, Kurita K, Ishihara K, Nakabayashi N. Effect of reduced protein adsorption on platelet adhesion at the phospholipid polymer surfaces. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1997; 8:151-63. [PMID: 8957711 DOI: 10.1163/156856296x00228] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We prepared polymers having a phospholipid polar group, poly [omega-methacryloyloxyalkyl phosphorylcholine (MAPC)-co-n-butyl methacrylate(BMA)], as new biomedical materials and evaluated their blood compatibility with attention to protein adsorption and platelet adhesion. The total amount of proteins adsorbed on the polymer surface from human plasma was determined, and the distribution of adsorbed proteins on the plasma-contacting surface was analyzed. The amount of proteins adsorbed on every poly (MAPC-co-BMA) was small compared with that observed on polymers without the phospholipid polar group. However, there was no significant difference in the amount of adsorbed proteins on the poly(MAPC-co-BMA) even when the methylene chain length between the phospholipid polar group and the backbone in the MAPC moiety was altered. Platelet adhesion on the polymer surface from a platelet suspension in a buffered solution was evaluated with and without plasma treatment on the surface. When a rabbit platelet suspension was brought into contact with the poly(BMA) surface after treatment with plasma, many platelets adhered and aggregated. However, a reduced amount of platelet adhered on the poly(BMA) was found in the case of direct contact with the platelet suspension. On the other hand, the poly(MAPC-co-BMA)s could inhibit platelet adhesion under both conditions. Based on these results, it can be concluded that the proteins adsorbed on the surface play an important role in determining the platelet adhesion and suppression of the protein adsorption on the surface, which is one of the most significant ways of inhibiting platelet adhesion.
Collapse
Affiliation(s)
- Y Iwasaki
- Department of Industrial Chemistry, College of Science and Technology, Nihon University, Tokyo, Japan
| | | | | | | |
Collapse
|
43
|
de Queiroz AA, Barrak ER, Gil HA, Higa OZ. Surface studies of albumin immobilized onto PE and PVC films. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1997; 8:667-81. [PMID: 9257180 DOI: 10.1163/156856297x00489] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study is to evaluate the thrombogenic behaviour of the low density polyethylene and poly(vinyl chloride) modified by radiation-grafting technique. After copolymerization with acrylic acid by gamma-rays from a 60Co source, BSA was immobilized onto functionalized graft copolymers. The biological interaction between these materials and blood was studies by in vitro methods. The BSA immobilization effectively suppressed the adhesion and activation of platelets when it contacted whole blood.
Collapse
Affiliation(s)
- A A de Queiroz
- Escola Federal de Engenharia de Itajubá, Instituto de Ciëncias, Brazil
| | | | | | | |
Collapse
|
44
|
de Queiroz AA, Castro SC, Higa OZ. Adsorption of plasma proteins to DMAA hydrogels obtained by ionizing radiation and its relationship with blood compatibility. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1997; 8:335-47. [PMID: 9105974 DOI: 10.1163/156856297x00137] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The interaction of plasma proteins such as albumin, gamma-globulin, and fibrinogen with the surface of graft copolymers DMAA-G-PTFE, DMAA-G-PETFE, and DMAA-G-PE obtained by radiation graft polymerization was studied. The adsorption of serum proteins was affected by the hydrophilicity of the graft copolymers. Increased albumin adsorption and decreased fibrinogen and gamma-globulin adsorption with increasing grafting levels was shown. A certain range of degrees of grafting showed an improved blood compatibility of the polymeric surfaces due to the existence of a hydrophilic/hydrophobic balance on the polymers. The results suggest that the DMAA-G-PTFE, DMAA-G-PETFE, and DMAA-G-PE graft copolymers can be used as biomaterials for long-term use in cardiovascular systems.
Collapse
Affiliation(s)
- A A de Queiroz
- Escola Federal de Engenharia de Itajubá, Instituto de Ciências, MG, Brazil
| | | | | |
Collapse
|
45
|
Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material. Radiat Phys Chem Oxf Engl 1993 1996. [DOI: 10.1016/0969-806x(95)00166-u] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Mitzner E, Groth T. Modification of poly(ether urethane)elastomers by incorporation of poly(isobutylene)glycol. Relation between polymer properties and thrombogenicity. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1996; 7:1105-18. [PMID: 8880442 DOI: 10.1163/156856296x00598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Non-polar hydrophobic poly(isobutylene)glycol (PIBG) was substituted for poly(tetramethylene ether)glycol (PTMEG) in poly(ether urethanes) based on 4,4'-methylenebis-(phenylisocyanate) (MDI) and 1,4-butanediol (BD) as chain extender. Two series of polyurethanes differing in their soft segment length, polymer composition, and hard segment content were studied by dynamic mechanical analysis (DMA) and static, as well as dynamic, contact angle measurements. The thrombogenicity of these polymers was characterized by studying the adhesion and activation of platelets using ELISA for GMP 140 and fluorescence microscopy. It was found by DMA that in PIBG-containing polyurethanes (PUE) exist soft domains containing hard segments, strictly separated hard segment domains, and hard segments partially mixed with soft segments. Contact angle measurements revealed that 25% PIBG or even less, are sufficient for a remarkable enrichment of these non-polar soft segments on the polymer surface. The platelet adhesion/activation on these materials was demonstrated to increase with the rise in hard segment content, as well as with an enhancement of the PIBG content. However, comparison of PIBG-containing PUE with medical applied polypropylene and pellethane expressed that PUE with PIBG content equal or less 25% have excellent haemocompatibility.
Collapse
Affiliation(s)
- E Mitzner
- Technische Fachhochschule Wildau-WIP-Gruppen Adlershof, Berlin, Germany
| | | |
Collapse
|
47
|
Abramson S, Alexander H, Best S, Bokros J, Brunski JB, Colas A, Cooper SL, Curtis J, Haubold A, Hench LL, Hergenrother RW, Hoffman AS, Hubbell JA, Jansen JA, King MW, Kohn J, Lamba NM, Langer R, Migliaresi C, More RB, Peppas NA, Ratner BD, Visser SA, Recum AV, Weinberg S, Yannas IV. Classes of Materials Used in Medicine. Biomater Sci 1996. [DOI: 10.1016/b978-012582460-6/50005-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
48
|
ALEXANDER HAROLD, BRUNSKI JOHNB, COOPER STUARTL, HENCH LARRYL, HERGENROTHER ROBERTW, HOFFMAN ALLANS, KOHN JOACHIM, LANGER ROBERT, PEPPAS NIKOLAOSA, RATNER BUDDYD, SHALABY SHALABYW, VISSER SUSANA, YANNAS IOANNISV. Classes of Materials Used in Medicine. Biomater Sci 1996. [DOI: 10.1016/b978-0-08-050014-0.50007-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Pérez-Luna VH, Horbett TA, Ratner BD. Developing correlations between fibrinogen adsorption and surface properties using multivariate statistics. Student Research Award in the Doctoral Degree Candidate Category, 20th annual meeting of the Society for Biomaterials, Boston, MA, April 5-9, 1994. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1994; 28:1111-26. [PMID: 7829542 DOI: 10.1002/jbm.820281002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A multivariate model based on the partial least squares algorithm (PLS) was constructed in order to establish a correlation between the surface properties of common polymeric materials and the amount and retention of fibrinogen absorbed from a complex mixture. Surface characterization was performed by means of static secondary ion mass spectroscopy (SIMS), electron spectroscopy for chemical analysis (ESCA), and by contact angle measurements of several liquids on those materials. 125I-fibrinogen was adsorbed from a 1% plasma solution in buffer and the amount adsorbed after 2 h was determined. After 5 days of residence time in buffer, the adsorbed fibrinogen was eluted with a 1% solution of the surfactant sodium dodecyl sulfate (SDS). The percent of fibrinogen that remained on the surfaces after elution is referred to as fibrinogen retention. Correlations between surface properties and the amounts of fibrinogen adsorbed or fibrinogen retention were established. These models also show the most important variables that are related to the protein behavior on these surfaces.
Collapse
Affiliation(s)
- V H Pérez-Luna
- Department of Chemical Engineering, University of Washington, Seattle 98195
| | | | | |
Collapse
|
50
|
Ishihara K, Tsuji T, Kurosaki T, Nakabayashi N. Hemocompatibility on graft copolymers composed of poly(2-methacryloyloxyethyl phosphorylcholine) side chain and poly(n-butyl methacrylate) backbone. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1994; 28:225-32. [PMID: 8207035 DOI: 10.1002/jbm.820280213] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To improve the hemocompatibility on hydrophobic biomedical materials by a simple coating technique, graft copolymers composed of a hydrophilic side chain with phospholipid polar groups and a hydrophobic backbone were synthesized. The hydrophilic chain had phospholipid polar groups, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)], and the hydrophobic backbone was poly[n-butyl methacrylate (BMA)]. Because the graft copolymers obtained could dissolve in ethanol, they could be used as a coating material. When the poly(MPC-graft-BMA) was coated onto a poly(BMA) membrane, the composition of the MPC units on the surface was maintained in the bulk graft copolymer even after immersion in water. Protein adsorption on the membrane coated with the graft copolymer from human plasma detected by a gold-colloid labeled immunoassay was drastically decreased compared with that on glass and the original membrane. Moreover, blood cell adhesion, activation, and aggregation on the membrane after contact with human citrated whole blood were suppressed by the coating of the graft copolymer. These results clearly show that the poly(MPC-graft-BMA) is a suitable material for improving hemocompatibility on the biomedical devices because of its protein adsorption and cell adhesion resistant properties.
Collapse
Affiliation(s)
- K Ishihara
- Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|