1
|
Gerasimovskaya E, Patil RS, Davies A, Maloney ME, Simon L, Mohamed B, Cherian-Shaw M, Verin AD. Extracellular purines in lung endothelial permeability and pulmonary diseases. Front Physiol 2024; 15:1450673. [PMID: 39234309 PMCID: PMC11372795 DOI: 10.3389/fphys.2024.1450673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
The purinergic signaling system is an evolutionarily conserved and critical regulatory circuit that maintains homeostatic balance across various organ systems and cell types by providing compensatory responses to diverse pathologies. Despite cardiovascular diseases taking a leading position in human morbidity and mortality worldwide, pulmonary diseases represent significant health concerns as well. The endothelium of both pulmonary and systemic circulation (bronchial vessels) plays a pivotal role in maintaining lung tissue homeostasis by providing an active barrier and modulating adhesion and infiltration of inflammatory cells. However, investigations into purinergic regulation of lung endothelium have remained limited, despite widespread recognition of the role of extracellular nucleotides and adenosine in hypoxic, inflammatory, and immune responses within the pulmonary microenvironment. In this review, we provide an overview of the basic aspects of purinergic signaling in vascular endothelium and highlight recent studies focusing on pulmonary microvascular endothelial cells and endothelial cells from the pulmonary artery vasa vasorum. Through this compilation of research findings, we aim to shed light on the emerging insights into the purinergic modulation of pulmonary endothelial function and its implications for lung health and disease.
Collapse
Affiliation(s)
| | - Rahul S Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Adrian Davies
- Department of Internal Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - McKenzie E Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Office of Academic Affairs, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Liselle Simon
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Basmah Mohamed
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
2
|
Dani C, Miselli F, Zini T, Scarponi D, Luzzati M, Sarcina D, Fusco M, Dianori F, Berardi A. Measurement of lung oxygenation by near-infrared spectroscopy in preterm infants with bronchopulmonary dysplasia. Pediatr Pulmonol 2024; 59:1631-1637. [PMID: 38441387 DOI: 10.1002/ppul.26955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION It has recently been reported that it is possible to monitor lung oxygenation (rSO2L) by near-infrared spectroscopy (NIRS) in preterm infants with respiratory distress syndrome (RDS). Thus, our aim was to assess the possibility of monitoring rSO2L in infants with evolving and established bronchopulmonary dysplasia (BPD) and to evaluate if rSO2L correlates with BPD severity and other oxygenation indices. METHODS We studied 40 preterm infants with gestational age ≤30 weeks at risk for BPD. Patients were continuously studied for 2 h by NIRS at 28 ± 7 days of life and 36 weeks ± 7 days of postmenstrual age. RESULTS rSO2L was similar at the first and second NIRS recordings (71.8 ± 7.2 vs. 71.4 ± 4.2%) in the overall population, but it was higher in infants with mild than in those with moderate-to-severe BPD at both the first (73.3 ± 3.1 vs. 71.2 ± 3.2%, p = .042) and second (72.3 ± 2.8 vs. 70.5 ± 2.8, p = .049) NIRS recording. A rSO2L cutoff value of 71.6% in the first recording was associated with a risk for moderate-to-severe BPD with a sensitivity of 66% and a specificity of 60%. Linear regression analysis demonstrated a significant positive relationship between rSO2L and SpO2/FiO2 ratio (p = .013) and a/APO2 (p = .004). CONCLUSIONS Monitoring of rSO2L by NIRS in preterm infants with evolving and established BPD is feasible and safe. rSO2L was found to be higher in infants with mild BPD, and predicts the risk for developing moderate-to-severe BPD and correlates with other indices of oxygenation.
Collapse
Affiliation(s)
- Carlo Dani
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University Hospital of Florence, Florence, Italy
| | - Francesca Miselli
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences of Mothers, Children and Adults, University Hospital of Modena, Modena, Italy
| | - Tommaso Zini
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences of Mothers, Children and Adults, University Hospital of Modena, Modena, Italy
| | - Davide Scarponi
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences of Mothers, Children and Adults, University Hospital of Modena, Modena, Italy
| | - Michele Luzzati
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Davide Sarcina
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Monica Fusco
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Francesco Dianori
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Alberto Berardi
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences of Mothers, Children and Adults, University Hospital of Modena, Modena, Italy
| |
Collapse
|
3
|
Wang Y, Abdelhafez YG, Spencer BA, Verma R, Parikh M, Stollenwerk N, Nardo L, Jones T, Badawi RD, Cherry SR, Wang G. High-Temporal-Resolution Kinetic Modeling of Lung Tumors with Dual-Blood Input Function Using Total-Body Dynamic PET. J Nucl Med 2024; 65:714-721. [PMID: 38548347 PMCID: PMC11064825 DOI: 10.2967/jnumed.123.267036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/21/2024] [Indexed: 05/03/2024] Open
Abstract
The lungs are supplied by both the pulmonary arteries carrying deoxygenated blood originating from the right ventricle and the bronchial arteries carrying oxygenated blood downstream from the left ventricle. However, this effect of dual blood supply has never been investigated using PET, partially because the temporal resolution of conventional dynamic PET scans is limited. The advent of PET scanners with a long axial field of view, such as the uEXPLORER total-body PET/CT system, permits dynamic imaging with high temporal resolution (HTR). In this work, we modeled the dual-blood input function (DBIF) and studied its impact on the kinetic quantification of normal lung tissue and lung tumors using HTR dynamic PET imaging. Methods: Thirteen healthy subjects and 6 cancer subjects with lung tumors underwent a dynamic 18F-FDG scan with the uEXPLORER for 1 h. Data were reconstructed into dynamic frames of 1 s in the early phase. Regional time-activity curves of lung tissue and tumors were analyzed using a 2-tissue compartmental model with 3 different input functions: the right ventricle input function, left ventricle input function, and proposed DBIF, all with time delay and dispersion corrections. These models were compared for time-activity curve fitting quality using the corrected Akaike information criterion and for differentiating lung tumors from lung tissue using the Mann-Whitney U test. Voxelwise multiparametric images by the DBIF model were further generated to verify the regional kinetic analysis. Results: The effect of dual blood supply was pronounced in the high-temporal-resolution time-activity curves of lung tumors. The DBIF model achieved better time-activity curve fitting than the other 2 single-input models according to the corrected Akaike information criterion. The estimated fraction of left ventricle input was low in normal lung tissue of healthy subjects but much higher in lung tumors (∼0.04 vs. ∼0.3, P < 0.0003). The DBIF model also showed better robustness in the difference in 18F-FDG net influx rate [Formula: see text] and delivery rate [Formula: see text] between lung tumors and normal lung tissue. Multiparametric imaging with the DBIF model further confirmed the differences in tracer kinetics between normal lung tissue and lung tumors. Conclusion: The effect of dual blood supply in the lungs was demonstrated using HTR dynamic imaging and compartmental modeling with the proposed DBIF model. The effect was small in lung tissue but nonnegligible in lung tumors. HTR dynamic imaging with total-body PET can offer a sensitive tool for investigating lung diseases.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
- Nuclear Medicine Unit, South Egypt Cancer Institute, Assiut University, Assiut, Egypt; and
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
| | - Rashmi Verma
- Comprehensive Cancer Center, University of California Davis Medical Center, Sacramento, California
| | - Mamta Parikh
- Comprehensive Cancer Center, University of California Davis Medical Center, Sacramento, California
| | - Nicholas Stollenwerk
- Comprehensive Cancer Center, University of California Davis Medical Center, Sacramento, California
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
| | - Terry Jones
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Simon R Cherry
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Guobao Wang
- Department of Radiology, University of California Davis Medical Center, Sacramento, California;
| |
Collapse
|
4
|
Yan HT, Lu GD, Liu J, Liu S, Shi HB, Zhou CG, Zu QQ. Does the presence of systemic artery-pulmonary circulation shunt during bronchial arterial embolization increase the recurrence of noncancer-related hemoptysis? A retrospective cohort study. Respir Res 2023; 24:119. [PMID: 37131263 PMCID: PMC10152774 DOI: 10.1186/s12931-023-02427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The presence of systemic artery-pulmonary circulation shunt (SPS) during the bronchial arterial embolization (BAE) procedure, has been inferred to be a potential risk factor for recurrence. The aim of this study is to reveal the impact of SPS on the recurrence of noncancer-related hemoptysis after BAE. METHODS In this study, 134 patients with SPS (SPS-present group) and 192 patients without SPS (SPS-absent group) who underwent BAE for noncancer-related hemoptysis from January 2015 to December 2020 were compared. Four different Cox proportional hazards regression models were used to clarify the impact of SPSs on hemoptysis recurrence after BAE. RESULTS During the median follow-up time of 39.8 months, recurrence occurred in 75 (23.0%) patients, including 51 (38.1%) in the SPS-present group and 24 (12.5%) in the SPS-absent group. The 1-month, 1-year, 2-year, 3-year and 5-year hemoptysis-free survival rates in the SPS-present and SPS-absent groups were 91.8%, 79.7%, 70.6%, 62.3%, and 52.6% and 97.9%, 94.7%, 89.0%, 87.1%, and 82.3%, respectively (P < 0.001). The adjusted hazard ratios of SPSs in the four models were 3.37 [95% confidence intervals (CI), 2.07-5.47, P < 0.001 in model 1], 1.96 (95% CI, 1.11-3.49, P = 0.021 in model 2), 2.29 (95% CI, 1.34-3.92, P = 0.002 in model 3), and 2.39 (95% CI, 1.44-3.97, P = 0.001 in model 4). CONCLUSIONS The presence of SPS during BAE increases the recurrence probability of noncancer-related hemoptysis after BAE.
Collapse
Affiliation(s)
- Hai-Tao Yan
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Guang-Dong Lu
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Jin Liu
- Department of Clinical Medicine Research Institution, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Sheng Liu
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Hai-Bin Shi
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
| | - Chun-Gao Zhou
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
| | - Qing-Quan Zu
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
5
|
Yan HT, Lu GD, Zhang JX, Zhou CG, Liu J, Liu S, Shi HB, Zu QQ. Comparison of Bronchial Artery Embolisation Versus Conservative Treatment for Bronchiectasis-Related Nonmassive Haemoptysis: A Single-Centre Retrospective Study. Cardiovasc Intervent Radiol 2023; 46:369-376. [PMID: 36658375 DOI: 10.1007/s00270-023-03361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To compare the safety and effectiveness between bronchial artery embolisation (BAE) and conservative treatment for bronchiectasis-related nonmassive haemoptysis patients. MATERIALS AND METHODS From January 2015 to December 2020, consecutive bronchiectasis-related nonmassive haemoptysis patients who underwent either BAE (n = 98) or conservative treatment (n = 118) were included. Treatment-related complications, length of hospital stays, clinical success rate, patient satisfaction, and recurrence-free survival rates were compared between groups. Prognostic factors related to recurrence were also analysed. RESULTS During a median follow-up time of 44.8 months (range, 2.4-83.6 months), 34 and 66 patients in the BAE and conservative treatment groups suffered relapse. The 1-year, 2-year, 3-year and 5-year haemoptysis-free survival rates in the BAE and conservative treatment groups were 79.2%, 68.1%, 62.8%, and 57.6% and 64.0%, 52.8%, 44.1%, and 37.0%, respectively (P = 0.007). The minor complication rate after BAE was higher than that after conservative treatment (23/98 vs. 12/118, P = 0.008). BAE was associated with shorter hospital stays (5.0 vs. 7.0 days, P = 0.042) and higher patient satisfaction (88.8% vs. 74.6%, P = 0.008) than those for conservative treatment and with comparable clinical success rates (95.9% vs. 91.5%, P = 0.192). Treatment type, haemoptysis duration, and bronchiectasis severity were independently significant predictors of recurrence for these patients. CONCLUSIONS BAE could be another option for bronchiectasis-related nonmassive haemoptysis patients. In the patients with longer duration and more severe bronchiectasis, BAE still appeared to have better long-term haemoptysis control than conservative therapy.
Collapse
Affiliation(s)
- Hai-Tao Yan
- Department of Interventional Radiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Guang-Dong Lu
- Department of Interventional Radiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Jin-Xing Zhang
- Department of Interventional Radiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Chun-Gao Zhou
- Department of Interventional Radiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Jin Liu
- Department of Clinical Medicine Research Institution, The First Affiliated Hospital With Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Sheng Liu
- Department of Interventional Radiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Hai-Bin Shi
- Department of Interventional Radiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Qing-Quan Zu
- Department of Interventional Radiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
6
|
Ellebrecht DB, Kugler C. Intraoperative Determination of Bronchus Stump and Anastomosis Perfusion with Hyperspectral Imaging. Surg Innov 2023:15533506231157165. [PMID: 36802983 DOI: 10.1177/15533506231157165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND The intraoperative evaluation of bronchus perfusion is limited. Hyperspectral Imaging (HSI) is a newly established intraoperative imaging technique that enables a non-invasive, real-time perfusion analysis. Therefore, the purpose of this study was to determine the intraoperative perfusion of bronchus stump and anastomosis during pulmonary resections with HSI. METHODS In this prospective, IDEAL Stage 2a study (Clinicaltrials.gov: NCT04784884) HSI measurements were carried out before bronchial dissection and after bronchial stump formation or bronchial anastomosis, respectively. Tissue oxygenation (StO2; upper tissue perfusion), organ hemoglobin index (OHI), near-infrared index (NIR; deeper tissue perfusion) and tissue water index (TWI) were calculated. RESULTS Bronchus stumps showed a reduced NIR (77.82 ± 10.27 vs 68.01 ± 8.95; P = 0,02158) and OHI (48.60 ± 1.39 vs 38.15 ± 9.74; P = <.0001), although the perfusion of the upper tissue layers was equivalent before and after resection (67.42% ± 12.53 vs 65.91% ± 10.40). In the sleeve resection group, we found both a significant decrease in StO 2 and NIR between central bronchus and anastomosis region (StO2: 65.09% ± 12.57 vs 49.45 ± 9.94; P = .044; NIR: 83.73 ± 10.92 vs 58.62 ± 3.01; P = .0063). Additionally, NIR was decreased in the re-anastomosed bronchus compared to central bronchus region (83.73 ± 10.92 vs 55.15 ± 17.56; P = .0029). CONCLUSIONS Although both bronchus stumps and anastomosis show an intraoperative reduction of tissue perfusion, there is no difference of tissue hemoglobin level in bronchus anastomosis.
Collapse
Affiliation(s)
- David B Ellebrecht
- Department of Surgery, 9213LungClinic Großhansdorf, Großhansdorf, Germany
| | - Christian Kugler
- Department of Surgery, 9213LungClinic Großhansdorf, Großhansdorf, Germany
| |
Collapse
|
7
|
Engelbrecht E, Kooistra T, Knipe RS. The Vasculature in Pulmonary Fibrosis. CURRENT TISSUE MICROENVIRONMENT REPORTS 2022; 3:83-97. [PMID: 36712832 PMCID: PMC9881604 DOI: 10.1007/s43152-022-00040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
Abstract
Purpose of Review The current paradigm of idiopathic pulmonary fibrosis (IPF) pathogenesis involves recurrent injury to a sensitive alveolar epithelium followed by impaired repair responses marked by fibroblast activation and deposition of extracellular matrix. Multiple cell types are involved in this response with potential roles suggested by advances in single-cell RNA sequencing and lung developmental biology. Notably, recent work has better characterized the cell types present in the pulmonary endothelium and identified vascular changes in patients with IPF. Recent Findings Lung tissue from patients with IPF has been examined at single-cell resolution, revealing reductions in lung capillary cells and expansion of a population of vascular cells expressing markers associated with bronchial endothelium. In addition, pre-clinical models have demonstrated a fundamental role for aging and vascular permeability in the development of pulmonary fibrosis. Summary Mounting evidence suggests that the endothelium undergoes changes in the context of fibrosis, and these changes may contribute to the development and/or progression of pulmonary fibrosis. Additional studies will be needed to further define the functional role of these vascular changes.
Collapse
Affiliation(s)
| | - Tristan Kooistra
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Trans-arterial embolization for hemoptysis in lung transplant recipients. Respir Med Res 2022; 82:100941. [DOI: 10.1016/j.resmer.2022.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022]
|
9
|
Dani C, Ciarcià M, Miselli F, Luzzati M, Petrolini C, Corsini I, Simone P. Measurement of lung oxygenation by near-infrared spectroscopy in preterm infants with respiratory distress syndrome: A proof-of-concept study. Pediatr Pulmonol 2022; 57:2306-2312. [PMID: 35018746 DOI: 10.1002/ppul.25824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 01/08/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Noninvasive markers more accurate than FiO2 would be useful to assess the severity of RDS and guide its treatment. Our aim was to assess for the first time the possibility of continuously monitoring lung oxygenation (rSO2 L) by near-infrared spectroscopy (NIRS) and to evaluate whether rSO2 L correlates with other oxygenation indices and RDS severity. METHODS We carried out this proof-of-concept study on 20 preterm infants with RDS requiring noninvasive respiratory support. Patients were continuously studied for 24 h by NIRS and rSO2 L was correlated with SpO2 /FiO2 ratio, a/APO2 , and O.I. RESULTS The overall value of rSO2 L was 80.1 ± 6.2%, without significant differences between the right and left hemithorax (80.2 ± 6.7 vs. 80.0 ± 5.7%; p = 0.869). Mean values of total, right, and left rSO2 L did not significantly change during the 24-h study period. Linear regression analysis demonstrated a significant positive relationship between total rSO2 L and SpO2 /FiO2 ratio (p < 0.001) and a/APO2 (p = 0.040), and a negative relationship between total rSO2 L and O.I. (r = -0.309; p = 0.022). CONCLUSIONS Continuous monitoring of rSO2 L by NIRS in preterm infants with RDS is feasible and safe. The correlation of rSO2 L with other indices of oxygenation and RDS severity supports the accuracy and reliability of this measurement.
Collapse
Affiliation(s)
- Carlo Dani
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University Hospital of Florence, Florence, Italy
| | - Martina Ciarcià
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Francesca Miselli
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Michele Luzzati
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Chiara Petrolini
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Iuri Corsini
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Pratesi Simone
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| |
Collapse
|
10
|
de Rooij LPMH, Becker LM, Teuwen LA, Boeckx B, Jansen S, Feys S, Verleden S, Liesenborghs L, Stalder AK, Libbrecht S, Van Buyten T, Philips G, Subramanian A, Dumas SJ, Meta E, Borri M, Sokol L, Dendooven A, Truong ACK, Gunst J, Van Mol P, Haslbauer JD, Rohlenova K, Menter T, Boudewijns R, Geldhof V, Vinckier S, Amersfoort J, Wuyts W, Van Raemdonck D, Jacobs W, Ceulemans LJ, Weynand B, Thienpont B, Lammens M, Kuehnel M, Eelen G, Dewerchin M, Schoonjans L, Jonigk D, van Dorpe J, Tzankov A, Wauters E, Mazzone M, Neyts J, Wauters J, Lambrechts D, Carmeliet P. The pulmonary vasculature in lethal COVID-19 and idiopathic pulmonary fibrosis at single cell resolution. Cardiovasc Res 2022; 119:520-535. [PMID: 35998078 PMCID: PMC9452154 DOI: 10.1093/cvr/cvac139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Aims SARS-CoV-2 infection causes COVID-19, which in severe cases evokes life-threatening acute respiratory distress syndrome (ARDS). Transcriptome signatures and the functional relevance of non-vascular cell types (e.g. immune and epithelial cells) in COVID-19 are becoming increasingly evident. However, despite its known contribution to vascular inflammation, recruitment/invasion of immune cells, vascular leakage and perturbed hemostasis in the lungs of severe COVID-19 patients, an in-depth interrogation of the endothelial cell (EC) compartment in lethal COVID-19 is lacking. Moreover, progressive fibrotic lung disease represents one of the complications of COVID-19 pneumonia and ARDS. Analogous features between idiopathic pulmonary fibrosis (IPF) and COVID-19 suggest partial similarities in their pathophysiology, yet, a head-to-head comparison of pulmonary cell transcriptomes between both conditions has not been implemented to date. Methods and Results We performed single nucleus RNA-seq (snRNA-seq) on frozen lungs from 7 deceased COVID-19 patients, 6 IPF explant lungs and 12 controls. The vascular fraction, comprising 38,794 nuclei, could be subclustered into 14 distinct EC subtypes. Non-vascular cell types, comprising 137,746 nuclei, were subclustered and used for EC-interactome analyses. Pulmonary ECs of deceased COVID-19 patients showed an enrichment of genes involved in cellular stress, as well as signatures suggestive of dampened immunomodulation and impaired vessel wall integrity. In addition, increased abundance of a population of systemic capillary and venous ECs was identified in COVID-19 and IPF. COVID-19 systemic ECs closely resembled their IPF counterparts, and a set of 30 genes was found congruently enriched in systemic ECs across studies. Receptor-ligand interaction analysis of ECs with non-vascular cell types in the pulmonary micro-environment revealed numerous previously unknown interactions specifically enriched/depleted in COVID-19 and/or IPF. Conclusions This study uncovered novel insights into the abundance, expression patterns and interactomes of EC subtypes in COVID-19 and IPF, relevant for future investigations into the progression and treatment of both lethal conditions. Translational perspective While assessing clinical and molecular characteristics of severe and lethal COVID-19 cases, the vasculature’s undeniable role in disease progression has been widely acknowledged. COVID-19 lung pathology moreover shares certain clinical features with late-stage IPF – yet an in-depth interrogation and direct comparison of the endothelium at single-cell level in both conditions is still lacking. By comparing the transcriptomes of ECs from lungs of deceased COVID-19 patients to those from IPF explant and control lungs, we gathered key insights the heterogeneous composition and potential roles of ECs in both lethal diseases, which may serve as a foundation for development of novel therapeutics.
Collapse
Affiliation(s)
| | | | - Laure-Anne Teuwen
- Present address: Department of Oncology, Antwerp University Hospital (UZA), Edegem 2650, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Sander Jansen
- Laboratory of Virology & Chemotherapy, KU Leuven, Leuven 3000, Belgium
| | - Simon Feys
- Medical Intensive Care Unit, UZ Gasthuisberg & Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven 3000, Belgium
| | - Stijn Verleden
- Present address: Department of Antwerp Surgical Training, Anatomy and Research Centre, Division of Thoracic and Vascular Surgery, University of Antwerp, Wilrijk, Belgium
| | | | - Anna K Stalder
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Sasha Libbrecht
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Tina Van Buyten
- Laboratory of Virology & Chemotherapy, KU Leuven, Leuven 3000, Belgium
| | - Gino Philips
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Abhishek Subramanian
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Sébastien J Dumas
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Elda Meta
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Mila Borri
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Liliana Sokol
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Amélie Dendooven
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
- University of Antwerp, Faculty of Medicine, Wilrijk 2610, Belgium
| | - Anh-Co K Truong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Jan Gunst
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Pierre Van Mol
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Jasmin D Haslbauer
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Katerina Rohlenova
- Present address: Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 252 50, Czech Republic
| | - Thomas Menter
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | | | - Vincent Geldhof
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Jacob Amersfoort
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Wim Wuyts
- Department of Respiratory Medicine, Unit for Interstitial Lung Diseases, UZ Gasthuisberg, Leuven 3000, Belgium
| | - Dirk Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven 3000, Belgium
| | - Werner Jacobs
- Medical CBRNe unit, Queen Astrid Military Hospital, Belgian Defense, Neder-Over-Heembeek 1120, Belgium
- Department of Forensic Pathology, ASTARC Antwerp University Hospital and University of Antwerp, Antwerp 2610, Belgium
| | - Laurens J Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven 3000, Belgium
| | - Birgit Weynand
- Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Martin Lammens
- Department of Pathology Antwerp University Hospital, Edegem 2560, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp 2000, Belgium
| | - Mark Kuehnel
- Medizinische Hochschule Hannover (MHH), Institut für Pathologie, D-30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Centre for Lung research (DZL), Hannover 30625, Germany
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Danny Jonigk
- Medizinische Hochschule Hannover (MHH), Institut für Pathologie, D-30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Centre for Lung research (DZL), Hannover 30625, Germany
| | - Jo van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven 3000, Belgium
- Respiratory Oncology Unit, University Hospital KU Leuven, Leuven 3000, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven 3000, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Johan Neyts
- Laboratory of Virology & Chemotherapy, KU Leuven, Leuven 3000, Belgium
| | - Joost Wauters
- Medical Intensive Care Unit, UZ Gasthuisberg & Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven 3000, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | | |
Collapse
|
11
|
Abstract
Massive hemoptysis is a highly morbid medical condition with up to 75% mortality with conservative treatment. Bronchial artery embolization has emerged as the common treatment for both acute massive hemoptysis and chronic hemoptysis. This article will review the clinical presentation, bronchial artery anatomy, embolization procedure, complications, and expected outcomes.
Collapse
Affiliation(s)
- Claire S. Kaufman
- Dotter Department of Interventional Radiology, Oregon Health & Sciences University, Portland, Oregon
| | - Sharon W. Kwan
- Dotter Department of Interventional Radiology, Oregon Health & Sciences University, Portland, Oregon
| |
Collapse
|
12
|
Ackermann M, Tafforeau P, Wagner WL, Walsh C, Werlein C, Kühnel MP, Länger FP, Disney C, Bodey AJ, Bellier A, Verleden SE, Lee PD, Mentzer SJ, Jonigk DD. The Bronchial Circulation in COVID-19 Pneumonia. Am J Respir Crit Care Med 2021; 205:121-125. [PMID: 34734553 PMCID: PMC8865596 DOI: 10.1164/rccm.202103-0594im] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,HELIOS Universitatsklinikum Wuppertal, 60865, Institute of Pathology and Molecular Pathology, Wuppertal, Germany;
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, 55553, Grenoble, France
| | - Willi L Wagner
- University Hospital Heidelberg, 27178, Dept. Diagnostic and Interventional Radiology, Heidelberg, Germany
| | - Claire Walsh
- University College London, 4919, Centre for Advanced Biomedical Imaging, London, United Kingdom of Great Britain and Northern Ireland
| | | | - Mark P Kühnel
- Medical School of Hannover, Institute of Pathology, Hannover, Germany
| | | | - Catherine Disney
- University College London, 4919, London, United Kingdom of Great Britain and Northern Ireland
| | - Andrew J Bodey
- Diamond Light Source Ltd, 120796, Didcot, United Kingdom of Great Britain and Northern Ireland
| | - Alexandre Bellier
- Grenoble Universites, 133618, French Alps Laboratory of Anatomy (LADAF) , Grenoble, France
| | - Stijn E Verleden
- Katholieke Universiteit Leuven and Universitair Ziekenhuis Gasthuisberg, Lung Transplant Unit, Leuven, Belgium
| | - Peter D Lee
- University College London, 4919, Department of Mechanical Engineering, London, United Kingdom of Great Britain and Northern Ireland
| | - Steven J Mentzer
- Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Danny D Jonigk
- Hannover Medical School, Institute of Pathology , Hannover, Germany
| |
Collapse
|
13
|
Takizawa H, Miyamoto N, Sakamoto S, Takashima M, Matsumoto D, Kawakita N, Toba H, Kawakami Y, Yoshida M, Kondo K, Tangoku A. Hypervascularized bronchial arteries as a risk factor for intraoperative bleeding and prolonged surgery. J Thorac Dis 2021; 13:4731-4741. [PMID: 34527314 PMCID: PMC8411168 DOI: 10.21037/jtd-21-616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/19/2021] [Indexed: 11/19/2022]
Abstract
Background The present study investigated whether highly vascularized bronchial arteries affect the intraoperative blood loss and the operative time of video-assisted thoracic surgery (VATS) lobectomy for patients with non-small cell lung cancer. Results Among the 175 patients enrolled, risk factors for intraoperative blood loss >50 mL were being male (P=0.005), a history of smoking (P=0.01), percent forced expiratory volume in 1 s (FEV1.0%) <70% (P=0.012), squamous cell carcinoma (P=0.049), and a bronchial artery diameter >2.0 mm (P<0.001) in the unadjusted analysis, and a bronchial artery diameter >2.0 mm (P<0.001) in the multivariable analysis. Risk factors for an operative time >200 min were being male (P<0.001), a history of smoking (P=0.007), FEV1.0% <70% (P=0.011), squamous cell carcinoma (P=0.046), a bronchial artery diameter >2.0 mm (P<0.001), and experience of surgeon <10 years (P=0.011) in the unadjusted analysis, and being male (P=0.047), a bronchial artery diameter >2.0 mm (P=0.024), and experience of surgeon <10 years (P=0.047) in the multivariable analysis. Conclusions Bronchial artery diameter was the most important risk factor of intraoperative bleeding and prolonged operative time during VATS lobectomy.
Collapse
Affiliation(s)
- Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Naoki Miyamoto
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Shinichi Sakamoto
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Mika Takashima
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Daisuke Matsumoto
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Naoya Kawakita
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Yukikiyo Kawakami
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Mitsuteru Yoshida
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Kazuya Kondo
- Department of Oncological Medical Services, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Akira Tangoku
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| |
Collapse
|
14
|
Haut B, Nonclercq A, Buess A, Rabineau J, Rigaut C, Sobac B. Comprehensive Analysis of Heat and Water Exchanges in the Human Lungs. Front Physiol 2021; 12:649497. [PMID: 34168568 PMCID: PMC8217871 DOI: 10.3389/fphys.2021.649497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
This work presents a new mathematical model of the heat and water exchanges in the human lungs (newborn to adult). This model is based on a local description of the water and energy transports in both the lumen and the surrounding tissues, and is presented in a comprehensive, dimensionless framework with explicitly stated assumptions and a strong physiological background. The model is first used to analyze and quantify the key phenomena and dimensionless numbers governing these heat and water exchanges and then it is applied to an adult in various situations (varying atmospheric conditions, exercising…). The results highlight several interesting physiological elements. They show that the bronchial region of the lungs is able to condition the air in all the considered situations even if, sometimes, for instance when exercising, distal generations have to be involved. The model also shows that these distal generations are super-conditioners. Moreover, the results quantify the key role of the submucosal glands in mucus hydration. They also show that, during expiration, a significant cooling of the air and condensation of water occur along the respiratory tract as the vascularization of the tissues surrounding the airways is not able to maintain these tissues at body temperature during inspiration. Due to the interaction between several phenomena, it appears that the ratio of the amount of water returned to the mucosa during expiration to the amount extracted during inspiration is almost independent of the breathing conditions (around 33%). The results also show that, in acute situations, such as suffering from a pathology with airway dysfunction, when being intubated or when exercising above an intensity threshold, the heat and water exchanges in the lungs may be critical regarding mucus hydration. In proximal generations, the evaporation may overwhelm the ability of the submucosal glands to replenish the airway surface liquid with water. In some situations, the cooling of the mucosa may be very important; it can even become colder than the inspired air, due to evaporative cooling. Finally, the results show that breathing cold air can significantly increase the exchanges between the lungs and the environment, which can be critical regarding disease transmission.
Collapse
Affiliation(s)
- Benoit Haut
- Ecole Polytechnique de Bruxelles, Transfers, Interfaces and Processes (TIPs), Université libre de Bruxelles, Brussels, Belgium
| | - Antoine Nonclercq
- Ecole Polytechnique de Bruxelles, Bio, Electro and Mechanical Systems (BEAMS), Université libre de Bruxelles, Brussels, Belgium
| | - Alexandra Buess
- Ecole Polytechnique de Bruxelles, Transfers, Interfaces and Processes (TIPs), Université libre de Bruxelles, Brussels, Belgium
| | - Jérémy Rabineau
- Ecole Polytechnique de Bruxelles, Transfers, Interfaces and Processes (TIPs), Université libre de Bruxelles, Brussels, Belgium
| | - Clément Rigaut
- Ecole Polytechnique de Bruxelles, Transfers, Interfaces and Processes (TIPs), Université libre de Bruxelles, Brussels, Belgium
| | - Benjamin Sobac
- Ecole Polytechnique de Bruxelles, Transfers, Interfaces and Processes (TIPs), Université libre de Bruxelles, Brussels, Belgium.,Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Total, LFCR, Anglet, France
| |
Collapse
|
15
|
Lung Transplantation, Pulmonary Endothelial Inflammation, and Ex-Situ Lung Perfusion: A Review. Cells 2021; 10:cells10061417. [PMID: 34200413 PMCID: PMC8229792 DOI: 10.3390/cells10061417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Lung transplantation (LTx) is the gold standard treatment for end-stage lung disease; however, waitlist mortality remains high due to a shortage of suitable donor lungs. Organ quality can be compromised by lung ischemic reperfusion injury (LIRI). LIRI causes pulmonary endothelial inflammation and may lead to primary graft dysfunction (PGD). PGD is a significant cause of morbidity and mortality post-LTx. Research into preservation strategies that decrease the risk of LIRI and PGD is needed, and ex-situ lung perfusion (ESLP) is the foremost technological advancement in this field. This review addresses three major topics in the field of LTx: first, we review the clinical manifestation of LIRI post-LTx; second, we discuss the pathophysiology of LIRI that leads to pulmonary endothelial inflammation and PGD; and third, we present the role of ESLP as a therapeutic vehicle to mitigate this physiologic insult, increase the rates of donor organ utilization, and improve patient outcomes.
Collapse
|
16
|
Roles of PI3K pan-inhibitors and PI3K-δ inhibitors in allergic lung inflammation: a systematic review and meta-analysis. Sci Rep 2020; 10:7608. [PMID: 32376843 PMCID: PMC7203230 DOI: 10.1038/s41598-020-64594-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Meta-analysis can be applied to study the effectiveness of the summary estimates for experimental papers, producing objective and unbiased results. We investigated the effects of phosphoinositide-3-kinase (PI3K) on the inflammatory profile in allergic mouse models, which are currently under development in signal transduction materials. PubMed, EMBASE and Web of Science databases were searched for relevant literature using the search terms “ PI3K inhibitor” and “allergy” or “asthma”. Cochrane Review Manager and R were used for handling continuous variables. The primary outcomes of the inflammatory profile were divided into cell counts and inflammatory cytokines. We used a random effects model to draw a forest plot. Through the database search and subsequent selection, 17 articles were identified. Regarding the cell counts, both the PI3K pan-inhibitors and PI3K-δ inhibitors effectively reduced the total cell counts, eosinophils, neutrophils and lymphocytes. In contrast to PI3K-δ inhibitors, PI3K pan-inhibitors effectively reduced macrophages. Regarding the inflammatory cytokines, PI3K pan-inhibitors and PI3K-δ inhibitors effectively reduced total IgE, IL-4, IL-5, IL-13, TNF-α, IL-1β, VEGF and had no effect on IL-6. Compared to the PI3K pan-inhibitors, which block all pathways, selective PI3K-δ inhibitors are expected to be relatively less toxic. Regarding the efficacy, PI3K-δ inhibitors have at least the same or better efficacy than PI3K pan-inhibitors in effector cells and inflammatory mediators.
Collapse
|
17
|
Poyyamoli S, Swamiappan E, Gandhi J, Ranasingh RK, Cherian MP, Mehta P. Non-aortic vascular findings on chest CT angiogram: including arch vessels and bronchial arteries. Cardiovasc Diagn Ther 2019; 9:S59-S73. [PMID: 31559154 DOI: 10.21037/cdt.2018.09.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CT angiogram (CTA) has become the modality of choice for imaging of thoracic vascular pathologies, involving the aorta and the pulmonary arteries. Apart from showing exquisite details of these large arteries, pathologies and anatomic variants of their branches can also be studied to a great extent. The major branches of aortic arch can be affected by a wide variety of pathologies ranging from atherosclerosis to trauma and vasculitis. Bronchial arteries in spite of supplying only 1% of lung parenchyma can become hypertrophied in various congenital and acquired conditions, becoming an important source of collateral circulation as well as a source for life threatening hemoptysis. CT also plays an important role in diagnosis of vascular compression at the thoracic outlet. With advances in CT technology, the acquisition, interpretation and clinical applications of CT angiography will continue to grow in the years to come.
Collapse
Affiliation(s)
- Santhosh Poyyamoli
- Department of Diagnostic and Interventional Radiology, Kovai Medical Center and Hospital, Coimbatore 641014, India
| | - Elango Swamiappan
- Department of Diagnostic and Interventional Radiology, Kovai Medical Center and Hospital, Coimbatore 641014, India
| | - Jenny Gandhi
- Department of Diagnostic and Interventional Radiology, Kovai Medical Center and Hospital, Coimbatore 641014, India
| | - Rahul K Ranasingh
- Department of Diagnostic and Interventional Radiology, Kovai Medical Center and Hospital, Coimbatore 641014, India
| | - Mathew P Cherian
- Department of Diagnostic and Interventional Radiology, Kovai Medical Center and Hospital, Coimbatore 641014, India
| | - Pankaj Mehta
- Department of Diagnostic and Interventional Radiology, Kovai Medical Center and Hospital, Coimbatore 641014, India
| |
Collapse
|
18
|
Shammout B, Johnson JR. Pericytes in Chronic Lung Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:299-317. [PMID: 31147884 DOI: 10.1007/978-3-030-16908-4_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pericytes are supportive mesenchymal cells located on the abluminal surface of the microvasculature, with key roles in regulating microvascular homeostasis, leukocyte extravasation, and angiogenesis. A subpopulation of pericytes with progenitor cell function has recently been identified, with evidence demonstrating the capacity of tissue-resident pericytes to differentiate into the classic MSC triad, i.e., osteocytes, chondrocytes, and adipocytes. Beyond the regenerative capacity of these cells, studies have shown that pericytes play crucial roles in various pathologies in the lung, both acute (acute respiratory distress syndrome and sepsis-related pulmonary edema) and chronic (pulmonary hypertension, lung tumors, idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease). Taken together, this body of evidence suggests that, in the presence of acute and chronic pulmonary inflammation, pericytes are not associated with tissue regeneration and repair, but rather transform into scar-forming myofibroblasts, with devastating outcomes regarding lung structure and function. It is hoped that further studies into the mechanisms of pericyte-to-myofibroblast transition and migration to fibrotic foci will clarify the roles of pericytes in chronic lung disease and open up new avenues in the search for novel treatments for human pulmonary pathologies.
Collapse
Affiliation(s)
- Bushra Shammout
- Biosciences Department, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Jill R Johnson
- Biosciences Department, School of Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
19
|
Out of Sight, but Should Not Be Out of Mind: The Hidden Lung Blood Supply. Ann Am Thorac Soc 2019; 15:1284-1285. [PMID: 30382784 DOI: 10.1513/annalsats.201807-447ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Dynamics of exhaled breath temperature after smoking a cigarette and its association with lung function changes predictive of COPD risk in smokers: a cross-sectional study. Arh Hig Rada Toksikol 2019; 70:123-129. [PMID: 31246566 DOI: 10.2478/aiht-2019-70-3211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/01/2019] [Indexed: 12/26/2022] Open
Abstract
Exhaled breath temperature (EBT) is a biomarker of inflammation and vascularity of the airways already shown to predict incident COPD. This cross-sectional study was aimed to assess the potential of EBT in identifying "healthy" smokers susceptible to cigarette smoke toxicity of the airways and to the risk of developing COPD by analysing the dynamics of EBT after smoking a cigarette and its associations with their demographics (age, smoking burden) and lung function. The study included 55 current smokers of both sexes, 29-62 years of age, with median smoking exposure of 15 (10-71.8) pack-years. EBT was measured at baseline and 5, 15, 30, 45, and 60 min after smoking a single cigarette. Lung function was measured with spirometry followed by a bronchodilator test. To compare changes in EBT between repeated measurements we used the analysis of variance and the area under the curve (EBTAUC) as a dependent variable. Multivariate regression analysis was used to look for associations with patient characteristics and lung function in particular. The average (±SD) baseline EBT was 33.42±1.50 °C. The highest significant increase to 33.84 (1.25) °C was recorded 5 min after the cigarette was smoked (p=0.003), and it took one hour for it to return to the baseline. EBTAUC showed significant repeatability (ICC=0.85, p<0.001) and was significantly associated with age, body mass index, number of cigarettes smoked a day, baseline EBT, and baseline FEF75 (R2=0.39, p<0.001 for the model). Our results suggest that EBT after smoking a single cigarette could be used as early risk predictor of changes associated with chronic cigarette smoke exposure.
Collapse
|
21
|
Monroe EJ, Pierce DB, Ingraham CR, Johnson GE, Shivaram GM, Valji K. An Interventionalist's Guide to Hemoptysis in Cystic Fibrosis. Radiographics 2018. [PMID: 29528824 DOI: 10.1148/rg.2018170122] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Massive hemoptysis occurs in a minority of patients with cystic fibrosis, with an annual incidence of 1%. Although rare, massive hemoptysis can be a severe and potentially fatal complication of this disease. Beyond the acute life-threatening event, hemoptysis in patients with cystic fibrosis has been associated with faster decline in lung function, accelerated need for lung transplant, and increased mortality. The bronchial arteries are the culprit vessels in over 90% of cases of hemoptysis. This normally quiescent vascular system undergoes remarkable hypertrophy, collateralization, and angiogenesis before the onset of hemoptysis, introducing numerous pitfalls for the interventionalist. However, in experienced hands, bronchial artery embolization is a safe and potentially lifesaving therapy. Preprocedural noninvasive imaging, specifically computed tomographic angiography, has been repeatedly validated for helping to localize the likely site of bleeding, characterizing pertinent arterial anatomy, and promoting efficient and effective intervention; it has been recommended for all stable patients with hemoptysis. Success in the angiographic suite requires a thorough understanding of normal and variant bronchial arterial anatomy, appropriate patient selection, and a meticulous embolization technique. A meticulous approach to imaging and intervention, conscientious of both visualized and nonvisualized collateral pathways and nontarget vessels, can minimize potentially devastating complications. This review summarizes the current literature, modern procedural techniques, and emerging controversies, serving to guide an evolving approach to management of patients with cystic fibrosis and hemoptysis. ©RSNA, 2018.
Collapse
Affiliation(s)
- Eric J Monroe
- From the Department of Radiology, University of Washington, Seattle, Wash (E.J.M., D.B.P., C.R.I., G.E.J., G.M.S., K.V.); and Department of Radiology, Seattle Children's Hospital, 4800 Sand Point Way NE, MA.7.220-Radiology, Seattle, WA 98105 (E.J.M., G.M.S.)
| | - David B Pierce
- From the Department of Radiology, University of Washington, Seattle, Wash (E.J.M., D.B.P., C.R.I., G.E.J., G.M.S., K.V.); and Department of Radiology, Seattle Children's Hospital, 4800 Sand Point Way NE, MA.7.220-Radiology, Seattle, WA 98105 (E.J.M., G.M.S.)
| | - Christopher R Ingraham
- From the Department of Radiology, University of Washington, Seattle, Wash (E.J.M., D.B.P., C.R.I., G.E.J., G.M.S., K.V.); and Department of Radiology, Seattle Children's Hospital, 4800 Sand Point Way NE, MA.7.220-Radiology, Seattle, WA 98105 (E.J.M., G.M.S.)
| | - Guy E Johnson
- From the Department of Radiology, University of Washington, Seattle, Wash (E.J.M., D.B.P., C.R.I., G.E.J., G.M.S., K.V.); and Department of Radiology, Seattle Children's Hospital, 4800 Sand Point Way NE, MA.7.220-Radiology, Seattle, WA 98105 (E.J.M., G.M.S.)
| | - Giridhar M Shivaram
- From the Department of Radiology, University of Washington, Seattle, Wash (E.J.M., D.B.P., C.R.I., G.E.J., G.M.S., K.V.); and Department of Radiology, Seattle Children's Hospital, 4800 Sand Point Way NE, MA.7.220-Radiology, Seattle, WA 98105 (E.J.M., G.M.S.)
| | - Karim Valji
- From the Department of Radiology, University of Washington, Seattle, Wash (E.J.M., D.B.P., C.R.I., G.E.J., G.M.S., K.V.); and Department of Radiology, Seattle Children's Hospital, 4800 Sand Point Way NE, MA.7.220-Radiology, Seattle, WA 98105 (E.J.M., G.M.S.)
| |
Collapse
|
22
|
Pak O, Sydykov A, Kosanovic D, Schermuly RT, Dietrich A, Schröder K, Brandes RP, Gudermann T, Sommer N, Weissmann N. Lung Ischaemia-Reperfusion Injury: The Role of Reactive Oxygen Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:195-225. [PMID: 29047088 DOI: 10.1007/978-3-319-63245-2_12] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lung ischaemia-reperfusion injury (LIRI) occurs in many lung diseases and during surgical procedures such as lung transplantation. The re-establishment of blood flow and oxygen delivery into the previously ischaemic lung exacerbates the ischaemic injury and leads to increased microvascular permeability and pulmonary vascular resistance as well as to vigorous activation of the immune response. These events initiate the irreversible damage of the lung with subsequent oedema formation that can result in systemic hypoxaemia and multi-organ failure. Alterations in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been suggested as crucial mediators of such responses during ischaemia-reperfusion in the lung. Among numerous potential sources of ROS/RNS within cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, nitric oxide synthases and mitochondria have been investigated during LIRI. Against this background, we aim to review here the extensive literature about the ROS-mediated cellular signalling during LIRI, as well as the effectiveness of antioxidants as treatment option for LIRI.
Collapse
Affiliation(s)
- Oleg Pak
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Akylbek Sydykov
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany.
| |
Collapse
|
23
|
Fiz F, Villa G, Ferrari E, Pomposelli E, Morbelli S, Alloisio A, Pende D, Meazza R, Gereloni C, Marini C, Ratto GB, Sambuceti G. Prevention of systemic toxicity in hyperthermic isolated lung perfusion using radioisotopic leakage monitoring. Int J Hyperthermia 2017; 34:469-478. [DOI: 10.1080/02656736.2017.1355485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Francesco Fiz
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Nuclear Medicine Unit, Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Giuseppe Villa
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Enrico Ferrari
- Department of Thoracic Surgery, IRCCS San Martino-IST, Genoa, Italy
| | - Elena Pomposelli
- Nuclear Medicine Unit, St. Antonio e Biagio e Cesare Arrigo Hospital, Alessandria, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | - Daniela Pende
- Immunology Laboratory, IRCCS San Martino-IST, Genoa, Italy
| | | | | | - Cecilia Marini
- National Council of Research-IBFM, Section of Genoa, Genoa, Italy
| | | | - Gianmario Sambuceti
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
24
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Walker CM, Rosado-de-Christenson ML, Martínez-Jiménez S, Kunin JR, Wible BC. Bronchial arteries: anatomy, function, hypertrophy, and anomalies. Radiographics 2015; 35:32-49. [PMID: 25590386 DOI: 10.1148/rg.351140089] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The two main sources of blood supply to the lungs and their supporting structures are the pulmonary and bronchial arteries. The bronchial arteries account for 1% of the cardiac output but can be recruited to provide additional systemic circulation to the lungs in various acquired and congenital thoracic disorders. An understanding of bronchial artery anatomy and function is important in the identification of bronchial artery dilatation and anomalies and the formulation of an appropriate differential diagnosis. Visualization of dilated bronchial arteries at imaging should alert the radiologist to obstructive disorders that affect the pulmonary circulation and prompt the exclusion of diseases that produce or are associated with pulmonary artery obstruction, including chronic infectious and/or inflammatory processes, chronic thromboembolic disease, and congenital anomalies of the thorax (eg, proximal interruption of the pulmonary artery). Conotruncal abnormalities, such as pulmonary atresia with ventricular septal defect, are associated with systemic pulmonary supply provided by aortic branches known as major aortopulmonary collaterals, which originate in the region of the bronchial arteries. Bronchial artery malformation is a rare left-to-right or left-to-left shunt characterized by an anomalous connection between a bronchial artery and a pulmonary artery or a pulmonary vein, respectively. Bronchial artery interventions can be used successfully in the treatment of hemoptysis, with a low risk of adverse events. Multidetector computed tomography helps provide a vascular road map for the interventional radiologist before bronchial artery embolization.
Collapse
Affiliation(s)
- Christopher M Walker
- From the Department of Radiology, Thoracic Imaging Section (C.M.W., M.L.R.d.C., S.M.J., J.R.K.) and Interventional Radiology Section (B.C.W.), Saint Luke's Hospital of Kansas City, 4401 Wornall Rd, Kansas City, MO 64111; and Department of Radiology, University of Missouri-Kansas City, Kansas City, Mo (C.M.W., M.L.R.d.C., S.M.J, J.R.K, B.C.W.)
| | | | | | | | | |
Collapse
|
26
|
Lee NS, Blanchard DG, Knowlton KU, McDivit AM, Pretorius V, Madani MM, Fedullo PF, Kerr KM, Kim NH, Poch DS, Auger WR, Daniels LB. Prevalence of coronary artery-pulmonary artery collaterals in patients with chronic thromboembolic pulmonary hypertension. Pulm Circ 2015; 5:313-21. [PMID: 26064456 DOI: 10.1086/681225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/16/2014] [Indexed: 12/14/2022] Open
Abstract
This study sought to determine the prevalence of coronary artery-pulmonary artery collaterals in patients with chronic thromboembolic pulmonary hypertension (CTEPH) and to correlate their presence with the degree of clot burden. CTEPH is a treatable cause of severe pulmonary hypertension and right heart failure. Bronchopulmonary collateral vessels have been used as a supplementary diagnostic and prognostic tool for this disease. Coronary artery-pulmonary artery collaterals in this population have not been described. The coronary angiograms of 300 consecutive patients with CTEPH evaluated for pulmonary thromboendarterectomy (PTE) between January 1, 2007, and May 1, 2014, were examined. Of these patients, 259 (50% male; mean age, 58.3 ± 10.6 years) had cineangiographic images deemed adequate to definitively assess for the presence of coronary artery-pulmonary artery collaterals and were included in the final analyses. Pulmonary angiogram reports were reviewed for extent of pulmonary artery obstruction. The coronary angiograms of 259 age- and sex-matched control patients were also examined. Among 259 CTEPH patients with definitive imaging, 34 coronary artery-pulmonary artery collaterals were found in 28 patients (10.8%), versus 1 coronary artery-pulmonary artery collateral among control subjects (0.4%; P < 0.001). Compared with CTEPH patients without collaterals, patients with collaterals had a significantly higher prevalence of total occlusion of their right or left main pulmonary artery (P < 0.001) or lobar arteries (P < 0.001). In conclusion, the prevalence of coronary artery-pulmonary artery collaterals in CTEPH patients undergoing coronary angiography for possible PTE is approximately 11%. These vessels are associated with more severe pulmonary artery occlusion.
Collapse
Affiliation(s)
- Noel S Lee
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Daniel G Blanchard
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Kirk U Knowlton
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Anna M McDivit
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Victor Pretorius
- Department of Surgery, University of California, San Diego, La Jolla, California, USA
| | - Michael M Madani
- Department of Surgery, University of California, San Diego, La Jolla, California, USA
| | - Peter F Fedullo
- Division of Pulmonary and Critical Care Medicine, University of California, San Diego, La Jolla, California, USA
| | - Kim M Kerr
- Division of Pulmonary and Critical Care Medicine, University of California, San Diego, La Jolla, California, USA
| | - Nick H Kim
- Division of Pulmonary and Critical Care Medicine, University of California, San Diego, La Jolla, California, USA
| | - David S Poch
- Division of Pulmonary and Critical Care Medicine, University of California, San Diego, La Jolla, California, USA
| | - William R Auger
- Division of Pulmonary and Critical Care Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lori B Daniels
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
27
|
Fang Y, Wu Q, Wang B. Dieulafoy's disease of the bronchus: report of a case and review of the literature. J Cardiothorac Surg 2014; 9:191. [PMID: 25438694 PMCID: PMC4263116 DOI: 10.1186/s13019-014-0191-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/20/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Dieulafoy's disease is a vascular anomaly characterized by the presence of a tortuous dysplastic artery in the submucosa. Although frequently occurring in the gastrointestinal tract, multiple cases of Dieulafoy's disease in the bronchus have been reported in the literature. METHODS AND RESULTS We report a case of a 15-year-old boy suffering recurrent massive hemoptysis. Bilobectomy stopped bleeding after unsuccessful treatment with embolization of bronchial artery. CONCLUSION It is concluded a congenital origin of this disease. Angiography and endobronchial ultrasonography can be used to diagnose Dieulafoy's disease of bronchus whereas bronchoscopy biopsy should be avoided. Surgery is needed when embolization fails.
Collapse
Affiliation(s)
- Yu Fang
- Department of Thoracic & Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, 400016, Chongqing, China.
| | - Qingchen Wu
- Department of Thoracic & Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, 400016, Chongqing, China.
| | - Bin Wang
- Department of Thoracic & Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, 400016, Chongqing, China.
| |
Collapse
|
28
|
Pulmonary vascular changes in asthma and COPD. Pulm Pharmacol Ther 2014; 29:144-55. [DOI: 10.1016/j.pupt.2014.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 12/11/2022]
|
29
|
Bijnens E, Pieters N, Dewitte H, Cox B, Janssen BG, Saenen N, Dons E, Zeegers MP, Int Panis L, Nawrot TS. Host and environmental predictors of exhaled breath temperature in the elderly. BMC Public Health 2013; 13:1226. [PMID: 24365236 PMCID: PMC3890614 DOI: 10.1186/1471-2458-13-1226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exhaled breath temperature has been suggested as a new method to detect and monitor pathological processes in the respiratory system. The putative mechanism of this approach is based upon changes in the blood flow. So far potential factors that influence breath temperature have not been studied in the general population. METHODS The exhaled breath temperature was measured in 151 healthy non-smoking elderly (aged: 60-80 years) at room temperature with the X-halo device with an accuracy of 0.03°C. We related exhaled breath temperature by use of regression models with potential predictors including: host factors (sex, age) and environmental factors (BMI, physical activity, and traffic indicators). RESULTS Exhaled breath temperature was lower in women than in men and was inversely associated with age, physical activity. BMI and daily average ambient temperature were positively associated with exhaled breath temperature. Independent of the aforementioned covariates, exhaled breath temperature was significantly associated with several traffic indicators. Residential proximity to major road was inversely associated with exhaled breath temperature: doubling the distance to the nearest major intense road was observed a decrease of 0.17°C (95% CI: -0.33 to -0.01; p=0.036). CONCLUSIONS Exhaled breath temperature has been suggested as a noninvasive method for the evaluation of airway inflammation. We provide evidence that several factors known to be involved in proinflammatory conditions including BMI, physical activity and residential proximity to traffic affect exhaled breath temperature. In addition, we identified potential confounders that should be taken into account in clinical and epidemiological studies on exhaled breath temperature including sex, age, and ambient temperature.
Collapse
Affiliation(s)
- Esmée Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
| | - Nicky Pieters
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
| | - Harrie Dewitte
- Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium
- Primary health care center GVHV, Genk, Belgium
| | - Bianca Cox
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
| | - Nelly Saenen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
| | - Evi Dons
- VITO, Flemish Institute for Technological Research, Mol, Belgium
- Transportation Research Institute, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
| | - Maurice P Zeegers
- Department of Complex Genetics, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Luc Int Panis
- VITO, Flemish Institute for Technological Research, Mol, Belgium
- Transportation Research Institute, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
- Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium
| |
Collapse
|
30
|
Inhibition of protein kinase C delta attenuates allergic airway inflammation through suppression of PI3K/Akt/mTOR/HIF-1 alpha/VEGF pathway. PLoS One 2013; 8:e81773. [PMID: 24312355 PMCID: PMC3843701 DOI: 10.1371/journal.pone.0081773] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/16/2013] [Indexed: 01/05/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is supposed to contribute to the pathogenesis of allergic airway disease. VEGF expression is regulated by a variety of stimuli such as nitric oxide, growth factors, and hypoxia-inducible factor-1 alpha (HIF-1α). Recently, inhibition of the mammalian target of rapamycin (mTOR) has been shown to alleviate cardinal asthmatic features, including airway hyperresponsiveness, eosinophilic inflammation, and increased vascular permeability in asthma models. Based on these observations, we have investigated whether mTOR is associated with HIF-1α-mediated VEGF expression in allergic asthma. In studies with the mTOR inhibitor rapamycin, we have elucidated the stimulatory role of a mTOR-HIF-1α-VEGF axis in allergic response. Next, the mechanisms by which mTOR is activated to modulate this response have been evaluated. mTOR is known to be regulated by phosphoinositide 3-kinase (PI3K)/Akt or protein kinase C-delta (PKC δ) in various cell types. Consistent with these, our results have revealed that suppression of PKC δ by rottlerin leads to the inhibition of PI3K/Akt activity and the subsequent blockade of a mTOR-HIF-1α-VEGF module, thereby attenuating typical asthmatic attack in a murine model. Thus, the present data indicate that PKC δ is necessary for the modulation of the PI3K/Akt/mTOR signaling cascade, resulting in a tight regulation of HIF-1α activity and VEGF expression. In conclusion, PKC δ may represent a valuable target for innovative therapeutic treatment of allergic airway disease.
Collapse
|
31
|
Singh SP, Gundavarapu S, Smith KR, Chand HS, Saeed AI, Mishra NC, Hutt J, Barrett EG, Husain M, Harrod KS, Langley RJ, Sopori ML. Gestational exposure of mice to secondhand cigarette smoke causes bronchopulmonary dysplasia blocked by the nicotinic receptor antagonist mecamylamine. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:957-64. [PMID: 23757602 PMCID: PMC3734504 DOI: 10.1289/ehp.1306611] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/07/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cigarette smoke (CS) exposure during gestation may increase the risk of bronchopulmonary dysplasia (BPD)-a developmental lung condition primarily seen in neonates that is characterized by hypoalveolarization, decreased angiogenesis, and diminished surfactant protein production and may increase the risk of chronic obstructive pulmonary disease. OBJECTIVE We investigated whether gestational exposure to secondhand CS (SS) induced BPD and sought to ascertain the role of nicotinic acetylcholine receptors (nAChRs) in this response. METHODS We exposed BALB/c and C57BL/6 mice to filtered air (control) or SS throughout the gestation period or postnatally up to 10 weeks. Lungs were examined at 7 days, 10 weeks, and 8 months after birth. RESULTS Gestational but not postnatal exposure to SS caused a typical BPD-like condition: suppressed angiogenesis [decreased vascular endothelial growth factor (VEGF), VEGF receptor, and CD34/CD31 (hematopoietic progenitor cell marker/endothelial cell marker)], irreversible hypoalveolarization, and significantly decreased levels of Clara cells, Clara cell secretory protein, and surfactant proteins B and C, without affecting airway ciliated cells. Importantly, concomitant exposure to SS and the nAChR antagonist mecamylamine during gestation blocked the development of BPD. CONCLUSIONS Gestational exposure to SS irreversibly disrupts lung development leading to a BPD-like condition with hypoalveolarization, decreased angiogenesis, and diminished lung secretory function. Nicotinic receptors are critical in the induction of gestational SS-induced BPD, and the use of nAChR antagonists during pregnancy may block CS-induced BPD.
Collapse
Affiliation(s)
- Shashi P Singh
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pirela S, Molina R, Watson C, Cohen JM, Bello D, Demokritou P, Brain J. Effects of copy center particles on the lungs: a toxicological characterization using a Balb/c mouse model. Inhal Toxicol 2013; 25:498-508. [PMID: 23895351 DOI: 10.3109/08958378.2013.806614] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Printers and photocopiers release respirable particles into the air. Engineered nanomaterials (ENMs) have been recently incorporated into toner formulations but their potential toxicological effects have not been well studied. OBJECTIVE To evaluate the biological responses to copier-emitted particles in the lungs using a mouse model. METHODS Particulate matter (PM) from a university copy center was sampled and fractionated into three distinct sizes, two of which (PM0.1 and PM0.1-2.5) were evaluated in this study. The particles were extracted and dispersed in deionized water and RPMI/10% FBS. Hydrodynamic diameter and zeta potential were evaluated by dynamic light scattering. The toxicological potential of these particles was studied using 8-week-old male Balb/c mice. Mice were intratracheally instilled with 0.2, 0.6, 2.0 mg/kg bw of either the PM0.1 and PM0.1-2.5 size fractions. Fe2O3 and welding fumes were used as comparative materials, while RPMI/10% FBS was used as the vehicle control. Bronchoalveolar lavage (BAL) was performed 24 hours post-instillation. The BAL fluid was analyzed for total and differential cell counts, and biochemical markers of injury and inflammation. RESULTS Particle size- and dose-dependent pulmonary effects were found. Specifically, mice instilled with PM0.1 (2.0 mg/kg bw) had significant increases in neutrophil number, lactate dehydrogenase and albumin compared to vehicle control. Likewise, pro-inflammatory cytokines were elevated in mice exposed to PM0.1 (2.0 mg/kg bw) compared to other groups. CONCLUSION Our results indicate that exposure to copier-emitted nanoparticles may induce lung injury and inflammation. Further exposure assessment and toxicological investigations are necessary to address this emerging environmental health pollutant.
Collapse
Affiliation(s)
- Sandra Pirela
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Yuan X, Zhang J, Quan C, Cao J, Ao G, Tian Y, Li H. Differentiation of malignant and benign pulmonary nodules with first-pass dual-input perfusion CT. Eur Radiol 2013; 23:2469-74. [DOI: 10.1007/s00330-013-2842-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 02/06/2023]
|
34
|
Tanabe T, Rozycki HJ, Kanoh S, Rubin BK. Cardiac asthma: new insights into an old disease. Expert Rev Respir Med 2013; 6:705-14. [PMID: 23234454 DOI: 10.1586/ers.12.67] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiac asthma has been defined as wheezing, coughing and orthopnea due to congestive heart failure. The clinical distinction between bronchial asthma and cardiac asthma can be straight forward, except in patients with chronic lung disease coexisting with left heart disease. Pulmonary edema and pulmonary vascular congestion have been thought to be the primary causes of cardiac asthma but most patients have a poor response to diuretics. There appears to be limited effectiveness of classical asthma medications like bronchodilators or corticosteroids in treating cardiac asthma. Evidence suggests that circulating inflammatory factors and tissue growth factors also lead to airway obstruction suggesting the possibility of developing novel therapies.
Collapse
Affiliation(s)
- Tsuyoshi Tanabe
- Department of Pediatrics, Virginia Commonwealth University School of Medicine and the Children's Hospital of Richmond at VCU, Richmond, VA, USA
| | | | | | | |
Collapse
|
35
|
Christophersen LJ, Trøstrup H, Malling Damlund DS, Bjarnsholt T, Thomsen K, Jensen PØ, Hougen HP, Høiby N, Moser C. Bead-size directed distribution of Pseudomonas aeruginosa results in distinct inflammatory response in a mouse model of chronic lung infection. Clin Exp Immunol 2013; 170:222-30. [PMID: 23039893 DOI: 10.1111/j.1365-2249.2012.04652.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chronic Pseudomonas aeruginosa lung infection in cystic fibrosis (CF) patients is characterized by biofilms, tolerant to antibiotics and host responses. Instead, immune responses contribute to the tissue damage. However, this may depend on localization of infection in the upper conductive or in the peripheral respiratory zone. To study this we produced two distinct sizes of small alginate beads (SB) and large beads (LB) containing P. aeruginosa. In total, 175 BALB/c mice were infected with either SB or LB. At day 1 the quantitative bacteriology was higher in the SB group compared to the LB group (P < 0·003). For all time-points smaller biofilms were identified by Alcian blue staining in the SB group (P < 0·003). Similarly, the area of the airways in which biofilms were identified were smaller (P < 0·0001). A shift from exclusively endobronchial to both parenchymal and endobronchial localization of inflammation from day 1 to days 2/3 (P < 0·05), as well as a faster resolution of inflammation at days 5/6, was observed in the SB group (P < 0·03). Finally, both the polymorphonuclear neutrophil leucocyte (PMN) mobilizer granulocyte colony-stimulating factor (G-CSF) and chemoattractant macrophage inflammatory protein-2 (MIP-2) were increased at day 1 in the SB group (P < 0·0001). In conclusion, we have established a model enabling studies of host responses in different pulmonary zones. An effective recognition of and a more pronounced host response to infection in the peripheral zones, indicating that increased lung damage was demonstrated. Therefore, treatment of the chronic P. aeruginosa lung infection should be directed primarily at the peripheral lung zone by combined intravenous and inhalation antibiotic treatment.
Collapse
Affiliation(s)
- L J Christophersen
- Department of Clinical Microbiology 93.01, Copenhagen University Hospital, Rigshospitalet Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu X, Jin L, Upham JW, Roberts MS. The development of models for the evaluation of pulmonary drug disposition. Expert Opin Drug Metab Toxicol 2013; 9:487-505. [DOI: 10.1517/17425255.2013.754009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Tuinman PR, Dixon B, Levi M, Juffermans NP, Schultz MJ. Nebulized anticoagulants for acute lung injury - a systematic review of preclinical and clinical investigations. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R70. [PMID: 22546487 PMCID: PMC3681399 DOI: 10.1186/cc11325] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/02/2012] [Accepted: 04/30/2012] [Indexed: 12/16/2022]
Abstract
Background Data from interventional trials of systemic anticoagulation for sepsis inconsistently suggest beneficial effects in case of acute lung injury (ALI). Severe systemic bleeding due to anticoagulation may have offset the possible positive effects. Nebulization of anticoagulants may allow for improved local biological availability and as such may improve efficacy in the lungs and lower the risk of systemic bleeding complications. Method We performed a systematic review of preclinical studies and clinical trials investigating the efficacy and safety of nebulized anticoagulants in the setting of lung injury in animals and ALI in humans. Results The efficacy of nebulized activated protein C, antithrombin, heparin and danaparoid has been tested in diverse animal models of direct (for example, pneumonia-, intra-pulmonary lipopolysaccharide (LPS)-, and smoke inhalation-induced lung injury) and indirect lung injury (for example, intravenous LPS- and trauma-induced lung injury). Nebulized anticoagulants were found to have the potential to attenuate pulmonary coagulopathy and frequently also inflammation. Notably, nebulized danaparoid and heparin but not activated protein C and antithrombin, were found to have an effect on systemic coagulation. Clinical trials of nebulized anticoagulants are very limited. Nebulized heparin was found to improve survival of patients with smoke inhalation-induced ALI. In a trial of critically ill patients who needed mechanical ventilation for longer than two days, nebulized heparin was associated with a higher number of ventilator-free days. In line with results from preclinical studies, nebulization of heparin was found to have an effect on systemic coagulation, but without causing systemic bleedings. Conclusion Local anticoagulant therapy through nebulization of anticoagulants attenuates pulmonary coagulopathy and frequently also inflammation in preclinical studies of lung injury. Recent human trials suggest nebulized heparin for ALI to be beneficial and safe, but data are very limited.
Collapse
Affiliation(s)
- Pieter R Tuinman
- Department of Intensive Care Medicine and Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Hopkins SR, Wielpütz MO, Kauczor HU. Imaging lung perfusion. J Appl Physiol (1985) 2012; 113:328-39. [PMID: 22604884 PMCID: PMC3404706 DOI: 10.1152/japplphysiol.00320.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/14/2012] [Indexed: 11/22/2022] Open
Abstract
From the first measurements of the distribution of pulmonary blood flow using radioactive tracers by West and colleagues (J Clin Invest 40: 1-12, 1961) allowing gravitational differences in pulmonary blood flow to be described, the imaging of pulmonary blood flow has made considerable progress. The researcher employing modern imaging techniques now has the choice of several techniques, including magnetic resonance imaging (MRI), computerized tomography (CT), positron emission tomography (PET), and single photon emission computed tomography (SPECT). These techniques differ in several important ways: the resolution of the measurement, the type of contrast or tag used to image flow, and the amount of ionizing radiation associated with each measurement. In addition, the techniques vary in what is actually measured, whether it is capillary perfusion such as with PET and SPECT, or larger vessel information in addition to capillary perfusion such as with MRI and CT. Combined, these issues affect quantification and interpretation of data as well as the type of experiments possible using different techniques. The goal of this review is to give an overview of the techniques most commonly in use for physiological experiments along with the issues unique to each technique.
Collapse
Affiliation(s)
- Susan R Hopkins
- Departments of Medicine and Radiology, Pulmonary Imaging Laboratory, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
39
|
Osiro S, Wear C, Hudson R, Ma XX, Zurada A, Michalak M, Loukas M. A friend to the airways: a review of the emerging clinical importance of the bronchial arterial circulation. Surg Radiol Anat 2012; 34:791-8. [PMID: 22552583 DOI: 10.1007/s00276-012-0974-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/14/2012] [Indexed: 10/28/2022]
Abstract
Lungs receive the bulk of their blood supply through the pulmonary arteries. The bronchial arteries, on the other hand, vascularize the bronchi and their surroundings. These two arteries anastomose near the alveolar ducts. Contrary to the pulmonary circulation which is fairly well studied, the bronchial arteries have been appreciated more by their absence, and in some cases, by an interruption in the pulmonary arterial flow. Therefore, a more accurate anatomical and functional knowledge of these atherosclerosis-resistant vessels is needed to help surgeons and clinicians to avoid iatrogenic injuries during pulmonary interventions. In this review, we have revisited the anatomy and pathophysiology of the bronchial arteries in humans, considering the recent advances in imaging techniques. We have also elaborated on the known clinical applications of these arteries in both the pathogenesis and management of common pulmonary conditions.
Collapse
Affiliation(s)
- Stephen Osiro
- Department of Anatomical Sciences, School of Medicine, St. George's University, Grenada, West Indies
| | | | | | | | | | | | | |
Collapse
|
40
|
Jang S, Park JW, Cha HR, Jung SY, Lee JE, Jung SS, Kim JO, Kim SY, Lee CS, Park HS. Silver nanoparticles modify VEGF signaling pathway and mucus hypersecretion in allergic airway inflammation. Int J Nanomedicine 2012; 7:1329-43. [PMID: 22457593 PMCID: PMC3310409 DOI: 10.2147/ijn.s27159] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The anti-inflammatory action of silver nanoparticles (NPs) has been reported in a murine model of asthma in a previous study. But more specific mechanisms of silver NPs in an attenuation of allergic airway inflammation have not yet been established. Vascular and mucous changes are believed to contribute largely in pathophysiology in asthma. Among various factors related to vascular changes, vascular endothelial growth factor (VEGF) plays a pivotal role in vascular changes in asthma. Mucin proteins MUC5AC and MUC5B have been implicated as markers of goblet cell metaplasia in lung pathologies. The aim of this study was to investigate the effects of silver NPs on VEGF signaling pathways and mucus hypersecretion. Ovalbumin (OVA)-inhaled female BALBc mice were used to evaluate the role of silver NPs and the related molecular mechanisms in allergic airway disease. In this study, with an OVA-induced murine model of allergic airway disease, it was found that the increased levels of hypoxia-inducible factor (HIF)-1α, VEGF, phosphatidylinositol-3 kinase (PI3K) and phosphorylated-Akt levels, and mucous glycoprotein expression (Muc5ac) in lung tissues were substantially decreased by the administration of silver NPs. In summary, silver NPs substantially suppressed mucus hypersecretion and PI3K/HIF-1α/VEGF signaling pathway in an allergic airway inflammation.
Collapse
Affiliation(s)
- Sunhyae Jang
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Medical School, Daesadong, Daejeon, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lung cancer perfusion: can we measure pulmonary and bronchial circulation simultaneously? Eur Radiol 2012; 22:1665-71. [PMID: 22415414 DOI: 10.1007/s00330-012-2414-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 12/26/2011] [Accepted: 01/04/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To describe a new CT perfusion technique for assessing the dual blood supply in lung cancer and present the initial results. METHODS This study was approved by the institutional review board. A CT protocol was developed, and a dual-input CT perfusion (DI-CTP) analysis model was applied and evaluated regarding the blood flow fractions in lung tumours. The pulmonary trunk and the descending aorta were selected as the input arteries for the pulmonary circulation and the bronchial circulation respectively. Pulmonary flow (PF), bronchial flow (BF), and a perfusion index (PI, = PF/ (PF + BF)) were calculated using the maximum slope method. After written informed consent was obtained, 13 consecutive subjects with primary lung cancer underwent DI-CTP. RESULTS Perfusion results are as follows: PF, 13.45 ± 10.97 ml/min/100 ml; BF, 48.67 ± 28.87 ml/min/100 ml; PI, 21 % ± 11 %. BF is significantly larger than PF, P < 0.001. There is a negative correlation between the tumour volume and perfusion index (r = 0.671, P = 0.012). CONCLUSION The dual-input CT perfusion analysis method can be applied successfully to lung tumours. Initial results demonstrate a dual blood supply in primary lung cancer, in which the systemic circulation is dominant, and that the proportion of the two circulation systems is moderately dependent on tumour size. KEY POINTS A new CT perfusion technique can assess lung cancer's dual blood supply. A dual blood supply was confirmed with dominant bronchial circulation in lung cancer. The proportion of the two circulations is moderately dependent on tumour size. This new technique may benefit the management of lung cancer.
Collapse
|
42
|
Abu-Salah T, Dhand R. Inhaled antibiotic therapy for ventilator-associated tracheobronchitis and ventilator-associated pneumonia: an update. Adv Ther 2011; 28:728-47. [PMID: 21833701 DOI: 10.1007/s12325-011-0051-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Indexed: 02/06/2023]
Abstract
Ventilator-associated pneumonia (VAP) remains a leading cause of morbidity and mortality in mechanically-ventilated patients in the Intensive Care Unit (ICU). Ventilator-associated tracheobronchitis (VAT) was previously believed to be an intermediate stage between colonization of the lower respiratory tract and VAP. More recent data, however, suggest that VAT may be a separate entity that increases morbidity and mortality, independently of the occurrence of VAP. Some, but not all, patients with VAT progress to develop VAP. Although inhaled antibiotics alone could be effective for the treatment of VAP, the current consensus of opinion favors their role as adjuncts to systemic antimicrobial therapy for VAP. Inhaled antibiotics are increasingly employed for salvage therapy in patients with VAP due to multi-drug resistant Gram-negative bacteria. In contrast to VAP, VAT could be effectively treated with inhaled antibiotic therapy alone or in combination with systemic antimicrobials.
Collapse
Affiliation(s)
- Tareq Abu-Salah
- Division of Pulmonary, Critical Care, and Environmental Medicine, Department of Internal Medicine, University of Missouri, Columbia, MO 65212, USA
| | | |
Collapse
|
43
|
Abstract
Children and adolescents with pulmonary hemorrhage are infrequently encountered in the emergency department (ED). We describe a case of a 16 year-old boy who presented to a pediatric ED with pulmonary hemorrhage and respiratory distress. The patient's unusual initial presentation resulted in the consideration of a broad differential diagnosis for his symptoms, including traumatic, neurological, respiratory, and toxicological causes. After resuscitation in the ED, a prolonged admission, and extensive testing, no cause could be found other than severe opioid toxicity. This case illustrates a rare, life-threatening presentation of opiod toxicity in a healthy adolescent and underlines the potentially serious nature of such exposures.
Collapse
|
44
|
Ceridon ML, Morris NR, Olson TP, Lalande S, Johnson BD. Effect of supine posture on airway blood flow and pulmonary function in stable heart failure. Respir Physiol Neurobiol 2011; 178:269-74. [PMID: 21741500 DOI: 10.1016/j.resp.2011.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND The aim of this study was to determine the relationship between body position, pulmonary function (PF) and bronchial blood flow (Q(aw)) in a group of heart failure (HF) and control subjects. METHODS Thirty-six subjects were studied: 24 stable, ambulatory HF patients (HF: LVEF=27±6%, age=65±9 yr) and 12 age- and sex-matched controls (CTRL: LVEF=60±7%, age=62±8 yr). Measures of Q˙(aw) (soluble gas method) and PF were collected upright and following 30min in the supine position. RESULTS Q˙(aw) was similar between groups and remained unchanged with body position. Declines in forced vital capacity (FVC) and forced expiratory volume in 1s (FEV1) with the supine position were observed in both groups; declines in forced expiratory flow 25-75% (FEF(25-75)) and FEF 75% (FEF75) with the supine position were observed in the HF group only. Changes in Q˙(aw) were related to changes in PF only in the HF patient groups (ΔFVC, % predicted, r = -0.45, p<0.04, ΔFEV1 r = -0.61, p<0.01, ΔFEV1% predicted, r = -0.45, p<0.04). CONCLUSION These data demonstrate that relationships between postural changes in Q˙(aw) and PF exist only in the HF population and that the bronchial circulation may contribute to postural PF decline in HF.
Collapse
Affiliation(s)
- Maile L Ceridon
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
45
|
Arranz Arana L, Nogués Pérez A, Mendiola Ruiz R, Loyola Echaniz F. [Life threatening hemoptysis and aberrant bronchial artery. A case report]. An Pediatr (Barc) 2011; 74:182-6. [PMID: 21233031 DOI: 10.1016/j.anpedi.2010.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/24/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022] Open
Abstract
Hemoptysis and pulmonary hemorrhage are rare pathological entities in childhood, however, both can be life threatening respiratory emergencies and can signify potentially serious underlying intrathoracic disease. We report an 11 year old female who had four episodes of hemoptysis (50 mL of bright red blood within 48 hours) without previous recurrent respiratory problems. The assessment by chest radiography, bronchoscopy and computed tomography (CT) was needed to diagnose the nature of the problem and to indicate the site and extent of the bleeding. The CT angiography of the thorax showed a right bronchial artery hypertrophy, abnormally originated from the aortic arch, next to an aberrant right subclavian artery. The bleeding was successfully controlled by right bronchial arterial embolization with 500-700 μm polyvinyl alcohol (PVA) microspheres. The course was uncomplicated. The bronchial artery embolization is effective in controlling hemoptysis and complications are uncommon in the hand of an experienced operator.
Collapse
Affiliation(s)
- L Arranz Arana
- Servicio de Pediatría, Hospital Universitario Donostia, San Sebastián, Spain.
| | | | | | | |
Collapse
|
46
|
Pulmonary infection defense after lung transplantation: does airway ischemia play a role? Curr Opin Organ Transplant 2010; 15:568-71. [DOI: 10.1097/mot.0b013e32833debd0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|