1
|
Crawford TK, Lafaver BN, Phillips CL. Extra-Skeletal Manifestations in Osteogenesis Imperfecta Mouse Models. Calcif Tissue Int 2024:10.1007/s00223-024-01213-4. [PMID: 38641703 DOI: 10.1007/s00223-024-01213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
Osteogenesis imperfecta (OI) is a rare heritable connective tissue disorder of skeletal fragility with an incidence of roughly 1:15,000. Approximately 85% of the pathogenic variants responsible for OI are in the type I collagen genes, COL1A1 and COL1A2, with the remaining pathogenic OI variants spanning at least 20 additional genetic loci that often involve type I collagen post-translational modification, folding, and intracellular transport as well as matrix incorporation and mineralization. In addition to being the most abundant collagen in the body, type I collagen is an important structural and extracellular matrix signaling molecule in multiple organ systems and tissues. Thus, OI disease-causing variants result not only in skeletal fragility, decreased bone mineral density (BMD), kyphoscoliosis, and short stature, but can also result in hearing loss, dentinogenesis imperfecta, blue gray sclera, cardiopulmonary abnormalities, and muscle weakness. The extensive genetic and clinical heterogeneity in OI has necessitated the generation of multiple mouse models, the growing awareness of non-skeletal organ and tissue involvement, and OI being more broadly recognized as a type I collagenopathy.This has driven the investigation of mutation-specific skeletal and extra-skeletal manifestations and broadened the search of potential mechanistic therapeutic strategies. The purpose of this review is to outline several of the extra-skeletal manifestations that have recently been characterized through the use of genetically and phenotypically heterogeneous mouse models of osteogenesis imperfecta, demonstrating the significant potential impact of OI disease-causing variants as a collagenopathy (affecting multiple organ systems and tissues), and its implications to overall health.
Collapse
Affiliation(s)
- Tara K Crawford
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Brittany N Lafaver
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Charlotte L Phillips
- Departments of Biochemistry and Child Health, University of Missouri-Columbia, 117 Schweitzer Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Dimori M, Fett J, Leikin S, Otsuru S, Thostenson JD, Carroll JL, Morello R. Distinct type I collagen alterations cause intrinsic lung and respiratory defects of variable severity in mouse models of osteogenesis imperfecta. J Physiol 2023; 601:355-379. [PMID: 36285717 PMCID: PMC9840670 DOI: 10.1113/jp283452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/05/2022] [Indexed: 01/18/2023] Open
Abstract
Type I collagen alterations cause osteogenesis imperfecta (OI), a connective tissue disorder characterized by severe bone fragility. Patients with OI can suffer from significant pulmonary manifestations including severe respiratory distress in the neonatal period and a progressive decline in respiratory function in adulthood. We and others have shown intrinsic lung defects in some mouse models of OI. In this large study, we performed histological, histomorphometric, microcomputed tomography and invasive studies on oim/+, Col1a2+/G610C , CrtapKO and oim/oim mice, mimicking mild to moderate to severe OI, with the overall goal of determining the extent of their pulmonary and respiratory mechanics defects and whether these defects correlate with the skeletal disease severity and affect each sex equally. Although with variable severity, OI lung histology consistently showed alveolar simplification with enlarged acinar airspace and reduced alveolar surface. Numerous respiratory mechanics parameters, including respiratory system resistance and elastance, tissue damping, inspiratory capacity, total lung capacity, and others, were significantly and similarly impacted in CrtapKO and oim/oim but not in oim/+ or Col1a2+/G610C compared to control mice. Our data indicate that the impact of type I collagen alterations and OI on lung morphology and function positively correlate with the severity of the extracellular matrix deficiency. Moreover, the respiratory defects were more pronounced in male compared to female mice. It will be important to determine whether our observations in mice translate to OI patients and to dissect the respective contribution of intrinsic lung defects vs. extrinsic skeletal defects to impaired lung function in OI. KEY POINTS: Different type I collagen alterations in mouse models of osteogenesis imperfecta (OI) cause similar abnormal lung histology, with alveolar simplification and reduced alveolar surface, reminiscent of emphysema. Several respiratory mechanics parameters are altered in mouse models of OI. The impact of type I collagen alterations and OI on lung morphology and function positively correlate with the severity of the extracellular matrix deficiency. Respiratory defects were more pronounced in male compared to female mice. It will be important to determine whether our observations in mice translate to OI patients and to dissect the respective contribution of intrinsic lung defects vs. extrinsic skeletal defects to impaired lung function in OI.
Collapse
Affiliation(s)
- Milena Dimori
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jordan Fett
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Sergey Leikin
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
| | - Jeff D. Thostenson
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - John L. Carroll
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Roy Morello
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
3
|
Augustin D, Augustin DH, David D, Théodas JA, Derisier AF. Osteogenesis Imperfecta Type 3 in a 10-Year-Old Child With Acute Respiratory Distress Syndrome. Cureus 2022; 14:e22198. [PMID: 35308738 PMCID: PMC8925934 DOI: 10.7759/cureus.22198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Osteogenesis imperfecta (OI) represents a group of rare connective tissue disorders characterized by excessive bone fragility. Type 3 is a rare form with new mutations; osteopenia and bone fragility are significant with numerous fractures, continuous and severe deformity of the spine, and long bones. Our case study concerns a 10-year-old male child admitted to the pediatric department of the State University of Haiti Hospital. OI type 3 was diagnosed based on both clinical and radiological assessments. Multidisciplinary care was initiated. Although the evolution was still unsatisfactory, characterized by intermittent episodes of dyspnea and left lung hypoplasia, he was stabilized after 28 days of hospitalization and referred to the orthopedics department for follow-up care.
Collapse
|
4
|
Storoni S, Treurniet S, Micha D, Celli M, Bugiani M, van den Aardweg JG, Eekhoff EMW. Pathophysiology of respiratory failure in patients with osteogenesis imperfecta: a systematic review. Ann Med 2021; 53:1676-1687. [PMID: 34569391 PMCID: PMC8477932 DOI: 10.1080/07853890.2021.1980819] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Respiratory failure is a major cause of death in patients with Osteogenesis Imperfecta. Moreover, respiratory symptoms seem to have a dramatic impact on their quality of life. It has long been thought that lung function disorders in OI are mainly due to changes in the thoracic wall, caused by bone deformities. However, recent studies indicate that alterations in the lung itself can also undermine respiratory health. OBJECTIVES Is there any intrapulmonary alteration in Osteogenesis Imperfecta that can explain decreased pulmonary function? The aim of this systematic literature review is to investigate to what extent intrapulmonary or extrapulmonary thoracic changes contribute to respiratory dysfunction in Osteogenesis Imperfecta. METHODS A literature search (in PubMed, Embase, Web of Science, and Cochrane), which included articles from inception to December 2020, was performed in accordance with the PRISMA guidelines. RESULTS Pulmonary function disorders have been described in many studies as secondary to scoliosis or to thoracic skeletal deformities. The findings of this systematic review suggest that reduced pulmonary function can also be caused by a primary pulmonary problem due to intrinsic collagen alterations. CONCLUSIONS Based on the most recent studies, the review indicates that pulmonary defects may be a consequence of abnormal collagen type I distorting the intrapulmonary structure of the lung. Lung function deteriorates further when intrapulmonary defects are combined with severe thoracic abnormalities. This systematic review reveals novel findings of the underlying pathological mechanism which have clinical and diagnostic implications for the assessment and treatment of pulmonary function disorders in Osteogenesis Imperfecta.KEY MESSAGESDecreased pulmonary function in Osteogenesis Imperfecta can be attributed to primary pulmonary defects due to intrapulmonary collagen alterations and not solely to secondary problems arising from thoracic skeletal dysplasia.Type I collagen defects play a crucial role in the development of the lung parenchyma and defects, therefore, affect pulmonary function. More awareness is needed among physicians about pulmonary complications in Osteogenesis Imperfecta to develop novel concepts on clinical and diagnostic assessment of pulmonary functional disorders.
Collapse
Affiliation(s)
- S. Storoni
- Section Endocrinology, Department of Internal Medicine, Amsterdam Bone Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - S. Treurniet
- Section Endocrinology, Department of Internal Medicine, Amsterdam Bone Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - D. Micha
- Department of Human Genetics, Amsterdam Movement Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - M. Celli
- Department of Rare Bone Metabolism Center, Pediatric Department, Sapienza University of Rome, Rome, Italy
| | - M. Bugiani
- Department of Pathology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - J. G. van den Aardweg
- Department of Respiratory Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - E. M. W. Eekhoff
- Section Endocrinology, Department of Internal Medicine, Amsterdam Bone Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Yonko EA, Emanuel JS, Carter EM, Sandhaus RA, Raggio CL. Respiratory impairment impacts QOL in osteogenesis imperfecta independent of skeletal abnormalities. Arch Osteoporos 2020; 15:153. [PMID: 33009598 DOI: 10.1007/s11657-020-00818-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/01/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED Respiratory insufficiency is the leading cause death in people with osteogenesis imperfecta (OI). Adults with OI reported that respiratory symptoms negatively impacted psychosocial wellbeing and limited daily physical activities, irrespective of OI type, age, stature, or scoliosis. The impact of respiratory status on quality of life in this population warrants further investigation. PURPOSE Respiratory insufficiency is the leading cause of mortality in osteogenesis imperfecta (OI), a heterogeneous group of heritable connective tissue disorders characterized by fractures, bone fragility, and scoliosis. There is little research on how respiratory health influences daily life in this population. This study explores the relationship between respiratory function and quality of life in adults with OI. METHODS One hundred fifty-seven adults with OI completed the St. George's Respiratory Questionnaire (SGRQ) and provided demographic and health information through REDCap. SGRQ scores were compared to reference scores for the general population, and comparisons were made between OI type, presence of scoliosis, stature, and other factors such as age or comorbidities. RESULTS Average age was 45.87 years (range 19-81). Respondents scored worse on average (32 ± 23) than the normative data (6 ± 1). Those with type I OI scored better than those with type IV (p = 0.002) or type III (p = 0.024). Total scores correlated with age, activity level, assistive device use, and presence of pulmonary or cardiac comorbidities but did not correlate with stature or degree of scoliosis. CONCLUSION Respiratory symptoms negatively impact both psychosocial wellbeing in the OI population and limit daily physical activity. These limitations occur irrespective of their OI type, age, stature, or scoliosis and reflect the dramatic impact of respiratory status on quality of life for people with OI. Future studies should examine the etiology of respiratory insufficiency in this population so guidelines for management can be established.
Collapse
Affiliation(s)
- Elizabeth A Yonko
- Kathryn O. and Alan C. Greenberg Center for Skeletal Dysplasias, Hospital for Special Surgery, New York, NY, USA
| | - Jillian S Emanuel
- Kathryn O. and Alan C. Greenberg Center for Skeletal Dysplasias, Hospital for Special Surgery, New York, NY, USA
| | - Erin M Carter
- Kathryn O. and Alan C. Greenberg Center for Skeletal Dysplasias, Hospital for Special Surgery, New York, NY, USA
| | - Robert A Sandhaus
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.
| | - Cathleen L Raggio
- Kathryn O. and Alan C. Greenberg Center for Skeletal Dysplasias, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
6
|
Dimori M, Heard-Lipsmeyer ME, Byrum SD, Mackintosh SG, Kurten RC, Carroll JL, Morello R. Respiratory defects in the CrtapKO mouse model of osteogenesis imperfecta. Am J Physiol Lung Cell Mol Physiol 2020; 318:L592-L605. [PMID: 32022592 PMCID: PMC7191481 DOI: 10.1152/ajplung.00313.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Respiratory disease is a leading cause of mortality in patients with osteogenesis imperfecta (OI), a connective tissue disease that causes severely reduced bone mass and is most commonly caused by dominant mutations in type I collagen genes. Previous studies proposed that impaired respiratory function in OI patients was secondary to skeletal deformities; however, recent evidence suggests the existence of a primary lung defect. Here, we analyzed the lung phenotype of Crtap knockout (KO) mice, a mouse model of recessive OI. While we confirm changes in the lung parenchyma that are reminiscent of emphysema, we show that CrtapKO lung fibroblasts synthesize type I collagen with altered posttranslation modifications consistent with those observed in bone and skin. Unrestrained whole body plethysmography showed a significant decrease in expiratory time, resulting in an increased ratio of inspiratory time over expiratory time and a concomitant increase of the inspiratory duty cycle in CrtapKO compared with WT mice. Closed-chest measurements using the forced oscillation technique showed increased respiratory system elastance, decreased respiratory system compliance, and increased tissue damping and elasticity in CrtapKO mice compared with WT. Pressure-volume curves showed significant differences in lung volumes and in the shape of the curves between CrtapKO mice and WT mice, with and without adjustment for body weight. This is the first evidence that collagen defects in OI cause primary changes in lung parenchyma and several respiratory parameters and thus negatively impact lung function.
Collapse
Affiliation(s)
- Milena Dimori
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Melissa E Heard-Lipsmeyer
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Richard C Kurten
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - John L Carroll
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Roy Morello
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
7
|
Abstract
STUDY DESIGN Retrospective clinical study of individuals with osteogenesis imperfecta (OI). OBJECTIVE To assess the relationship between severity of scoliosis and pulmonary function, and to assess the relationship between restrictive lung disease and self-reported quality of life in individuals with OI. SUMMARY OF BACKGROUND DATA OI is a heritable connective tissue disorder characterized by osteopenia and a predisposition to fracture. Respiratory insufficiency is a leading cause of mortality. Literature on pulmonary function in this population has shown a negative correlation between percent-predicted vital capacity and severity of scoliosis. However, it has been suggested that decreased pulmonary function in OI may be due to intrinsic pulmonary disease, in addition to the impact of vertebral compression fractures and scoliosis. METHODS Anterior-posterior spine radiographs and pulmonary function tests from 30 individuals with OI were reviewed. Radiographs were evaluated for scoliosis, defined as a curve ≥ 10°. If more than one curve was present, the largest curve was used. Pulmonary function was defined as the forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC) ratio. Restrictive pulmonary disease was defined as FEV1/FVC > 80%, while obstructive disease was defined as FEV1/FVC < 70%. Bivariate correlation analysis was performed, using Spearman rho correlation coefficient (P < 0.05). Quality of life was assessed by SF-36. RESULTS The mean age was 27.6 years (range: 12-42 yrs). 57.6% were female. OI type IV was the most common (46.7%), followed by OI type III (33.3%), OI type I (10%), OI type IX (6.67% each), and OI type VIII (3.33%). Pulmonary comorbidity was present in 40% of individuals, while 6.67% had a cardiac comorbidity. The correlation between scoliosis and pulmonary function was weak and not significant (R = -0.059, P = 0.747). CONCLUSION Pulmonary function is not significantly correlated with scoliosis, supporting the hypothesis that decreased pulmonary function is intrinsic to OI and/or chest wall deformities, rather than secondary to scoliosis. LEVEL OF EVIDENCE 4.
Collapse
|
8
|
Tauer JT, Robinson ME, Rauch F. Osteogenesis Imperfecta: New Perspectives From Clinical and Translational Research. JBMR Plus 2019; 3:e10174. [PMID: 31485550 PMCID: PMC6715783 DOI: 10.1002/jbm4.10174] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a monogenic bone fragility disorder that usually is caused by mutations in one of the two genes coding for collagen type I alpha chains, COL1A1 or COL1A2. Mutations in at least 18 other genes can also lead to an OI phenotype. As genetic testing is more widely used, mutations in these genes are also more frequently discovered in individuals who have a propensity for fractures, but who do not have other typical clinical characteristics of OI. Intravenous bisphosphonate therapy is still the most widely used drug treatment approach. Preclinical studies in OI mouse models have shown encouraging effects when the antiresorptive effect of a bisphosphonate was combined with bone anabolic therapy using a sclerostin antibody. Other novel experimental treatment approaches include inhibition of transforming growth factor beta signaling with a neutralizing antibody and the inhibition of myostatin and activin A by a soluble activin receptor 2B. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research
Collapse
Affiliation(s)
| | | | - Frank Rauch
- Shriners Hospital for Children Montreal Quebec Canada
| |
Collapse
|
9
|
Tam A, Chen S, Schauer E, Grafe I, Bandi V, Shapiro JR, Steiner RD, Smith PA, Bober MB, Hart T, Cuthbertson D, Krischer J, Mullins M, Byers PH, Sandhaus RA, Durigova M, Glorieux FH, Rauch F, Sutton VR, Lee B, Rush ET, Nagamani SCS. A multicenter study to evaluate pulmonary function in osteogenesis imperfecta. Clin Genet 2018; 94:502-511. [PMID: 30152014 PMCID: PMC6235719 DOI: 10.1111/cge.13440] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/04/2023]
Abstract
Pulmonary complications are a significant cause for morbidity and mortality in osteogenesis imperfecta (OI). However, to date, there have been few studies that have systematically evaluated pulmonary function in individuals with OI. We analyzed spirometry measurements, including forced vital capacity (FVC) and forced expiratory volume in the first second (FEV1 ), in a large cohort of individuals with OI (n = 217) enrolled in a multicenter, observational study. We show that individuals with the more severe form of the disease, OI type III, have significantly reduced FVC and FEV1 which do not follow the expected trends of the normal population. We also show that "normalization" of FVC and FEV1 using general population data to generate percent predicted values underestimates the pulmonary involvement in OI. Within each subtype of OI, we used linear mixed models to find potential correlations between FEV1 and FVC with the clinical variables including mobility, bisphosphonate use, and scoliosis. Our results are an important step in understanding the extent of pulmonary involvement in individuals with OI and for developing pulmonary endpoints for use in the routine patient care as well as in the investigation of new therapies.
Collapse
Affiliation(s)
- Allison Tam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shan Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Evan Schauer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Venkata Bandi
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jay R Shapiro
- Department of Bone and Osteogenesis Imperfecta, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Medicine at Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert D Steiner
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Oregon Health & Science University, and Shriners Hospital for Children, Portland, OR USA
| | | | - Michael B Bober
- Division of Medical Genetics, Alfred I du Pont Hospital for Children, Wilmington, DE, USA
| | - Tracy Hart
- Osteogenesis Imperfecta Foundation, Gaithersburg, MD, USA
| | | | - Jeff Krischer
- College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mary Mullins
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Peter H Byers
- Departments of Medicine and Pathology, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | | | | | | | - Frank Rauch
- Shriner’s Hospital for Children and McGill University, Montreal
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | | | - Eric T Rush
- Children’s Mercy Hospital, University of Missouri - Kansas City, Kansas City, MO, USA
| | - Sandesh CS Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
10
|
Abstract
BackgroundOsteogenesis imperfecta (OI) is most often caused by mutations in type I collagen genes. Respiratory complications have been largely attributed to spine and ribcage deformities. We hypothesized that direct involvement of the pulmonary parenchyma and/or diaphragm by the disease may occur.MethodsIn Col1a1Jrt/+ mice, a model of severe dominant OI, mean linear intercept length (Lm) was used to assess the distal airspace size. Cross-sectional area (CSA) and myosin heavy chain (MyHC) phenotype of the diaphragm muscle fibers, as well as contractile properties, were determined. OI mice were also treated with neutralizing antibodies against transforming growth factor-β (TGF-β).ResultsDistal airspace enlargement occurred in OI mice (Lm +27%). Diaphragmatic thickness and fiber number were reduced, with increases in fast-twitch type IIx/IIb MyHC fibers. Ex vivo force generation (normalized for CSA) of the diaphragm was also significantly reduced. The increased Lm values found in OI mice were not prevented by anti-TGF-β antibody treatment.ConclusionsThe Col1a1Jrt/+ mouse model of OI demonstrates: (1) pulmonary airspace enlargement not driven by TGF-β; and (2) reduced muscle mass and intrinsic contractile weakness of the diaphragm. These results suggest a complex and multifaceted basis for respiratory complications in OI that cannot be solely attributed to bone manifestations.
Collapse
|
11
|
Léotard A, Taytard J, Aouate M, Boule M, Forin V, Lallemant-Dudek P. Diagnosis, follow-up and management of sleep-disordered breathing in children with osteogenesis imperfecta. Ann Phys Rehabil Med 2018; 61:135-139. [PMID: 29454826 DOI: 10.1016/j.rehab.2018.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/21/2018] [Accepted: 02/01/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Osteogenesis imperfecta (OI) is the most common genetic skeletal disorder. Extraskeletal findings are common but an association with sleep-disordered breathing (SDB) has never been described. The aim of this study was to investigate clinical features of children with OI and suspected SDB. METHODS A retrospective study of clinical records, signs of SDB and polysomnographic recordings of children with OI was performed. We paid particular attention to symptoms that could be associated with SDB in this population - scoliosis, kyphosis, vertebral arthrodesis, chest wall deformities, basilar impression, autonomy - as well as data already known to be associated with obstructive sleep apnea such as body mass index and upper-airway impairment. RESULTS We reviewed the clinical charts of 188 patients referred to our genetic skeletal disorders reference center for OI. Among the 15 patients (8%) with polysomnographic recordings, 12 (6.4%) had sleep-disordered breathing. We found a negative correlation between the Brief Assessment of Motor Function score and Apnea Hypopnea Index (r=-0.68; p=0.01) and Desaturation Index (r=-0.62; p=0.02). The Apnea Hypopnea Index was higher for non-walkers than walkers (mean [SD]: 6.5 [3.6] vs. 2.4 [1.5]; p=0.02) and with type III versus IV OI. Two patients were started on continuous positive airway pressure ventilation, with clinical improvement. CONCLUSION For OI children, symptoms suggesting obstructive sleep disorders should be searched for systematically, especially in children with compromised autonomy, high body mass index, trunk deformations, and severe OI type.
Collapse
Affiliation(s)
- Antoine Léotard
- Department of physical medicine and rehabilitation - OSCAR group, rare diseases of bone, calcium and cartilage, hôpital Armand-Trousseau, Sorbonne université, AP-HP, 26, avenue du Dr-Arnold-Netter, 75012 Paris, France.
| | - Jessica Taytard
- Pediatric pulmonology department, hôpital Armand-Trousseau, Sorbonne université, AP-HP, 75012 Paris, France.
| | - Marion Aouate
- Department of physical medicine and rehabilitation - OSCAR group, rare diseases of bone, calcium and cartilage, hôpital Armand-Trousseau, Sorbonne université, AP-HP, 26, avenue du Dr-Arnold-Netter, 75012 Paris, France.
| | - Michèle Boule
- Department of physiology and functional testing, sleep unit, hôpital Armand-Trousseau, Sorbonne université, AP-HP, 75012 Paris, France.
| | - Veronique Forin
- Department of physical medicine and rehabilitation - OSCAR group, rare diseases of bone, calcium and cartilage, hôpital Armand-Trousseau, Sorbonne université, AP-HP, 26, avenue du Dr-Arnold-Netter, 75012 Paris, France.
| | - Pauline Lallemant-Dudek
- Department of physical medicine and rehabilitation - OSCAR group, rare diseases of bone, calcium and cartilage, hôpital Armand-Trousseau, Sorbonne université, AP-HP, 26, avenue du Dr-Arnold-Netter, 75012 Paris, France.
| |
Collapse
|
12
|
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a heterogeneous rare connective tissue disorder commonly caused by mutations in the collagen type I genes. Pharmacological treatment has been most extensively studied in children, and there are only few studies comprising adult OI patients. OBJECTIVES i) To review the literature on the current medical management of OI in children and adults, and thereby identify unmet medical needs and ii) to present an overview of possible future treatment options. RESULTS Individualization and optimization of OI treatment in adults remain a challenge, because available treatments do not target the underlying collagen defect, and available literature gives weak support for treatment decisions for adult patients. CONCLUSIONS Bisphosphonates are still the most widely used pharmacological treatment for adult OI, but the current evidence supporting this is sparse and investigations on indications for choice and duration of treatment are needed.
Collapse
Affiliation(s)
- Katarina Lindahl
- Department of Medical SciencesUppsala University Hospital, Ing 40, 5tr, SE-75185 Uppsala, SwedenDepartment of Endocrinology and Internal Medicine THGAarhus University Hospital, DK-8000 Aarhus C, DenmarkScience for Life LaboratoryDepartment of Medical Sciences, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| | - Bente Langdahl
- Department of Medical SciencesUppsala University Hospital, Ing 40, 5tr, SE-75185 Uppsala, SwedenDepartment of Endocrinology and Internal Medicine THGAarhus University Hospital, DK-8000 Aarhus C, DenmarkScience for Life LaboratoryDepartment of Medical Sciences, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| | - Östen Ljunggren
- Department of Medical SciencesUppsala University Hospital, Ing 40, 5tr, SE-75185 Uppsala, SwedenDepartment of Endocrinology and Internal Medicine THGAarhus University Hospital, DK-8000 Aarhus C, DenmarkScience for Life LaboratoryDepartment of Medical Sciences, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| | - Andreas Kindmark
- Department of Medical SciencesUppsala University Hospital, Ing 40, 5tr, SE-75185 Uppsala, SwedenDepartment of Endocrinology and Internal Medicine THGAarhus University Hospital, DK-8000 Aarhus C, DenmarkScience for Life LaboratoryDepartment of Medical Sciences, Uppsala University Hospital, SE-75185 Uppsala, SwedenDepartment of Medical SciencesUppsala University Hospital, Ing 40, 5tr, SE-75185 Uppsala, SwedenDepartment of Endocrinology and Internal Medicine THGAarhus University Hospital, DK-8000 Aarhus C, DenmarkScience for Life LaboratoryDepartment of Medical Sciences, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| |
Collapse
|
13
|
Thiele F, Cohrs CM, Flor A, Lisse TS, Przemeck GKH, Horsch M, Schrewe A, Gailus-Durner V, Ivandic B, Katus HA, Wurst W, Reisenberg C, Chaney H, Fuchs H, Hans W, Beckers J, Marini JC, Hrabé de Angelis M. Cardiopulmonary dysfunction in the Osteogenesis imperfecta mouse model Aga2 and human patients are caused by bone-independent mechanisms. Hum Mol Genet 2012; 21:3535-45. [PMID: 22589248 PMCID: PMC3406754 DOI: 10.1093/hmg/dds183] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Osteogenesis imperfecta (OI) is an inherited connective tissue disorder with skeletal dysplasia of varying severity, predominantly caused by mutations in the collagen I genes (COL1A1/COL1A2). Extraskeletal findings such as cardiac and pulmonary complications are generally considered to be significant secondary features. Aga2, a murine model for human OI, was systemically analyzed in the German Mouse Clinic by means of in vivo and in vitro examinations of the cardiopulmonary system, to identify novel mechanisms accounting for perinatal lethality. Pulmonary and, especially, cardiac fibroblast of perinatal lethal Aga2/+ animals display a strong down-regulation of Col1a1 transcripts in vivo and in vitro, resulting in a loss of extracellular matrix integrity. In addition, dysregulated gene expression of Nppa, different types of collagen and Agt in heart and lung tissue support a bone-independent vicious cycle of heart dysfunction, including hypertrophy, loss of myocardial matrix integrity, pulmonary hypertension, pneumonia and hypoxia leading to death in Aga2. These murine findings are corroborated by a pediatric OI cohort study, displaying significant progressive decline in pulmonary function and restrictive pulmonary disease independent of scoliosis. Most participants show mild cardiac valvular regurgitation, independent of pulmonary and skeletal findings. Data obtained from human OI patients and the mouse model Aga2 provide novel evidence for primary effects of type I collagen mutations on the heart and lung. The findings will have potential benefits of anticipatory clinical exams and early intervention in OI patients.
Collapse
Affiliation(s)
- Frank Thiele
- Institute of Virology, Klinikum Rechts der Isar, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
A new paradigm has emerged for osteogenesis imperfecta as a collagen-related disorder. The more prevalent autosomal dominant forms of osteogenesis imperfecta are caused by primary defects in type I collagen, whereas autosomal recessive forms are caused by deficiency of proteins which interact with type I procollagen for post-translational modification and/or folding. Factors that contribute to the mechanism of dominant osteogenesis imperfecta include intracellular stress, disruption of interactions between collagen and noncollagenous proteins, compromised matrix structure, abnormal cell-cell and cell-matrix interactions and tissue mineralization. Recessive osteogenesis imperfecta is caused by deficiency of any of the three components of the collagen prolyl 3-hydroxylation complex. Absence of 3-hydroxylation is associated with increased modification of the collagen helix, consistent with delayed collagen folding. Other causes of recessive osteogenesis imperfecta include deficiency of the collagen chaperones FKBP10 or Serpin H1. Murine models are crucial to uncovering the common pathways in dominant and recessive osteogenesis imperfecta bone dysplasia. Clinical management of osteogenesis imperfecta is multidisciplinary, encompassing substantial progress in physical rehabilitation and surgical procedures, management of hearing, dental and pulmonary abnormalities, as well as drugs, such as bisphosphonates and recombinant human growth hormone. Novel treatments using cell therapy or new drug regimens hold promise for the future.
Collapse
Affiliation(s)
- Antonella Forlino
- Bone and Extracellular Matrix Branch, NICHD, NIH, Bethesda, USA
- Department of Biochemistry, Section of Medicine and Pharmacy, University of Pavia, Italy
| | - Wayne A. Cabral
- Bone and Extracellular Matrix Branch, NICHD, NIH, Bethesda, USA
| | | | - Joan C. Marini
- Bone and Extracellular Matrix Branch, NICHD, NIH, Bethesda, USA
| |
Collapse
|
15
|
Baldridge D, Lennington J, Weis M, Homan EP, Jiang MM, Munivez E, Keene DR, Hogue WR, Pyott S, Byers PH, Krakow D, Cohn DH, Eyre DR, Lee B, Morello R. Generalized connective tissue disease in Crtap-/- mouse. PLoS One 2010; 5:e10560. [PMID: 20485499 PMCID: PMC2868021 DOI: 10.1371/journal.pone.0010560] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 04/15/2010] [Indexed: 12/11/2022] Open
Abstract
Mutations in CRTAP (coding for cartilage-associated protein), LEPRE1 (coding for prolyl 3-hydroxylase 1 [P3H1]) or PPIB (coding for Cyclophilin B [CYPB]) cause recessive forms of osteogenesis imperfecta and loss or decrease of type I collagen prolyl 3-hydroxylation. A comprehensive analysis of the phenotype of the Crtap-/- mice revealed multiple abnormalities of connective tissue, including in the lungs, kidneys, and skin, consistent with systemic dysregulation of collagen homeostasis within the extracellular matrix. Both Crtap-/- lung and kidney glomeruli showed increased cellular proliferation. Histologically, the lungs showed increased alveolar spacing, while the kidneys showed evidence of segmental glomerulosclerosis, with abnormal collagen deposition. The Crtap-/- skin had decreased mechanical integrity. In addition to the expected loss of proline 986 3-hydroxylation in alpha1(I) and alpha1(II) chains, there was also loss of 3Hyp at proline 986 in alpha2(V) chains. In contrast, at two of the known 3Hyp sites in alpha1(IV) chains from Crtap-/- kidneys there were normal levels of 3-hydroxylation. On a cellular level, loss of CRTAP in human OI fibroblasts led to a secondary loss of P3H1, and vice versa. These data suggest that both CRTAP and P3H1 are required to maintain a stable complex that 3-hydroxylates canonical proline sites within clade A (types I, II, and V) collagen chains. Loss of this activity leads to a multi-systemic connective tissue disease that affects bone, cartilage, lung, kidney, and skin.
Collapse
Affiliation(s)
- Dustin Baldridge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer Lennington
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Erica P. Homan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Douglas R. Keene
- Shriners Hospitals for Children, Portland, Oregon, United States of America
| | - William R. Hogue
- Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Shawna Pyott
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Peter H. Byers
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Deborah Krakow
- Medical Genetics Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Daniel H. Cohn
- Medical Genetics Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - David R. Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Houston, Texas, United States of America
- * E-mail:
| | - Roy Morello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
16
|
Johnson K, Pineda M, Darrow D, Proud V, Derkay C. Neonatal Upper Airway Obstruction in Osteogenesis Imperfecta: Series of Three Cases and Review of the Literature. Ann Otol Rhinol Laryngol 2008; 117:27-31. [DOI: 10.1177/000348940811700107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: Osteogenesis imperfecta (OI) is a genetic disorder characterized by variable degrees of dysfunction in type I collagen formation. We sought to explore an association between OI and upper airway obstruction (UAO) in light of our recent experience. Methods: We performed a retrospective chart audit and a review of the literature. Results: Three consecutive cases of OI at our institution required otolaryngological evaluation for UAO. The first patient had the mildest mutation type and did well until he developed severe reflux-triggered laryngospasm that improved with Nissen fundoplication and gastrostomy tube placement. He had mild hypotonia on endoscopy. The second patient had severe OI and the greatest acute fracture burden at birth. He required tracheotomy after early respiratory failure, and some mild bronchomalacia was noted. The third patient had severe OI and underwent cesarean section delivery. She developed respiratory failure after 1 month, requiring tracheotomy; mild tracheomalacia and glottic narrowing were noted on endoscopy. Conclusions: The UAO consisted of mild hypotonia or malacia in 3 consecutive cases of OI, and may have contributed to pulmonary and mechanical causes of tracheotomy requirement. The greatest predictors of tracheotomy requirement appear to be the severity of the OI mutation and the fracture burden. Elective cesarean section should be considered in severe cases of OI.
Collapse
|
17
|
Widmann RF, Bitan FD, Laplaza FJ, Burke SW, DiMaio MF, Schneider R. Spinal deformity, pulmonary compromise, and quality of life in osteogenesis imperfecta. Spine (Phila Pa 1976) 1999; 24:1673-8. [PMID: 10472101 DOI: 10.1097/00007632-199908150-00008] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A cross-sectional radiologic and clinical study of patients with osteogenesis imperfecta. OBJECTIVES To determine whether pulmonary compromise is more closely correlated with scoliosis, kyphosis, or chest wall deformity in the population with osteogenesis imperfecta, and to assess the impact of spinal deformity, chest wall deformity, and pulmonary function on quality of life. SUMMARY OF BACKGROUND DATA The incidence of scoliosis in osteogenesis imperfecta is between 39% and 80%. Up to 60% of patients with osteogenesis imperfecta have significant chest wall deformities. Pulmonary compromise is the leading cause of death in adults with osteogenesis imperfecta. METHODS Fifteen patients with osteogenesis imperfecta between the ages of 20 and 45 were evaluated with sitting or standing anteroposterior and lateral radiographs of the entire spine, pulmonary function testing, and a validated health self-assessment questionnaire (Short Form-36). Radiographs were evaluated for thoracic scoliosis, thoracic kyphosis, and chest wall deformity. Correlation analysis was performed. RESULTS Thoracic scoliosis was strongly correlated with decreased predicted vital capacity (r = -0.76). Significant diminution in vital capacity below 50% occurred at a curve magnitude of 60 degrees. Kyphosis and chest wall deformity were not predictive of decreased pulmonary function. Physical health (PCS) was closely correlated with predicted vital capacity (r = 0.65; P < 0.01) and with scoliosis (r = -0.52; P < 0.05). CONCLUSIONS Thoracic scoliosis of more than 60 degrees has severe adverse effects on pulmonary function in those with osteogenesis imperfecta. This finding may partly explain the increased pulmonary morbidity noted in adult patients with osteogenesis imperfecta and scoliosis compared with that in the general population.
Collapse
Affiliation(s)
- R F Widmann
- Department of Orthopaedics and Radiology, Hospital for Special Surgery, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|