1
|
Southern KW, Solis-Moya A, Kurz D, Smith S. Macrolide antibiotics (including azithromycin) for cystic fibrosis. Cochrane Database Syst Rev 2024; 2:CD002203. [PMID: 38411248 PMCID: PMC10897949 DOI: 10.1002/14651858.cd002203.pub5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
BACKGROUND Cystic fibrosis (CF) is a life-limiting genetic condition, affecting over 90,000 people worldwide. CF affects several organs in the body, but airway damage has the most profound impact on quality of life (QoL) and survival. Causes of lower airway infection in people with CF are, most notably, Staphylococcus aureus in the early course of the disease and Pseudomonas aeruginosa at a later stage. Macrolide antibiotics, e.g. azithromycin and clarithromycin, are usually taken orally, have a broad spectrum of action against gram-positive (e.g. S aureus) and some gram-negative bacteria (e.g. Haemophilus influenzae), and may have a modifying role in diseases involving airway infection and inflammation such as CF. They are well-tolerated and relatively inexpensive, but widespread use has resulted in the emergence of resistant bacteria. This is an updated review. OBJECTIVES To assess the potential effects of macrolide antibiotics on clinical status in terms of benefit and harm in people with CF. If benefit was demonstrated, we aimed to assess the optimal type, dose and duration of macrolide therapy. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching relevant journals, and abstract books of conference proceedings. We last searched the Group's Cystic Fibrosis Trials Register on 2 November 2022. We last searched the trial registries WHO ICTRP and clinicaltrials.gov on 9 November 2022. We contacted investigators known to work in the field, previous authors and pharmaceutical companies manufacturing macrolide antibiotics for unpublished or follow-up data, where possible. SELECTION CRITERIA We included randomised controlled trials of macrolide antibiotics in adults and children with CF. We compared them to: placebo; another class of antibiotic; another macrolide antibiotic; or the same macrolide antibiotic at a different dose or type of administration. DATA COLLECTION AND ANALYSIS Two authors independently extracted data and assessed risk of bias. We assessed the certainty of evidence using GRADE. MAIN RESULTS We included 14 studies (1467 participants) lasting 28 days to 36 months. All the studies assessed azithromycin: 11 compared oral azithromycin to placebo (1167 participants); one compared a high dose to a low dose (47 participants); one compared nebulised to oral azithromycin (45 participants); and one looked at weekly versus daily dose (208 participants). Oral azithromycin versus placebo There is a slight improvement in forced expiratory volume (FEV1 % predicted) in one second in the azithromycin group at up to six months compared to placebo (mean difference (MD) 3.97, 95% confidence interval (CI) 1.74 to 6.19; high-certainty evidence), although there is probably no difference at three months, (MD 2.70%, 95% CI -0.12 to 5.52), or 12 months (MD -0.13, 95% CI -4.96 to 4.70). Participants in the azithromycin group are probably at a decreased risk of pulmonary exacerbation with a longer time to exacerbation (hazard ratio (HR) 0.61, 95% CI 0.50 to 0.75; moderate-certainty evidence). Mild side effects were common, but there was no difference between groups (moderate-certainty evidence). There is no difference in hospital admissions at six months (odds ratio (OR) 0.61, 95% CI 0.36 to 1.04; high-certainty evidence), or in new acquisition of P aeruginosa at 12 months (HR 1.00, 95% CI 0.64 to 1.55; moderate-certainty evidence). High-dose versus low-dose azithromycin We are uncertain whether there is any difference in FEV1 % predicted at six months between the two groups (no data available) or in the rate of exacerbations per child per month (MD -0.05 (95% CI -0.20 to 0.10)); very low-certainty evidence for both outcomes. Only children were included in the study and the study did not report on any of our other clinically important outcomes. Nebulised azithromycin versus oral azithromycin We were unable to include any of the data into our analyses and have reported findings directly from the paper; we graded all evidence as being of very low certainty. The authors reported that there was a greater mean change in FEV1 % predicted at one month in the nebulised azithromycin group (P < 0.001). We are uncertain whether there was a change in P aeruginosa count. Weekly azithromycin versus daily azithromycin There is probably a lower mean change in FEV1 % predicted at six months in the weekly group compared to the daily group (MD -0.70, 95% CI -0.95 to -0.45) and probably also a longer period of time until first exacerbation in the weekly group (MD 17.30 days, 95% CI 4.32 days to 30.28 days). Gastrointestinal side effects are probably more common in the weekly group and there is likely no difference in admissions to hospital or QoL. We graded all evidence as moderate certainty. AUTHORS' CONCLUSIONS Azithromycin therapy is associated with a small but consistent improvement in respiratory function, a decreased risk of exacerbation and longer time to exacerbation at six months; but evidence for treatment efficacy beyond six months remains limited. Azithromycin appears to have a good safety profile (although a weekly dose was associated with more gastrointestinal side effects, which makes it less acceptable for long-term therapy), with a relatively minimal treatment burden for people with CF, and it is inexpensive. A wider concern may be the emergence of macrolide resistance reported in the most recent study which, combined with the lack of long-term data, means we do not feel that the current evidence is strong enough to support azithromycin therapy for all people with CF. Future research should report over longer time frames using validated tools and consistent reporting, to allow for easier synthesis of data. In particular, future trials should report important adverse events such as hearing impairment or liver disease. More data on the effects of azithromycin given in different ways and reporting on our primary outcomes would benefit decision-making on whether and how to give macrolide antibiotics. Finally, it is important to assess azithromycin therapy for people with CF who are established on the relatively new cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies which correct the underlying molecular defect associated with CF (none of the trials included in the review are relevant to this population).
Collapse
Affiliation(s)
- Kevin W Southern
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Arturo Solis-Moya
- Servicio de Neumología, Hospital Nacional de Niños, San José, Costa Rica
| | | | - Sherie Smith
- Division of Child Health, Obstetrics & Gynaecology (COG), School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Azithromycin through the Lens of the COVID-19 Treatment. Antibiotics (Basel) 2022; 11:antibiotics11081063. [PMID: 36009932 PMCID: PMC9404997 DOI: 10.3390/antibiotics11081063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Azithromycin has become famous in the last two years, not for its main antimicrobial effect, but for its potential use as a therapeutic agent for COVID-19 infection. Initially, there were some promising results that supported its use, but it has become clear that scientific results are insufficient to support such a positive assessment. In this review we will present all the literature data concerning the activity of azithromycin as an antimicrobial, an anti-inflammatory, or an antivirus agent. Our aim is to conclude whether its selection should remain as a valuable antivirus agent or if its use simply has an indirect therapeutic contribution due to its antimicrobial and/or immunomodulatory activity, and therefore, if its further use for COVID-19 treatment should be interrupted. This halt will prevent further antibiotic resistance expansion and will keep azithromycin as a valuable anti-infective therapeutic agent.
Collapse
|
3
|
Efficacy and safety of azithromycin maintenance therapy in primary ciliary dyskinesia (BESTCILIA): a multicentre, double-blind, randomised, placebo-controlled phase 3 trial. THE LANCET RESPIRATORY MEDICINE 2020; 8:493-505. [DOI: 10.1016/s2213-2600(20)30058-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022]
|
4
|
Bush A. Azithromycin is the answer in paediatric respiratory medicine, but what was the question? Paediatr Respir Rev 2020; 34:67-74. [PMID: 31629643 DOI: 10.1016/j.prrv.2019.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023]
Abstract
The first clinical indication of non-antibiotic benefits of macrolides was in the Far East, in adults with diffuse panbronchiolitis. This condition is characterised by chronic airway infection, often with Pseudomonas aeruginosa, airway inflammation, bronchiectasis and a high mortality. Low dose erythromycin, and subsequently other macrolides, led in many cases to complete remission of the condition, and abrogated the neutrophilic airway inflammation characteristic of the disease. This dramatic finding sparked a flurry of interest in the many hundreds of macrolides in nature, especially their anti-inflammatory and immunomodulatory effects. The biggest subsequent trials of azithromycin were in cystic fibrosis, which has obvious similarities to diffuse panbronchiolitis. There were unquestionable improvements in lung function and pulmonary exacerbations, but compared to diffuse panbronchiolitis, the results were disappointing. Case reports, case series and some randomised controlled trials followed in other conditions. Three trials of azithromycin in preschool wheeze gave contradictory results; a trial in pauci-inflammatory adult asthma, and a trial in non-cystic fibrosis bronchiectasis both showed a significant reduction in exacerbations, but none matched the dramatic results in diffuse panbronchiolitis. There is clearly a huge risk of antibacterial resistance if macrolides are used widely and uncritically in the community. In summary, Azithromycin is not the answer to anything in paediatric respiratory medicine; the paediatric respiratory community needs to refocus on the dramatic benefits of macrolides in diffuse panbronchiolitis, use modern - omics technologies to determine the endotypes of inflammatory diseases and discover in nature or synthesise designer macrolides to replicate the diffuse panbronchiolitis results. We must now find out how to do better!
Collapse
Affiliation(s)
- Andrew Bush
- Professor of Paediatrics and Paediatric Respirology, Imperial College Consultant Paediatric Chest Physician, Royal Brompton & Harefield NHS Foundation Trust, National Heart and Lung Institute, UK; Paediatric Chest Physician, Royal Brompton Harefield NHS Foundation Trust, UK.
| |
Collapse
|
5
|
Linear growth in preschool children treated with mass azithromycin distributions for trachoma: A cluster-randomized trial. PLoS Negl Trop Dis 2019; 13:e0007442. [PMID: 31166952 PMCID: PMC6550377 DOI: 10.1371/journal.pntd.0007442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
Abstract
Background Mass azithromycin distributions have been shown to reduce mortality among pre-school children in sub-Saharan Africa. It is unclear what mediates this mortality reduction, but one possibility is that antibiotics function as growth promoters for young children. Methods and findings 24 rural Ethiopian communities that had received biannual mass azithromycin distributions over the previous four years were enrolled in a parallel-group, cluster-randomized trial. Communities were randomized in a 1:1 ratio to either continuation of biannual oral azithromycin (20mg/kg for children, 1 g for adults) or to no programmatic antibiotics over the 36 months of the study period. All community members 6 months and older were eligible for the intervention. The primary outcome was ocular chlamydia; height and weight were measured as secondary outcomes on children less than 60 months of age at months 12 and 36. Study participants were not masked; anthropometrists were not informed of the treatment allocation. Anthropometric measurements were collected for 282 children aged 0–36 months at the month 12 assessment and 455 children aged 0–59 months at the month 36 assessment, including 207 children who had measurements at both time points. After adjusting for age and sex, children were slightly but not significantly taller in the biannually treated communities (84.0 cm, 95%CI 83.2–84.8, in the azithromycin-treated communities vs. 83.7 cm, 95%CI 82.9–84.5, in the untreated communities; mean difference 0.31 cm, 95%CI -0.85 to 1.47, P = 0.60). No adverse events were reported. Conclusions Periodic mass azithromycin distributions for trachoma did not demonstrate a strong impact on childhood growth. Trial registration The TANA II trial was registered on clinicaltrials.gov #NCT01202331. Mass distribution of a single dose of the broad-spectrum antibiotic azithromycin twice per year to pre-school children in Sub-Saharan Africa has been shown to reduce childhood mortality. The mechanism by which azithromycin reduces mortality is currently not clear, especially since the antibiotic is not targeted to sick children but rather given to all children in the community whether or not they have an infectious disease. In this study, we report the height and weight of children enrolled in a trial in Ethiopia in which communities were randomized either to twice annual mass azithromycin distributions for blinding trachoma or to no treatments. After accounting for age and sex, children from azithromycin-treated communities were on average slightly taller at the 12- and 36-month study visits than those from untreated communities, but the difference was not statistically significant.
Collapse
|
6
|
Sandri A, Ortombina A, Boschi F, Cremonini E, Boaretti M, Sorio C, Melotti P, Bergamini G, Lleo M. Inhibition of Pseudomonas aeruginosa secreted virulence factors reduces lung inflammation in CF mice. Virulence 2018; 9:1008-1018. [PMID: 29938577 PMCID: PMC6086295 DOI: 10.1080/21505594.2018.1489198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Cystic fibrosis (CF) lung infection is a complex condition where opportunistic pathogens and defective immune system cooperate in developing a constant cycle of infection and inflammation. The major pathogen, Pseudomonas aeruginosa, secretes a multitude of virulence factors involved in host immune response and lung tissue damage. In this study, we examined the possible anti-inflammatory effects of molecules inhibiting P. aeruginosa virulence factors. Methods: Pyocyanin, pyoverdine and proteases were measured in bacterial culture supernatant from different P. aeruginosa strains. Inhibition of virulence factors by sub-inhibitory concentrations of clarithromycin and by protease inhibitors was evaluated. Lung inflammatory response was monitored by in vivo bioluminescence imaging in wild-type and CFTR-knockout mice expressing a luciferase gene under the control of a bovine IL-8 promoter. Results: The amount of proteases, pyocyanin and pyoverdine secreted by P. aeruginosa strains was reduced after growth in the presence of a sub-inhibitory dose of clarithromycin. Intratracheal challenge with culture supernatant containing bacteria-released products induced a strong IL-8-mediated response in mouse lungs while lack of virulence factors corresponded to a reduction in bioluminescence emission. Particularly, sole inactivation of proteases by inhibitors Ilomastat and Marimastat also resulted in decreased lung inflammation. Conclusions: Our data support the assumption that virulence factors are involved in P. aeruginosa pro-inflammatory action in CF lungs; particularly, proteases seem to play an important role. Inhibition of virulence factors production and activity resulted in decreased lung inflammation; thus, clarithromycin and protease inhibitors potentially represent additional therapeutic therapies for P. aeruginosa-infected patients.
Collapse
Affiliation(s)
- Angela Sandri
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Alessia Ortombina
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Federico Boschi
- b Department of Computer Science , University of Verona , Verona , Italy
| | - Eleonora Cremonini
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Marzia Boaretti
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Claudio Sorio
- c Department of Medicine , University of Verona , Verona , Italy
| | - Paola Melotti
- d Cystic Fibrosis Center , Azienda Ospedaliera Universitaria Integrata di Verona , Verona , Italy
| | | | - Maria Lleo
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| |
Collapse
|
7
|
Zimmermann P, Ziesenitz VC, Curtis N, Ritz N. The Immunomodulatory Effects of Macrolides-A Systematic Review of the Underlying Mechanisms. Front Immunol 2018; 9:302. [PMID: 29593707 PMCID: PMC5859047 DOI: 10.3389/fimmu.2018.00302] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Background The mechanisms underlying the non-antimicrobial immunomodulatory properties of macrolides are not well understood. Objectives To systematically review the evidence for the immunomodulatory properties of macrolides in humans and to describe the underlying mechanism and extent of their influence on the innate and adaptive immune system. Methods A systematic literature search was done in MEDLINE using the OVID interface from 1946 to December 2016 according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA). Original articles investigating the influence of four macrolides (azithromycin, clarithromycin, erythromycin, and roxithromycin) on immunological markers in humans were included. Results We identified 22 randomized, controlled trials, 16 prospective cohort studies, and 8 case–control studies investigating 47 different immunological markers (186 measurements) in 1,834 participants. The most frequently reported outcomes were a decrease in the number of neutrophils, and the concentrations of neutrophil elastase, interleukin (IL)-8, IL-6, IL-1beta, tumor necrosis factor (TNF)-alpha, eosinophilic cationic protein, and matrix metalloproteinase 9. Inhibition of neutrophil function was reported more frequently than eosinophil function. A decrease in T helper (Th) 2 cells cytokines (IL-4, IL-5, IL-6) was reported more frequently than a decrease in Th1 cytokines (IL-2, INF-gamma). Conclusion Macrolides influence a broad range of immunological mechanisms resulting in immunomodulatory effects. To optimize the treatment of chronic inflammatory diseases by macrolides, further studies are necessary, particularly comparing different macrolides and dose effect relationships.
Collapse
Affiliation(s)
- Petra Zimmermann
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Infectious Diseases & Microbiology Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia.,Infectious Diseases Unit, University of Basel Children's Hospital, Basel, Switzerland
| | - Victoria C Ziesenitz
- Paediatric Pharmacology, University of Basel Children's Hospital, Basel, Switzerland
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Infectious Diseases & Microbiology Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Nicole Ritz
- Infectious Diseases & Microbiology Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Infectious Diseases Unit, University of Basel Children's Hospital, Basel, Switzerland.,Paediatric Pharmacology, University of Basel Children's Hospital, Basel, Switzerland
| |
Collapse
|
8
|
Silva Filho LVRFD, Pinto LA, Stein RT. Use of macrolides in lung diseases: recent literature controversies. J Pediatr (Rio J) 2015; 91:S52-60. [PMID: 26354869 DOI: 10.1016/j.jped.2015.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To review the mechanisms of action of macrolides in pediatric respiratory diseases and their clinical indications. SOURCES Review in the PubMed database, comprising the following terms in English: "macrolide and asthma"; "macrolide and cystic fibrosis"; "macrolide bronchiolitis and viral acute"; "macrolide and bronchiolitis obliterans" and "macrolide and non-CF bronchiectasis". SUMMARY OF THE FINDINGS The spectrum of action of macrolides includes production of inflammatory mediators, control of mucus hypersecretion, and modulation of host-defense mechanisms. The potential benefit of macrolide antibiotics has been studied in a variety of lung diseases, such as cystic fibrosis (CF), bronchiectasis, asthma, acute bronchiolitis, and non-CF bronchiectasis. Several studies have evaluated the benefits of macrolides in asthma refractory to therapy, but the results are controversial and indications should be limited to specific phenotypes. In viral bronchiolitis, there is no consistent benefit in acute conditions, although recent data have shown an effect in recurrent wheezing prevention. In patients with CF results are also contradictory, but the consensus states there is a small clinical benefit, especially for patients infected with P. aeruginosa. There was also no positive action of macrolides in patients with post-infectious bronchiolitis obliterans. Children with non-CF bronchiectasis seem to have clear benefits regarding the use of macrolides, which showed clinical advantages in parenchyma protection and lung function. CONCLUSIONS The long-term use of macrolides should be limited to highly selected situations, especially in patients with bronchiectasis. Careful evaluation of the benefits and potential damage are tools for their indication in specific groups.
Collapse
Affiliation(s)
- Luiz Vicente Ribeiro Ferreira da Silva Filho
- Pneumology Unit, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Leonardo Araujo Pinto
- Pediatric Pneumology Unit, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Postgraduate Program in Pediatrics/Child Health, Faculdade de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Renato Tetelbom Stein
- Pediatric Pneumology Unit, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Postgraduate Program in Pediatrics/Child Health, Faculdade de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Use of macrolides in lung diseases: recent literature controversies. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2015. [DOI: 10.1016/j.jpedp.2015.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Antoniu S. Novel inhaled combined antibiotic formulations in the treatment of Pseudomonas aeruginosa airways infections in cystic fibrosis. Expert Rev Anti Infect Ther 2015; 13:897-905. [PMID: 25921312 DOI: 10.1586/14787210.2015.1041925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In cystic fibrosis, chronic airways infection caused by Pseudomonas aeruginosa can be treated with inhaled antibiotics such as inhaled tobramycin, aztreonam or colistin. However, biofilm formation induced by this bacterium can reduce the effectiveness of such therapies and can contribute to antibiotic resistance. Inhaled antibiotic combination might represent an optimal antibiofilm strategy in this setting. This review discusses the rationale for combining the antibiotics as well as some emerging or existing combinations. Most of the combinations except for fosfomycin/tobramycin are at an early stage of development. The latter combination was found to be effective in Phase II clinical studies and is planned to be tested in Phase III trials. The clinical data on long-term efficacy are currently missing, but the existing evidence as well as the unmet therapeutic need can prompt the further evaluation of such compounds.
Collapse
Affiliation(s)
- Sabina Antoniu
- Department of Interdisciplinary - Palliative Care Nursing, University of Medicine and Pharmacy, Grigore T Popa Iasi, Romania, 16 Universităţii Str, Iasi, 700115
| |
Collapse
|
11
|
Haghi M, Saadat A, Zhu B, Colombo G, King G, Young PM, Traini D. Immunomodulatory Effects of a Low-Dose Clarithromycin-Based Macrolide Solution Pressurised Metered Dose Inhaler. Pharm Res 2014; 32:2144-53. [DOI: 10.1007/s11095-014-1605-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/11/2014] [Indexed: 02/02/2023]
|
12
|
Trotti LM, Saini P, Freeman AA, Bliwise DL, García PS, Jenkins A, Rye DB. Improvement in daytime sleepiness with clarithromycin in patients with GABA-related hypersomnia: Clinical experience. J Psychopharmacol 2014; 28:697-702. [PMID: 24306133 DOI: 10.1177/0269881113515062] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The macrolide antibiotic clarithromycin can enhance central nervous system excitability, possibly by antagonism of GABA-A receptors. Enhancement of GABA signaling has recently been demonstrated in a significant proportion of patients with central nervous system hypersomnias, so we sought to determine whether clarithromycin might provide symptomatic benefit in these patients. We performed a retrospective review of all patients treated with clarithromycin for hypersomnia, in whom cerebrospinal fluid enhanced GABA-A receptor activity in vitro in excess of controls, excluding those with hypocretin deficiency or definite cataplexy. Subjective reports of benefit and objective measures of psychomotor vigilance were collected to assess clarithromycin's effects. Clinical and demographic characteristics were compared in responders and non-responders. In total, 53 patients (38 women, mean age 35.2 (SD 12.8 years)) were prescribed clarithromycin. Of these, 34 (64%) reported improvement in daytime sleepiness, while 10 (19%) did not tolerate its side effects, and nine (17%) found it tolerable but without symptomatic benefit. In those who reported subjective benefit, objective corroboration of improved vigilance was evident on the psychomotor vigilance task. Twenty patients (38%) elected to continue clarithromycin therapy. Clarithromycin responders were significantly younger than non-responders. Clarithromycin may be useful in the treatment of hypersomnia associated with enhancement of GABA-A receptor function. Further evaluation of this novel therapy is needed.
Collapse
Affiliation(s)
- Lynn Marie Trotti
- Department of Neurology and Emory Program in Sleep, Emory University School of Medicine, Atlanta, GA, USA
| | - Prabhjyot Saini
- Department of Neurology and Emory Program in Sleep, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda A Freeman
- Department of Neurology and Emory Program in Sleep, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald L Bliwise
- Department of Neurology and Emory Program in Sleep, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul S García
- Department of Anesthesia, Emory University School of Medicine, Atlanta, GA, USA Atlanta VA Medical Center, Atlanta, GA, USA
| | - Andrew Jenkins
- Department of Anesthesia, Emory University School of Medicine, Atlanta, GA, USA
| | - David B Rye
- Department of Neurology and Emory Program in Sleep, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
13
|
Luisi F, Gandolfi TD, Daudt AD, Sanvitto JPZ, Pitrez PM, Pinto LA. Anti-inflammatory effects of macrolides in childhood lung diseases. J Bras Pneumol 2013; 38:786-96. [PMID: 23288126 DOI: 10.1590/s1806-37132012000600016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022] Open
Abstract
Macrolides are drugs that have antimicrobial effects, especially against intracellular pathogens. Various studies have shown that macrolides might also have anti-inflammatory effects. Macrolides inhibit the production of interleukins and can reduce pulmonary neutrophilic inflammation. Clinical trials have demonstrated beneficial effects of macrolides in various chronic lung diseases. The objective of this study was to review recent data in the medical literature on the anti-inflammatory effects of macrolides in childhood lung diseases by searching the Medline (PubMed) database. We used the following search terms: "macrolide and cystic fibrosis"; "macrolide and asthma"; "macrolide and bronchiolitis obliterans"; and "macrolide and acute bronchiolitis". We selected articles published in international scientific journals between 2001 and 2012. Clinical studies and in vitro evidence have confirmed the anti-inflammatory effect of macrolides in respiratory diseases. Some clinical trials have shown the benefits of the administration of macrolides in patients with cystic fibrosis, although the risk of bacterial resistance should be considered in the analysis of those benefits. Such benefits are controversial in other respiratory diseases, and the routine use of macrolides is not recommended. Further controlled clinical trials are required in order to assess the efficacy of macrolides as anti-inflammatory drugs, so that the benefits in the treatment of each specific clinical condition can be better established.
Collapse
Affiliation(s)
- Fernanda Luisi
- Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | | | |
Collapse
|
14
|
Nichols DP, Caceres S, Caverly L, Fratelli C, Kim SH, Malcolm K, Poch KR, Saavedra M, Solomon G, Taylor-Cousar J, Moskowitz S, Nick JA. Effects of azithromycin in Pseudomonas aeruginosa burn wound infection. J Surg Res 2013; 183:767-76. [PMID: 23478086 DOI: 10.1016/j.jss.2013.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/29/2013] [Accepted: 02/01/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cutaneous thermal injuries (i.e., burns) remain a common form of debilitating trauma, and outcomes are often worsened by wound infection with environmental bacteria, chiefly Pseudomonas aeruginosa. MATERIALS AND METHODS We tested the effects of early administration of a single dose of azithromycin, with or without subsequent antipseudomonal antibiotics, in a mouse model of standardized thermal injury infected with P aeruginosa via both wound site and systemic infection. We also tested the antimicrobial effects of these antibiotics alone or combined in comparative biofilm and planktonic cultures in vitro. RESULTS In our model, early azithromycin administration significantly reduced wound and systemic infection without altering wound site or circulating neutrophil activity. The antimicrobial effect of azithromycin was additive with ciprofloxacin but significantly reduced the antimicrobial effect of tobramycin. This pattern was reproduced in biofilm cultures and not observed in planktonic cultures of P aeruginosa. CONCLUSION These data suggest that early administration of azithromycin following burn-related trauma and infection may reduce P aeruginosa infection and potential interactions with other antibiotics should be considered when designing future studies.
Collapse
Affiliation(s)
- David P Nichols
- Pulmonary Medicine Division, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|