1
|
Gipsman AI, Bhandari A, Bhandari V. Use of mucolytics and inhaled antibiotics in the NICU. J Perinatol 2024:10.1038/s41372-024-02178-w. [PMID: 39562833 DOI: 10.1038/s41372-024-02178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
Clearance of airway secretions and treatment of respiratory tract infections (RTIs) are two common problems caregivers face in the neonatal intensive care unit (NICU). Mucolytics degrade crosslinks in mucus gel, reducing mucus viscosity and facilitating their removal by cough or endotracheal suctioning. While such medications have been studied in older children and adults, their use is not as well described in the NICU. For RTIs, systemic antibiotics are usually prescribed, although their use is often associated with adverse effects. Inhaled antibiotics may provide increased drug concentrations to the infected airways while minimizing systemic toxicity. The use of inhaled antibiotics in the NICU has been described in small case series. As underlying physiologic differences will lend to inaccuracies when extrapolating data obtained from older children, there is an urgent need to determine the safety, efficacy, and optimal dosing of inhaled mucolytics and antibiotics in infants of varying gestational and post-natal ages.
Collapse
Affiliation(s)
- Alexander I Gipsman
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anita Bhandari
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vineet Bhandari
- Division of Neonatology, The Children's Regional Hospital at Cooper, Camden, NJ, USA.
- Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
2
|
Baltogianni M, Dermitzaki N, Kosmeri C, Serbis A, Balomenou F, Giapros V. Reintroduction of Legacy Antibiotics in Neonatal Sepsis: The Special Role of Fosfomycin and Colistin. Antibiotics (Basel) 2024; 13:333. [PMID: 38667009 PMCID: PMC11047481 DOI: 10.3390/antibiotics13040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Neonatal sepsis is a leading cause of morbidity and mortality in neonates, particularly in low- and middle-income countries. The emergence of antimicrobial resistance is a rapidly growing global problem. A significant proportion of the pathogens that commonly cause neonatal sepsis are resistant to multiple antibiotics. Therefore, for the empirical treatment of neonatal sepsis, the repurposing of older antibiotics that are effective against multidrug-resistant pathogens is being investigated. This review aims to provide an overview of current research and experience using the repurposed antibiotics colistin and fosfomycin for the empirical treatment of neonatal sepsis. Based on current knowledge, colistin and fosfomycin may be potentially helpful for the empirical treatment of sepsis in neonates due to their efficacy against a wide range of pathogens and acceptable safety profile.
Collapse
Affiliation(s)
- Maria Baltogianni
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (M.B.); (N.D.); (F.B.)
| | - Niki Dermitzaki
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (M.B.); (N.D.); (F.B.)
| | - Chrysoula Kosmeri
- Department of Paediatrics, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (C.K.); (A.S.)
| | - Anastasios Serbis
- Department of Paediatrics, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (C.K.); (A.S.)
| | - Foteini Balomenou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (M.B.); (N.D.); (F.B.)
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (M.B.); (N.D.); (F.B.)
| |
Collapse
|
3
|
Chibabhai V, Bekker A, Black M, Demopoulos D, Dramowski A, du Plessis NM, Lorente VPF, Nana T, Rabie H, Reubenson G, Thomas R. Appropriate use of colistin in neonates, infants and children: Interim guidance. S Afr J Infect Dis 2023; 38:555. [PMID: 38223435 PMCID: PMC10784269 DOI: 10.4102/sajid.v38i1.555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/24/2023] [Indexed: 01/16/2024] Open
Affiliation(s)
- Vindana Chibabhai
- Division of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Microbiology, National Health Laboratory Service, Johannesburg, South Africa
| | - Adrie Bekker
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marianne Black
- Division of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Microbiology, Lancet Laboratories, Johannesburg, South Africa
| | - Despina Demopoulos
- Department of Paediatrics, Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Angela Dramowski
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nicolette M. du Plessis
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Veshni Pillay-Fuentes Lorente
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Trusha Nana
- Division of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Microbiology, Lancet Laboratories, Johannesburg, South Africa
| | - Helena Rabie
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gary Reubenson
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Reenu Thomas
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Paediatrics and Child Health, Christ Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| |
Collapse
|
4
|
Wu Z, Zhang S, Cao Y, Wang Q, Sun K, Zheng X. Comparison of the clinical efficacy and toxicity of nebulized polymyxin monotherapy and combined intravenous and nebulized polymyxin for the treatment of ventilator-associated pneumonia caused by carbapenem-resistant gram-negative bacteria: a retrospective cohort study. Front Pharmacol 2023; 14:1209063. [PMID: 37663252 PMCID: PMC10470629 DOI: 10.3389/fphar.2023.1209063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Objective: To investigate the clinical efficacy and toxicity of nebulized polymyxin monotherapy and combined intravenous and nebulized polymyxin for the treatment of VAP caused by CR-GNB. Additionally, among patients treated with nebulized polymyxin monotherapy, we compared the clinical efficacy and toxicity of polymyxin B and polymyxin E. Methods: This study was a single-center, retrospective study. Included patients received aerosolized polymyxin for at least 72 h with or without intravenous polymyxin for the management of CR-GNB VAP. The primary endpoint was clinical cure at the end of polymyxin therapy. Secondary endpoints included AKI incidence, time of bacteria-negative conversion, duration of MV after inclusion, length of stay in ICU, and all-cause ICU mortality. Results: 39 patients treated with nebulized polymyxin monotherapy were assigned to the NL-polymyxin group. 39 patients treated with nebulized polymyxin combined with intravenous use of polymyxin were assigned to the IV-NL-polymyxin group. Among the NL-polymyxin group, 19 patients were treated with polymyxin B and 20 with polymyxin E. The clinical baseline characteristics before admission to the ICU and before nebulization of polymyxin were similar between the two groups. No differences were found between the two study groups in terms of microorganism distribution, VAP cure rate, time of bacteria-negative conversion, duration of MV after inclusion, length of stay in ICU and all-cause ICU mortality. Similarly, survival analysis did not differ between the two groups (χ2 = 3.539, p = 0.06). AKI incidence was higher in the IV-NL-polymyxin group. When comparing the clinical efficacy and toxicity to polymyxin B and polymyxin E, there was no difference between the two groups in terms of VAP cure rate, time of bacteria-negative conversion, duration of MV after inclusion, length of stay in ICU, SOFA score, CPIS, AKI incidence and all-cause ICU mortality. Conclusion: Our study found that nebulized polymyxin monotherapy was non-inferior to combination therapy with intravenous polymyxin in treating CR-GNB-VAP. Furthermore, we observed no differences in clinical efficacy or related toxic side effects between polymyxin B and polymyxin E during nebulized polymyxin therapy as monotherapy. However, future prospective studies with larger sample sizes are required to confirm these findings.
Collapse
Affiliation(s)
- Zhenping Wu
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siying Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yelin Cao
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiyu Wang
- Department of Critical Care Medicine, The People’s Hospital of Jinyun Country, Lishui, China
| | - Keyuan Sun
- Department of Critical Care Medicine, The People’s Hospital of Jinyun Country, Lishui, China
| | - Xia Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Kontou A, Kourti M, Iosifidis E, Sarafidis K, Roilides E. Use of Newer and Repurposed Antibiotics against Gram-Negative Bacteria in Neonates. Antibiotics (Basel) 2023; 12:1072. [PMID: 37370391 DOI: 10.3390/antibiotics12061072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Antimicrobial resistance has become a significant public health problem globally with multidrug resistant Gram negative (MDR-GN) bacteria being the main representatives. The emergence of these pathogens in neonatal settings threatens the well-being of the vulnerable neonatal population given the dearth of safe and effective therapeutic options. Evidence from studies mainly in adults is now available for several novel antimicrobial compounds, such as new β-lactam/β-lactamase inhibitors (e.g., ceftazidime-avibactam, meropenem-vaborbactam, imipenem/cilastatin-relebactam), although old antibiotics such as colistin, tigecycline, and fosfomycin are also encompassed in the fight against MDR-GN infections that remain challenging. Data in the neonatal population are scarce, with few clinical trials enrolling neonates for the evaluation of the efficacy, safety, and dosing of new antibiotics, while the majority of old antibiotics are used off-label. In this article we review data about some novel and old antibiotics that are active against MDR-GN bacteria causing sepsis and are of interest to be used in the neonatal population.
Collapse
Affiliation(s)
- Angeliki Kontou
- 1st Department of Neonatology and Neonatal Intensive Care Unit, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Maria Kourti
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Elias Iosifidis
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Kosmas Sarafidis
- 1st Department of Neonatology and Neonatal Intensive Care Unit, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| |
Collapse
|
6
|
Chiusaroli L, Liberati C, Caseti M, Rulli L, Barbieri E, Giaquinto C, Donà D. Therapeutic Options and Outcomes for the Treatment of Neonates and Preterms with Gram-Negative Multidrug-Resistant Bacteria: A Systematic Review. Antibiotics (Basel) 2022; 11:antibiotics11081088. [PMID: 36009956 PMCID: PMC9404799 DOI: 10.3390/antibiotics11081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Infections caused by multidrug-resistant (MDR) or extensively drug-resistant (XDR) bacteria represent a challenge in the neonatal population due to disease severity and limited therapeutic possibilities compared to adults. The spread of antimicrobial resistance and drug availability differ significantly worldwide. The incidence of MDR bacteria has constantly risen, causing an increase in morbidity, mortality, and healthcare costs in both high-income (HIC) and low- and middle-income countries (LMIC). Therefore, more evidence is needed to define the possible use of newer molecules and to optimize combination regimens for the oldest antimicrobials in neonates. This systematic review aims to identify and critically appraise the current antimicrobial treatment options and the relative outcomes for MDR and XDR Gram-negative bacterial infections in the neonatal population. (2) Methods: A literature search for the treatment of MDR Gram-negative bacterial infections in neonates (term and preterm) was conducted in Embase, MEDLINE, and Cochrane Library. Studies reporting data on single-patient-level outcomes related to a specific antibiotic treatment for MDR Gram-negative bacterial infection in children were included. Studies reporting data from adults and children were included if single-neonate-level information could be identified. We focused our research on four MDROs: Enterobacterales producing extended-spectrum beta-lactamase (ESBL) or carbapenemase (CRE), Pseudomonas aeruginosa, and Acinetobacter baumannii. PROSPERO registration: CRD42022346739 (3) Results: The search identified 11,740 studies (since January 2000), of which 22 fulfilled both the inclusion and exclusion criteria and were included in the analysis. Twenty of these studies were conducted in LMIC. Colistin is the main studied and used molecule to treat Gram-negative MDR bacteria for neonate patients in the last two decades, especially in LMIC, with variable evidence of efficacy. Carbapenems are still the leading antibiotics for ESBL Enterobacterales, while newer molecules (i.e., beta-lactam agents/beta-lactamase inhibitor combination) are promising across all analyzed categories, but data are few and limited to HICs. (4) Conclusions: Data about the treatment of Gram-negative MDR bacteria in the neonatal population are heterogeneous and limited mainly to older antimicrobials. Newer drugs are promising but not affordable yet for many LMICs. Therefore, strategies cannot be generalized but will differ according to the country’s epidemiology and resources. More extensive studies are needed to include new antimicrobials and optimize the combination strategies for the older ones.
Collapse
|
7
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis 2022; 75:187-212. [PMID: 35439291 PMCID: PMC9890506 DOI: 10.1093/cid/ciac268] [Citation(s) in RCA: 239] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. The initial guidance document on infections caused by extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa) was published on 17 September 2020. Over the past year, there have been a number of important publications furthering our understanding of the management of ESBL-E, CRE, and DTR-P. aeruginosa infections, prompting a rereview of the literature and this updated guidance document. METHODS A panel of 6 infectious diseases specialists with expertise in managing antimicrobial-resistant infections reviewed, updated, and expanded previously developed questions and recommendations about the treatment of ESBL-E, CRE, and DTR-P. aeruginosa infections. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment recommendations are provided with accompanying rationales, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Recommendations apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of 24 October 2021. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Correspondence: P. D. Tamma, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA ()
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service and Center for Antimicrobial Resistance and Epidemiology, Louis Stokes Cleveland Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin Infect Dis 2021; 74:2089-2114. [PMID: 34864936 DOI: 10.1093/cid/ciab1013] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. A previous guidance document focused on infections caused by extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Here, guidance is provided for treating AmpC β-lactamase-producing Enterobacterales (AmpC-E), carbapenem-resistant Acinetobacter baumannii (CRAB), and Stenotrophomonas maltophilia infections. METHODS A panel of six infectious diseases specialists with expertise in managing antimicrobial-resistant infections formulated questions about the treatment of AmpC-E, CRAB, and S. maltophilia infections. Answers are presented as suggestions and corresponding rationales. In contrast to guidance in the previous document, published data on optimal treatment of AmpC-E, CRAB, and S. maltophilia infections are limited. As such, guidance in this document is provided as "suggested approaches" based on clinical experience, expert opinion, and a review of the available literature. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment suggestions are provided, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Suggestions apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of September 17, 2021 and will be updated annually. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance-2.0/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Lin YW, Aye SM, Rao G, Zhou QT, Chan HK, Li J. Treatment of infections caused by Gram-negative pathogens: current status on the pharmacokinetics/pharmacodynamics of parenteral and inhaled polymyxins in patients. Int J Antimicrob Agents 2020; 56:106199. [PMID: 33075510 PMCID: PMC7723449 DOI: 10.1016/j.ijantimicag.2020.106199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/05/2020] [Accepted: 10/11/2020] [Indexed: 01/12/2023]
Abstract
Polymyxins are increasingly used as a last resort for the treatment of infections caused by multidrug-resistant Gram-negative bacteria in patients. Over the last decade, significant progress has been made in understanding the pharmacokinetics/pharmacodynamics/toxicodynamics (PK/PD/TD) of parenteral and inhaled polymyxins. This mini-review provides an overview of polymyxin chemistry, different dose definitions, and the latest research on their clinical use, toxicities, and PK/PD after intravenous and inhalation administration. Optimising the PK/PD/TD of polymyxins in patients is critical to maximise their efficacy while minimising toxicities and the emergence of resistance.
Collapse
Affiliation(s)
- Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Su Mon Aye
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Gauri Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 1047907, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Faculty of Medicine and Health, Sydney, NSW 2006, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
10
|
Hussain K, Salat MS, Ambreen G, Mughal A, Idrees S, Sohail M, Iqbal J. Intravenous vs intravenous plus aerosolized colistin for treatment of ventilator-associated pneumonia - a matched case-control study in neonates. Expert Opin Drug Saf 2020; 19:1641-1649. [PMID: 32892635 DOI: 10.1080/14740338.2020.1819980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recently intravenous (IV) and aerosolized (ASZ) colistin have been used for treating ventilator-associated pneumonia (VAP) due to colistin susceptible multidrug-resistant Gram-negative bacteria (MDR-GNB). Colistin has limited lung penetration. We compared the efficacy and safety of IV-alone versus IV+ASZ-colistin for treating VAP in neonates. METHODS This retrospective matched case-control study was performed at NICU of the Aga Khan University Hospital, Pakistan between January 2015 and December 2018. Sixteen neonates with MDR-GNB associated VAP received IV-ASZ-colistin and were matched for date of birth, gestational age, birth weight, Apgar score, antenatal steroid history, disease severity, and duration of mechanical ventilation with 16 control neonates who received IV-colistin alone. RESULTS Both groups had similar MDR-GNB isolates and Acinetobacter baumannii (78%) was the most common pathogen. No colistin-resistant strain was isolated. Duration of IV-colistin and concomitant antibiotics use was significantly (p < 0.05) shorter in the IV-ASZ-colistin group. Significantly (p < 0.05) higher clinical cure and microbial eradication, along with lower ventilatory requirements, mortality rate, and colistin induced nephrotoxicity and electrolyte imbalance was observed in the IV-ASZ-colistin group. CONCLUSIONS With better lung penetration, ASZ-colistin offers effective and safe microbiological and clinical benefits as adjunctive or alternate treatment of VAP due to colistin susceptible MDR-GNB in neonates.
Collapse
Affiliation(s)
- Kashif Hussain
- Department of Pharmacy, Aga Khan University Hospital , Karachi, Pakistan
| | | | - Gul Ambreen
- Department of Pharmacy, Aga Khan University Hospital , Karachi, Pakistan
| | - Ambreen Mughal
- Department of Pharmacy, Aga Khan University Hospital , Karachi, Pakistan
| | - Sidra Idrees
- Department of Paediatrics & Child Health, Aga Khan University , Karachi, Pakistan
| | - Mehreen Sohail
- Department of Pharmacy, Aga Khan University Hospital , Karachi, Pakistan
| | - Javaid Iqbal
- Department of Paediatrics & Child Health, Aga Khan University , Karachi, Pakistan
| |
Collapse
|
11
|
Carbapenem-Resistant Gram-Negative Bacterial Infections in Children. Antimicrob Agents Chemother 2020; 64:AAC.02183-19. [PMID: 31844014 DOI: 10.1128/aac.02183-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Carbapenem-resistant organisms (CRO) are a major global public health threat. Enterobacterales hydrolyze almost all β-lactams through carbapenemase production. Infections caused by CRO are challenging to treat due to the limited number of antimicrobial options. This leads to significant morbidity and mortality. Over the last few years, several new antibiotics effective against CRO have been approved. Some of them (e.g., plazomicin or imipenem-cilastatin-relebactam) are currently approved for use only by adults; others (e.g., ceftazidime-avibactam) have recently been approved for use by children. Recommendations for antibiotic therapy of CRO infections in pediatric patients are based on evidence mainly from adult studies. The availability of pediatric pharmacokinetic and safety data is the cornerstone to broaden the use of proposed agents in adults to the pediatric population. This article provides a comprehensive review of the current knowledge regarding infections caused by CRO with a focus on children, which includes epidemiology, risk factors, outcomes, and antimicrobial therapy management, with particular attention being given to new antibiotics.
Collapse
|
12
|
The Use of Colistin for the Treatment of Multidrug-resistant Gram-negative Infections in Neonates and Infants: A Review of the Literature. Pediatr Infect Dis J 2019; 38:1107-1112. [PMID: 31469781 DOI: 10.1097/inf.0000000000002448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this review, we report the available data regarding efficacy, safety and pharmacokinetics of colistin in the treatment of multidrug-resistant Gram-negative bacteria in neonates and infants. Seventeen clinical studies, involving 312 patients, and 3 pharmacokinetics studies were identified. Blood stream infection was the most common source of infection, followed by pneumonia and meningitis/ventriculitis. In most cases, colistin was administered in association with other antibiotics. The most common route of administration was intravenous, with colistimethate doses ranging from 25,000 to 225,000 IU/kg/day divided into 2 or 3 doses. A recent pharmacokinetic study suggested that the appropriate intravenous dose should be >150,000 IU/kg/day. Microbiologic cure was obtained in 94.2% of patients and survival was 76.6%. The combination of intraventricular and intravenous colistin should be used in meningitis/ventriculitis. Nebulized colistin should be used as adjunctive treatment, but not as monotherapy. Nephrotoxicity and apnea were reported in 5.8% and 3.9% of patients respectively.The use of colistin for multidrug-resistant Gram-negative infections in neonates and infants is effective and safe, but the quality of studies is moderate. The optimal intravenous dose should be higher than that indicated in most reports.
Collapse
|
13
|
A Breath of Fresh Air in the Fog of Antimicrobial Resistance: Inhaled Polymyxins for Gram-Negative Pneumonia. Antibiotics (Basel) 2019; 8:antibiotics8010027. [PMID: 30884839 PMCID: PMC6466860 DOI: 10.3390/antibiotics8010027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 01/08/2023] Open
Abstract
Despite advancements in therapy, pneumonia remains the leading cause of death due to infectious diseases. Novel treatment strategies are desperately needed to optimize the antimicrobial therapy of patients suffering from this disease. One such strategy that has recently garnered significant attention is the use of inhaled antibiotics to rapidly achieve therapeutic concentrations directly at the site of infection. In particular, there is significant interest in the role of inhaled polymyxins for the treatment of nosocomial pneumonia, including ventilator-associated pneumonia, due to their retained activity against multi-drug resistant Gram-negative pathogens, including Acinetobacter baumannii and Pseudomonas aeruginosa. This review will provide a comprehensive overview of the pharmacokinetic/pharmacodynamic profile, clinical outcomes, safety, and potential role of inhaled polymyxins in clinical practice.
Collapse
|
14
|
Antimicrobial molecules in the lung: formulation challenges and future directions for innovation. Future Med Chem 2018; 10:575-604. [PMID: 29473765 DOI: 10.4155/fmc-2017-0162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inhaled antimicrobials have been extremely beneficial in treating respiratory infections, particularly chronic infections in a lung with cystic fibrosis. The pulmonary delivery of antibiotics has been demonstrated to improve treatment efficacy, reduce systemic side effects and, critically, reduce drug exposure to commensal bacteria compared with systemic administration, reducing selective pressure for antimicrobial resistance. This review will explore the specific challenges of pulmonary delivery of a number of differing antimicrobial molecules, and the formulation and technological approaches that have been used to overcome these difficulties. It will also explore the future challenges being faced in the development of inhaled products and respiratory infection treatment, and identify future directions of innovation, with a particular focus on respiratory infections caused by multiple drug-resistant pathogens.
Collapse
|
15
|
Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev 2017; 30:409-447. [PMID: 27974412 DOI: 10.1128/cmr.00058-16] [Citation(s) in RCA: 674] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acinetobacter is a complex genus, and historically, there has been confusion about the existence of multiple species. The species commonly cause nosocomial infections, predominantly aspiration pneumonia and catheter-associated bacteremia, but can also cause soft tissue and urinary tract infections. Community-acquired infections by Acinetobacter spp. are increasingly reported. Transmission of Acinetobacter and subsequent disease is facilitated by the organism's environmental tenacity, resistance to desiccation, and evasion of host immunity. The virulence properties demonstrated by Acinetobacter spp. primarily stem from evasion of rapid clearance by the innate immune system, effectively enabling high bacterial density that triggers lipopolysaccharide (LPS)-Toll-like receptor 4 (TLR4)-mediated sepsis. Capsular polysaccharide is a critical virulence factor that enables immune evasion, while LPS triggers septic shock. However, the primary driver of clinical outcome is antibiotic resistance. Administration of initially effective therapy is key to improving survival, reducing 30-day mortality threefold. Regrettably, due to the high frequency of this organism having an extreme drug resistance (XDR) phenotype, early initiation of effective therapy is a major clinical challenge. Given its high rate of antibiotic resistance and abysmal outcomes (up to 70% mortality rate from infections caused by XDR strains in some case series), new preventative and therapeutic options for Acinetobacter spp. are desperately needed.
Collapse
|
16
|
Abstract
Current evidence on the use of colistin in pediatric patients for infections caused by carbapenem-resistant bacteria is based on retrospective case series. The coadministration of colistin with other antimicrobial agents was associated with a relatively low rate of nephrotoxicity and a favorable outcome in >70% of these patients. Further study of colistin pharmacokinetics in children and neonates will likely lead to optimization of dosage recommendations.
Collapse
|
17
|
Greenough A, Papalexopoulou N. The roles of drug therapy given via the endotracheal tube to neonates. Arch Dis Child Fetal Neonatal Ed 2017; 102:F277-F281. [PMID: 28270430 DOI: 10.1136/archdischild-2016-311711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 11/04/2022]
Abstract
Many drugs are given to intubated neonates by the inhalation route. The optimum aerosol delivery system, however, has not been identified and there are many challenges in delivering drugs effectively to the lower airways of intubated neonates. The effectiveness of surfactant in prematurely born infants and nitric oxide has been robustly investigated. Other drugs are being used on very limited evidence.
Collapse
Affiliation(s)
- Anne Greenough
- Division of Asthma, Allergy and Lung Biology, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK.,NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Niovi Papalexopoulou
- Division of Asthma, Allergy and Lung Biology, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| |
Collapse
|
18
|
Shafiq N, Malhotra S, Gautam V, Kaur H, Kumar P, Dutta S, Ray P, Kshirsagar NA. Evaluation of evidence for pharmacokinetics-pharmacodynamics-based dose optimization of antimicrobials for treating Gram-negative infections in neonates. Indian J Med Res 2017; 145:299-316. [PMID: 28749392 PMCID: PMC5555058 DOI: 10.4103/ijmr.ijmr_723_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND & OBJECTIVES Neonates present a special subgroup of population in whom optimization of antimicrobial dosing can be particularly challenging. Gram-negative infections are common in neonates, and inpatient treatment along with critical care is needed for the management of these infections. Dosing recommendations are often extrapolated from evidence generated in older patient populations. This systematic review was done to identify the knowledge gaps in the pharmacokinetics-pharmacodynamics (PK-PD)-based optimized dosing schedule for parenteral antimicrobials for Gram-negative neonatal infections. METHODS Relevant research questions were identified. An extensive electronic and manual search methodology was used. Potentially eligible articles were screened for eligibility. The relevant data were extracted independently in a pre-specified data extraction form. Pooling of data was planned. RESULTS Of the 340 records screened, 24 studies were included for data extraction and incorporation in the review [carbapenems - imipenem and meropenem (n=7); aminoglycosides - amikacin and gentamicin (n=9); piperacillin-tazobactam (n=2); quinolones (n=2); third- and fourth-generation cephalosporins (n=4) and colistin nil]. For each of the drug categories, the information for all the questions that the review sought to answer was incomplete. There was a wide variability in the covariates assessed, and pooling of results could not be undertaken. INTERPRETATION & CONCLUSIONS There is a wide knowledge gap for determining the doses of antimicrobials used for Gram-negative infections in neonates. A different profile of newborns in the developing countries could affect the disposition of antimicrobials for Gram negative infections, necessitating the generation of PK-PD data of antimicrobials in neonates from developing countries. Further, guidelines for treatment of neonatal conditions may incorporate the evidence-based PK-PD-guided dosing regimens.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Samir Malhotra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vikas Gautam
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harpreet Kaur
- University School of Business Studies, Punjab University, Chandigarh, India
| | - Pravin Kumar
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sourabh Dutta
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pallab Ray
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nilima A. Kshirsagar
- National Chair of Clinical Pharmacology, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
19
|
Kim YK, Lee JH, Lee HK, Chung BC, Yu SJ, Lee HY, Park JH, Kim S, Kim HK, Kiem S, Jang HJ. Efficacy of nebulized colistin-based therapy without concurrent intravenous colistin for ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii. J Thorac Dis 2017; 9:555-567. [PMID: 28449463 PMCID: PMC5394082 DOI: 10.21037/jtd.2017.02.61] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although there have been studies regarding the role of nebulized colistin as adjunctive therapy of ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Acinetobacter baumannii (CRAB), a paucity of information on the efficacy of nebulized colistin as monotherapy is available. METHODS We retrospectively reviewed 219 patients with VAP caused by CRAB treated with either intravenous (n=93) or nebulized colistin (n=126), from March 2010 to November 2015. Factors related to clinical failure was assessed using propensity-score-matched analysis. RESULTS Of 219 patients, 39 patients from each group (n=78) were matched after covariate adjustment using propensity score. There were no significant differences in baseline characteristics as well as the rates of clinical failure between the propensity-score-matched groups [Odds ratio (OR), 0.48; 95% confidence interval (CI), 0.19-1.19; P=0.11], while a significantly lower rate of acute kidney injury (AKI) during colistin therapy (18% vs. 49%, P=0.004) was observed in nebulized colistin group. In addition, multivariable analysis revealed that nebulized colistin did not significantly alter the rate of clinical failure [adjusted odds ratio (aOR), 0.36; 95% CI, 0.12-1.09; P=0.070]. Instead, medical intensive care unit (ICU) admission (aOR, 7.14; 95% CI, 1.60-32.00; P=0.010), and septic shock (aOR, 3.93; 95% CI, 1.27-12.17; P=0.018) were independent risk factors for clinical failure. CONCLUSIONS Our findings suggest that nebulized colistin-based therapy, even without concurrent administration of intravenous colistin, may be an effective and safe treatment option for VAP caused by CRAB.
Collapse
Affiliation(s)
- Yong Kyun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jae Ha Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Hyun-Kyung Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Byung Cheol Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Seung Jung Yu
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Young Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jin-Han Park
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Sunyoung Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Hyeon-Kuk Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Sungmin Kiem
- Division of Infectious Diseases, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Hang-Jea Jang
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
20
|
Hsieh TC, Chen FL, Ou TY, Jean SS, Lee WS. Role of aerosolized colistin methanesulfonate therapy for extensively-drug-resistant Acinetobacter baumannii complex pneumonia and airway colonization. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 49:523-30. [DOI: 10.1016/j.jmii.2014.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 12/20/2022]
|
21
|
Chen Z, Chen Y, Fang Y, Wang X, Chen Y, Qi Q, Huang F, Xiao X. Meta-analysis of colistin for the treatment of Acinetobacter baumannii infection. Sci Rep 2015; 5:17091. [PMID: 26597507 PMCID: PMC4657015 DOI: 10.1038/srep17091] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 07/13/2015] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistant among Acinetobacter baumannii infection is associated with a high mortality rate and limits the therapeutic options. The aim of this study was to assess the safety and efficacy of colistin monotherapy vs. other single antibiotic therapy AND colistin-based combination therapy (with other antibiotics) vs. colistin alone for the treatment of Acinetobacter baumannii infection. Online electronic database were searched for studies evaluating colistin with or without other antibiotics in treatment of patients with drug-resistant Acinetobacter baumannii infection. Totally, twelve studies met the inclusion criteria. For colistin-based combination therapy, six articles including 668 patients were included. Our results showed that the overall clinical response did not differ significantly between colistin-based combination therapy and monotherapy (OR = 1.37, 95% CI = 0.86-2.19, P = 0.18). This insignificance was also detected in ICU mortality, length of stay and nephrotoxicity (P > 0.05). However, the colistin-based combination therapy was shown increasing the microbiological response (OR = 2.14, 95% CI = 1.48-3.07, P < 0.0001). For colistin monotherapy, six studies involving 491 patients were analyzed. The results were in concordance with the findings of the colistin-based combination therapy group. Our results suggest that colistin may be a promising therapy as safe and efficacious as standard antibiotics for the treatment of drug-resistant Acinetobacter baumannii infection.
Collapse
Affiliation(s)
- Zhijin Chen
- Department of Hospital Infection-Control, Affiliated Houjie Hospital, Guangdong Medical College, Dongguan, Guangdong 523945, China
| | - Yu Chen
- Department of Urology, Affiliated Hospital of Huzhou Teachers' College, The First People's Hospital of Hu zhou, Hu zhou, 313000, P.R. China
| | - Yaogao Fang
- Department of Hospital Infection-Control, Affiliated Houjie Hospital, Guangdong Medical College, Dongguan, Guangdong 523945, China
| | - Xiaotian Wang
- Department of Hospital Infection-Control, Affiliated Houjie Hospital, Guangdong Medical College, Dongguan, Guangdong 523945, China
| | - Yanqing Chen
- Department of Hospital Infection-Control, Affiliated Houjie Hospital, Guangdong Medical College, Dongguan, Guangdong 523945, China
| | - Qingsong Qi
- Department of Hospital Infection-Control, Affiliated Houjie Hospital, Guangdong Medical College, Dongguan, Guangdong 523945, China
| | - Fang Huang
- Department of Hospital Infection-Control, Affiliated Houjie Hospital, Guangdong Medical College, Dongguan, Guangdong 523945, China
| | - Xungang Xiao
- Department of Joint Surgery, Chenzhou NO.1 People's Hospital, Hunan Province, 423000 P.R. China
| |
Collapse
|
22
|
Noah TL, Auten R, Schwarze J, Davis S. Pediatric pulmonology year in review 2014: Part 2. Pediatr Pulmonol 2015; 50:1140-6. [PMID: 26193432 DOI: 10.1002/ppul.23252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 11/07/2022]
Abstract
To better meet the needs of our readership for updated perspectives on the rapidly expanding knowledge in our field, we here summarize the past year's publications in our major topic areas, as well as selected publications in these areas from the core clinical journal literature outside our own pages. This is Part 2 of a series and covers articles on neonatal lung disease, pulmonary physiology, and respiratory infection.
Collapse
Affiliation(s)
- Terry L Noah
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard Auten
- Department of Pediatrics, Duke University, Durham, North Carolina
| | - Jurgen Schwarze
- Department of Child Life and Health, The University of Edinburgh, Edinburgh, UK
| | - Stephanie Davis
- Department of Pediatrics, Riley Children's Hospital, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
23
|
Pulmonary and Systemic Pharmacokinetics of Colistin Following a Single Dose of Nebulized Colistimethate in Mechanically Ventilated Neonates. Pediatr Infect Dis J 2015; 34:961-3. [PMID: 26065861 DOI: 10.1097/inf.0000000000000775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to evaluate the pulmonary and systemic pharmacokinetics of colistin following a single dose of nebulized colistimethate sodium (CMS) in mechanically ventilated neonates. We administered a single dose of nebulized CMS (approximately 120,000 IU/kg of CMS, equivalent to 4 mg/kg colistin base activity) to 6 ventilated neonates with ventilator-associated pneumonia. The median gestational age was 39 weeks (range, 32-39 weeks). Mean (± SD) tracheal aspirate colistin maximum concentration (Cmax), area under the concentration-time curve (AUC 0-24) and t1/2 were 24.0 ± 8.2 μg/mL, 147.6 ± 53.5 μg · hours/mL and 9.8 ± 5.5 hours, respectively. The plasma concentrations of colistin were low. In neonates, a single nebulized dose of CMS (120,000 IU) resulted in high local concentrations for at least 12 hours and low systemic concentrations of colistin. Twice daily nebulization might be more appropriate.
Collapse
|
24
|
Polat M, Kara SS, Tapısız A, Tezer H, Kalkan G, Dolgun A. Treatment of Ventilator-Associated Pneumonia Using Intravenous Colistin Alone or in Combination with Inhaled Colistin in Critically Ill Children. Paediatr Drugs 2015; 17:323-30. [PMID: 25939411 DOI: 10.1007/s40272-015-0133-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The objective of this study was to compare the safety and efficacy of inhaled plus intravenous (IV) colistin with that of IV colistin alone in critically ill children with ventilator-associated pneumonia (VAP) due to colistin-only susceptible (COS) Gram-negative bacteria (GNB). STUDY DESIGN AND PATIENTS This retrospective cohort study included critically ill children aged 1 month to 18 years with culture-documented monomicrobial VAP due to COS GNB. RESULTS Fifty patients were included, and 32 patients received IV colistin alone, whereas 18 patients received inhaled plus IV colistin. No between-cohort differences were observed in clinical (p = 0.49) and microbiological outcomes (p = 0.68), or VAP-related mortality (p = 0.99). Although the bacterial eradication rates did not differ in either treatment group, the median time to bacterial eradication (TBE) was significantly shorter in the inhaled plus IV colistin group than in the IV colistin group. The additional use of inhaled colistin was the only independent factor associated with TBE, and it shortened the median TBE by 3 days. Only one patient in the IV colistin group developed reversible nephrotoxicity. Mild bronchoconstriction was observed in three patients at the time of administration of the first doses of inhaled colistin, which did not require discontinuation of treatment. CONCLUSIONS The present study has demonstrated that the addition of inhaled colistin to IV colistin led to a shorter TBE in critically ill children with VAP due to COS GNB. However, it did not lead to a significant difference in the clinical and microbiological outcomes of VAP.
Collapse
Affiliation(s)
- Meltem Polat
- Department of Paediatric Infectious Diseases, Gazi University School of Medicine, Ankara, Turkey,
| | | | | | | | | | | |
Collapse
|
25
|
Shahbazi F, Dashti-Khavidaki S. Colistin: efficacy and safety in different populations. Expert Rev Clin Pharmacol 2015; 8:423-48. [DOI: 10.1586/17512433.2015.1053390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Loo CY, Lee WH, Young PM, Cavaliere R, Whitchurch CB, Rohanizadeh R. Implications and emerging control strategies for ventilator-associated infections. Expert Rev Anti Infect Ther 2015; 13:379-93. [DOI: 10.1586/14787210.2015.1007045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Liu Q, Li W, Feng Y, Tao C. Efficacy and safety of polymyxins for the treatment of Acinectobacter baumannii infection: a systematic review and meta-analysis. PLoS One 2014; 9:e98091. [PMID: 24911658 PMCID: PMC4049575 DOI: 10.1371/journal.pone.0098091] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/28/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Multi-drug resistance among Acinetobacter baumannii increases the need for polymyxins. We conducted a meta-analysis aimed to assess the efficacy and safety of polymyxins for the treatment of Acinetobacter baumannii infection. METHODS We searched PUBMED, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), CNKI, Chinese Biomedical Literature Database up to November 1, 2013, to identify published studies, and we searched clinical trial registries to identify completed unpublished studies. Randomized controlled trials and cohort studies were considered for inclusion. Data were extracted on clinical response, microbiological response, mortality, length of stay and adverse events. RESULTS 12 controlled studies, comparing 677 patients, were included. Although clinical (odds ratio 1.421, 95% confidence interval 0.722-2.797) and microbiological (OR 1.416, 95% CI 0.369-5.425) response rates favored the polymyxins group, these differences were not significant. Treatment with polymyxins vs. controls did not affect hospital mortality (OR 0.506, 95% CI 0.101-2.536), lengths of hospital stay (standard mean difference -0.221, 95% CI 0.899-0.458) or nephrotoxicity (OR 1.192, 95% CI 0.436-3.261). The combination of polymyxins with other antibiotics achieved similar clinical response rates to its monotherapy regimen (OR 0.601, 95% CI 0.320-1.130). CONCLUSIONS Our results suggest that polymyxins may be as safe and as efficacious as standard antibiotics for the treatment of A. baumannii infection. There is no strong evidence that combination regimen of polymyxins is superior to monotherapy regimen.
Collapse
Affiliation(s)
- Qianqian Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenzhang Li
- Department of Cardiology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Yulin Feng
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- * E-mail: (YLF); (CMT)
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- * E-mail: (YLF); (CMT)
| |
Collapse
|