1
|
Zhao T, Huang X, Chen W, Gao H, Feng Z, Tan C, Sun J, Ma X, Yan W, Sheng W, Huang G. Clinical implications of respiratory ciliary dysfunction in heterotaxy patients with congenital heart disease: elevated risk of postoperative airway complications. Front Cardiovasc Med 2024; 10:1333277. [PMID: 38292451 PMCID: PMC10825948 DOI: 10.3389/fcvm.2023.1333277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Objective Cardiac surgery in Congenital Heart Disease-Heterotaxy (CHD-HTX) patients often leads to increased postoperative airway complications. Abnormal respiratory ciliary function, resembling primary ciliary dyskinesia, has been observed. We expanded the sample size by retrospectively reviewing Ciliary Dysfunction (CD) in CHD-HTX patients to verify the increased risk of post-surgical respiratory complications. Methods We conducted a retrospective review of 69 CHD-HTX patients undergoing cardiac surgery, assessing abnormal respiratory function using nasal nitric oxide (nNO) levels and nasal ciliary motion observed in video microscopy. Data collected included demographics, surgical details, postoperative complications, length of stay, ICU hours, salvage procedures, intubation duration, and mortality. Results The CD and no-CD cohorts exhibited notable similarities in risk adjustment in Congenital Heart Surgery-1 (RACHS-1) risk categories, age at the time of surgery, and the duration of follow-up evaluations. We observed a trend toward an increased length of post-operative stay in the CD group (15.0 vs. 14.0; P = 0.0017). CHD-HTX patients with CD showed significantly higher rates of respiratory complications (70% vs. 44.4%; P = 0.008). There were no notable variances observed in postoperative hospitalization duration, mechanical ventilation period, or surgical mortality. Conclusion Our findings suggest that CHD-HTX patients with CD may face an elevated risk of respiratory complications. These results offer guidance for perioperative management and serve as a reference for further pathological studies.
Collapse
Affiliation(s)
- Tingting Zhao
- Children's Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Xianghui Huang
- Fujian Provincial Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital Affiliated to Children's Hospital of Fudan University, Shanghai, Xiamen, China
| | - Weicheng Chen
- Children's Hospital Affiliated to Fudan University, Shanghai, China
| | - Han Gao
- Children's Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Zhiyu Feng
- Children's Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Chaozhong Tan
- Children's Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Jingwei Sun
- Bengbu First People's Hospital Affiliated to Bengbu Medical University, Hefei, Anhui, China
| | - Xiaojing Ma
- Children's Hospital Affiliated to Fudan University, Shanghai, China
| | - Weili Yan
- Children's Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Shanghai, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Sheng
- Children's Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Shanghai, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Guoying Huang
- Children's Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Shanghai, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
2
|
Popler J, Vece TJ, Liptzin DR, Gower WA. Pediatric pulmonology 2021 year in review: Rare and diffuse lung disease. Pediatr Pulmonol 2023; 58:374-381. [PMID: 36426677 DOI: 10.1002/ppul.26227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022]
Abstract
The field of rare and diffuse pediatric lung disease is experiencing rapid progress as diagnostic and therapeutic options continue to expand. In this annual review, we discuss manuscripts published in Pediatric Pulmonology in 2021 in (1) children's interstitial and diffuse lung disease, (2) congenital airway and lung malformations, and (3) noncystic fibrosis bronchiectasis including primary ciliary dyskinesia. These include case reports, descriptive cohorts, trials of therapies, animal model studies, and review articles. The results are put into the context of other literature in the field. Each furthers the field in important ways, while also highlighting the continued need for further studies.
Collapse
Affiliation(s)
- Jonathan Popler
- Children's Physician Group-Pulmonology, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Timothy J Vece
- Division of Pediatric Pulmonology and Program for Rare and Interstitial Lung Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Deborah R Liptzin
- School of Public and Community Health, University of Montana, Missoula, Montana, USA.,Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - William A Gower
- Division of Pediatric Pulmonology and Program for Rare and Interstitial Lung Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
High Nasal Nitric Oxide, Cilia Analyses and Genotypes in a Retrospective Cohort of Children with Primary Ciliary Dyskinesia. Ann Am Thorac Soc 2022; 19:1704-1712. [PMID: 35622418 DOI: 10.1513/annalsats.202110-1175oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE While children with primary ciliary dyskinesia (PCD) typically have low nasal nitric oxide (nNO), some children with indisputable PCD may have unexplained high nNO levels. OBJECTIVES To look for relationships between nNO measures and genetic findings (and cilia motility or ultrastructure when available) in PCD children with a known genotype. METHODS We studied retrospectively 73 PCD children (median (range) age 9.5 (2.1 to 18.2) years). nNO was the mean value of a plateau reached while velum was closed (nNO-VC, threshold 77 nL.min-1), or calculated as the average of 5 peaks obtained during tidal breathing (nNO-TB, threshold 40 nL.min-1). Cilia beat was classified either as motile (including dyskinetic pattern) or immotile depending on whether motility was present or absent in all cilia, or as a mixture of motile and immotile cilia. Genotypes were classified as: pathogenic mutations in a gene known to be associated with high nNO (mild genotype); bi-allelic truncating mutations in other genes (severe mutations); putative hypomorphic pathogenic mutation (missense, single amino-acid deletion or moderate splicing mutations) in at least one allele thought to be possibly associated with a residual production of a functional protein. RESULTS nNO was above the discriminant threshold in 16/73 (21.9%) children (11 nNO-VC and 5 nNO-TB). High nNO was less frequent in children with severe mutations (2/42) than in those with mild genotypes (7/10) or at least one hypomorphic mutation (7/21)(P < 0.0001). Median [IQR] nNO-VC values (n=60) were significantly different in the three genotypic groups: severe mutations 18 [10;26] nL.min-1 (n=36), possible residual functional protein production (putative hypomorphic mutations) 23 [16;68] nL.min-1 (n=17), and mild genotypes 139 [57;216] nL.min-1 (n=7); P=0.0002. The higher the cilia motility the higher the nNO-VC (16 [10;23], 23 [17;56], and 78 [45;93] nL.min-1 in patients with respectively immotile, dyskinetic motile/immotile, and dyskinetic motile cilia; P<0.0001), while nNO values were scattered across different ultrastructure defects (P = 0.07). CONCLUSIONS In PCD children, high nNO values were linked not only to specific genes and but also to potentially hypomorphic mutations in other genes (with possible functional protein production). nNO values increased with the proportion of motile cilia.
Collapse
|
4
|
Beydon N. Nasal nitric oxide measurement variability to establish a standard for reliable results. ERJ Open Res 2022; 8:00028-2022. [PMID: 35769413 PMCID: PMC9234436 DOI: 10.1183/23120541.00028-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Nasal nitric oxide (nNO) measurement is a first-line test used to increase the post-measurement probability of primary ciliary dyskinesia (PCD) in subjects with symptoms consistent with this diagnosis [1]. The accuracy of nNO measurement is essential since it will orientate the work-up towards tests that are usually highly specialised and sometimes invasive. Accuracy of biological measurements relies on the technical and on the biological variability. While the accuracy of NO analysers is known better for chemiluminescence devices (e.g. <1 ppb with 1% linearity from 0.1 to 5000 ppb for CLD 88 (Eco Medics, Duernten, Switzerland)) than for widely used electrochemical devices (e.g. ±5 ppb for values <50 ppb and 10% for values >50 ppb for Niox Vero (Circassia, Oxford, UK)) [2], little is known on the biological variability of nNO measurements, except for increased nNO output variability in adults with rhinitis compared with healthy subjects and the positive effect of training on the level of nNO taken during expiration against a resistance (nNO-ER) in children [3, 4]. A repeatability of 10% for NO measurements obtained with the velum closed in the same or both nostrils is relevant, while measurements taken during tidal breathing should aim for a repeatability of 20% and 30%, respectivelyhttps://bit.ly/3sMnug6
Collapse
Affiliation(s)
- Nicole Beydon
- APHP Sorbonne Université, Unité Fonctionnelle de Physiologie-Explorations Fonctionnelles Respiratoires, hôpital Armand-Trousseau, Paris, France.,Sorbonne Université INSERM U934, Centre de Recherche Saint Antoine, Paris, France
| |
Collapse
|
5
|
Beydon N, Ferkol T, Harris AL, Colas M, Davis SD, Haarman E, Hogg C, Kilbride E, Kouis P, Kuehni CE, Latzin P, Marangu D, Marthin J, Nielsen KG, Robinson P, Rumman N, Rutter M, Walker W, Lucas JS. An international survey on nasal nitric oxide measurement practices for the diagnosis of primary ciliary dyskinesia. ERJ Open Res 2022; 8:00708-2021. [PMID: 35386825 PMCID: PMC8977594 DOI: 10.1183/23120541.00708-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/14/2022] [Indexed: 11/05/2022] Open
Abstract
Nasal nitric oxide (nNO) measurements are routinely used in the assessment of patients suspected to have primary ciliary dyskinesia (PCD), but recommendations for performing such measurements have not focused on children and do not include all current practices. To guide the development of a European Respiratory Society-supported technical standard for nNO measurements in children, an international online survey was conducted to better understand current practices for measuring nNO among providers involved in PCD diagnostics.Seventy-eight professionals responded, representing 65 centres across 18 countries, mainly located in Europe and North America. Nearly all centres measured nNO in children and more than half of them performed measurements before 5-years of age. The test was often postponed in children with signs of acute airway infection. In Europe, the electrochemical technique was more frequently used than chemiluminescence. A similar proportion of centres performed measurements during exhalation against a resistance (49/65) or during tidal breathing (50/65) with 15 centres using only exhalation against a resistance and 15 centres using only tidal breathing. The cut-off values used to discriminate PCD was consistent across centres using chemiluminescence analyzers and these centres reported results as an output (nL.min−1). However, cut-off values were highly variable across centres using electrochemical devices, and nNO concentrations were typically reported as ppb.This survey represents the first to determine real-world use of nNO measurements worldwide and revealed remarkable variability in methodology, equipment, and interpretation. These findings will be useful to standardise methods and training.
Collapse
|
6
|
Beydon N, Lucas JS. Letter to the Editor on "Feasibility of nasal NO screening in healthy newborns". Pediatr Pulmonol 2022; 57:768-769. [PMID: 35040285 DOI: 10.1002/ppul.25784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/04/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Nicole Beydon
- AP-HP.Sorbonne Université, Unité d'Exploration Fonctionnelle Respiratoire, Hôpital Armand-Trousseau, and Sorbonne Université, INSERM U938, Paris, France
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University of Southampton, Southampton, UK.,Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
7
|
Buechel F, Usemann J, Aline A, Salfeld P, Moeller A, Jung A. Feasibility of nasal NO screening in healthy newborns. Pediatr Pulmonol 2022; 57:231-238. [PMID: 34570949 PMCID: PMC9292553 DOI: 10.1002/ppul.25702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Nasal nitric oxide (nNO) measurement is recommended as a first line screening test for primary ciliary dyskinesia (PCD). While reliable velum- and non-velum-closure techniques exist for preschool children and older individuals, no data are available for neonates. AIMS To determine feasibility of nNO screening and nNO concentration in healthy newborns in the first week of life. METHODS Nasal NO was analyzed in tidal breathing during natural sleep using a CLD-88 sp NO analyzer (chemoluminescence sensor) and a NIOX MINO (electrochemical sensor). Test success and nNO concentration were determined and compared between the two devices. RESULTS Nasal NO was measured in 62 healthy neonates within the first week of life. Feasibility of nNO measurement was 100% for at least one nostril and 85.5% for both nostrils using the chemoluminescence device, but significantly lower with the electrochemical device (85.5% and 53.2%; p < .001). Median nNO concentration was 38 ppb (interquartile range, 27-55; range, 9-100) with the ECOMEDICS device and 23 (15-33, 8-59) with the NIOX MINO (p < .001), with a trend towards higher values for older subjects. None of the subjects exceeded nNO levels of 100 ppb. CONCLUSION Measurement of nNO using a chemoluminescence device is highly feasible in newborns during natural sleep. However, nNO levels are considerably lower compared to the published data for older individuals and in the range of a PCD reference group of infants between 4 and 8 weeks of age, potentially resulting in a great overlap with subjects with PCD in this age group. Therefore, screening for PCD using nasal NO might not be useful in the first week of life. Upon clinical suspicion, other diagnostic tests such as high-speed video analysis of the cilia should be applied.
Collapse
Affiliation(s)
- Flurina Buechel
- Division of Respiratory Medicine & Children's Research CentreUniversity Children's Hospital Zurich
| | - Jakob Usemann
- Division of Respiratory Medicine & Children's Research CentreUniversity Children's Hospital Zurich
- University Children's Hospital BaselBaselSwitzerland
| | - A. Aline
- Division of Respiratory Medicine & Children's Research CentreUniversity Children's Hospital Zurich
| | - Peter Salfeld
- Kantonsspital MuensterlingenMünsterlingenSwitzerland
| | - Alexander Moeller
- Division of Respiratory Medicine & Children's Research CentreUniversity Children's Hospital Zurich
| | - Andreas Jung
- Division of Respiratory Medicine & Children's Research CentreUniversity Children's Hospital Zurich
| |
Collapse
|
8
|
Exhaled and nasal NO measurement: NO in your breath doesn't imply a negative attitude! Nitric Oxide 2021; 117:34-39. [PMID: 34582941 DOI: 10.1016/j.niox.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022]
Abstract
Measurement of exhaled nitric oxide (NO) and nasal nitric oxide commenced in the 1990s shortly after the scientific world learned about the endogenous production of NO and its multiple roles in physiologic and pathologic processes. Exhaled NO is an established approved clinical test in asthma that can cast light on eosinophilic airway inflammation and the response to anti-inflammatory medications e.g., inhaled corticosteroids. Nasal NO which is extremely low in primary ciliary dyskinesia is an established screening test for this condition. This review is a high-level practical guide for those wishing to use exhaled and nasal NO for research and clinical application.
Collapse
|
9
|
Beydon N, Tamalet A, Escudier E, Legendre M, Thouvenin G. Breath-holding and tidal breathing nasal NO to screen children for Primary Ciliary Dyskinesia. Pediatr Pulmonol 2021; 56:2242-2249. [PMID: 33860637 DOI: 10.1002/ppul.25432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/10/2022]
Abstract
Nasal nitric oxide (nNO) measurement is recommended to screen for Primary Ciliary Dyskinesia (PCD) in subjects with suggestive history and symptoms. Clinical use of alternative methods (i.e., breath-hold [BH], tidal breathing [TB]) in children unable to perform the gold standard slow Exhalation against a Resistance (ER) method has not been sufficiently evaluated. We extracted retrospectively (2013-2019) 454 files (374 subjects) containing nNO results. Median [IQR] age at inclusion was 7.0 [4.7-11.0] years, 105 (28.1%) children were younger than 5 years. ER or BH methods were more frequently mastered by children older than 5 years compared to younger children (69.4% and 52.7% vs. 21% and 5.6%, respectively; p < .0001), the latter succeeding only in TB measurement in 77.4% of cases. In 130 files with both ER and BH measurements (nNO-ER and nNO-BH), nNO-BH was 102 [96.2; 108.3]% that of nNO-ER. In 175 files including nNO-ER and nNO-TB measurements, nNO-TB was 64.4 [IQR: 53.7; 80.4]% that of nNO-ER with an excellent correlation between nNO values (r = .94 [95% CI 0.91; 0.95]; p < .0001) and discordance in the interpretation of nNO results in 16 (10.2%) cases. Final PCD diagnosis was similar in patients included before or after 5 years of age (confirmed 16 (15.2%) and 48 (17.8%); excluded 81 (77.1%) and 192 (71.4%), respectively; p = .32). In conclusion, reliable nNO-BH and nNO-ER results are interchangeable. Children tested with ER or with TB method have similar final PCD diagnosis. Alternative methods to measure nNO might be studied further for use in clinical practice.
Collapse
Affiliation(s)
- Nicole Beydon
- APHP, Unité Fonctionnelle de Physiologie-Explorations Fonctionnelles Respiratoires (EFR), Hôpital Armand-Trousseau, Paris, France.,INSERM U934, Centre de Recherche Saint Antoine, Paris, France
| | - Aline Tamalet
- AP-HP, Centre de Référence des Maladies Respiratoires Rares, Service de pneumologie pédiatrique, Hôpital Armand-Trousseau, Paris, France
| | - Estelle Escudier
- AP-HP Département de Génétique médicale, Sorbonne Université, Inserm UMR_S933 Maladies génétiques d'expression pédiatrique, Hôpital Armand Trousseau, Paris, France
| | - Marie Legendre
- AP-HP Département de Génétique médicale, Sorbonne Université, Inserm UMR_S933 Maladies génétiques d'expression pédiatrique, Hôpital Armand Trousseau, Paris, France
| | - Guillaume Thouvenin
- INSERM U934, Centre de Recherche Saint Antoine, Paris, France.,AP-HP, Centre de Référence des Maladies Respiratoires Rares, Service de pneumologie pédiatrique, Hôpital Armand-Trousseau, Paris, France
| |
Collapse
|
10
|
Nasal Nitric Oxide Measurement in Primary Ciliary Dyskinesia. A Technical Paper on Standardized Testing Protocols. Ann Am Thorac Soc 2021; 17:e1-e12. [PMID: 31770003 DOI: 10.1513/annalsats.201904-347ot] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nasal nitric oxide concentrations are extremely low in primary ciliary dyskinesia (PCD), and measurement of this nasal gas is recommended as a PCD diagnostic test in cooperative patients aged 5 years and older. However, nasal nitric oxide measurements must be performed with chemiluminescence analyzers using a standardized protocol to ensure proper results, because nasal nitric oxide values can be influenced by various internal and external factors. Repeat nasal nitric oxide testing on separate visits is required to ensure that low diagnostic values are persistent and consistent with PCD. This technical paper presents the standard operating procedures for nasal nitric oxide measurement used by the PCD Foundation Clinical and Research Centers Network at various specialty centers across North America. Adherence to this document ensures reliable nasal nitric oxide testing and high diagnostic accuracy when employed in a population with appropriate clinical phenotypes for PCD.
Collapse
|
11
|
Guo Z, Chen W, Wang L, Qian L. Clinical and Genetic Spectrum of Children with Primary Ciliary Dyskinesia in China. J Pediatr 2020; 225:157-165.e5. [PMID: 32502479 DOI: 10.1016/j.jpeds.2020.05.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To report detailed knowledge about the clinical manifestations, ciliary phenotypes, genetic spectrum as well as phenotype/genotype correlation in primary ciliary dyskinesia (PCD) in Chinese children. STUDY DESIGN We recruited 50 Chinese children with PCD. Extensive clinical assessments, nasal nitric oxide, high-speed video analysis, transmission electron microscopy, and genetic testing were performed to characterize the phenotypes and genotypes of these patients. RESULTS Common clinical features included chronic wet cough (85.4%), laterality defects (70.0%), and neonatal respiratory distress (55.8%). A high prevalence of congenital abnormalities (30.2%, 13/43), observed in patients who underwent comprehensive examination for comorbidities, included thoracic deformity (11.6%, 5/43), congenital heart disease (9.3%, 4/43), and sensorineural deafness (2.3%, 1/43). For 24 children age >6 years, the mean predicted values of forced expiratory volume in 1 second were 87.2%. Bronchiectasis evident on high-resolution computed tomography was reported in 38.1% of patients (16/42). Biallelic mutations (81 total; 57 novel) were identified in 13 genes: DNAAF3, DNAAF1, DNAH5, DNAH11, CCDC39, CCDC40, CCDC114, CCDC103, HYDIN, CCNO, DNAI1, OFD1, and SPAG1. Overall, ciliary ultrastructural and beat pattern correlated well with the genotype. However, variable phenotypes were also observed in CCDC39 and DNAH5 mutant cilia. CONCLUSIONS This large PCD cohort in China broadens the clinical, ciliary phenotypes, and genetic characteristics of children with PCD. Our findings are roughly consistent with previous studies besides some peculiarities such as high prevalence of associated abnormalities.
Collapse
Affiliation(s)
- Zhuoyao Guo
- Respirology Department, Children's Hospital of Fudan University, Shanghai, P.R. China
| | - Weicheng Chen
- Cardiothoracic Surgery Department, Children's Hospital of Fudan University, Shanghai, China
| | - Libo Wang
- Respirology Department, Children's Hospital of Fudan University, Shanghai, P.R. China
| | - Liling Qian
- Respirology Department, Children's Hospital of Fudan University, Shanghai, P.R. China.
| |
Collapse
|
12
|
Galiniak S, Biesiadecki M, Aebisher D, Rachel M. Nasal nitric oxide in upper airways in children with asthma and allergic rhinitis. Adv Med Sci 2020; 65:127-133. [PMID: 31927424 DOI: 10.1016/j.advms.2019.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/09/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE The aim of this study is to compare levels of nasal nitric oxide (nNO) in pediatric patients with respiratory diseases. MATERIALS AND METHODS nNO was measured by an electrochemical analyzer in 179 patients aged 7-15 with asthma, allergic rhinitis or with asthma and allergic rhinitis and in healthy children recruited from a local allergology clinic. Correlations between nNO levels and patient clinical parameters were assessed. RESULTS nNO was significantly higher in patients with allergic rhinitis (2316.3 ± 442.33 ppb, p < 0.001) as well as with asthma and allergic rhinitis (2399.9 ± 446.73 ppb, p < 0.001) compared to asthmatic and healthy children (1066.4 ± 416.75; 836.2 ± 333.47 ppb, respectively). A receiver operating characteristic curve analysis revealed that a cut-off value of 1545 ppb nNO and 1459 ppb nNO has sensitivity of 100% and specificity of 100% in distinguishing allergic rhinitis and combined asthma and allergic rhinitis from healthy subjects. A positive correlation between nNO and age and height was determined only in groups of healthy controls. We found no association between nNO level and clinical parameters including percent of eosinophils and total IgE. CONCLUSION Levels of nNO are currently measured by different analyzers and with different methods, so assessment of nNO is in need of standardization improvement to become a more reliable tool. However, because it is cheap, painless and fast, it may be helpful in combination with recognition of clinical symptoms and typical diagnostic methods, especially in estimation of inflammation.
Collapse
Affiliation(s)
| | | | - David Aebisher
- Faculty of Medicine, Rzeszów University, Rzeszów, Poland
| | - Marta Rachel
- Faculty of Medicine, Rzeszów University, Rzeszów, Poland; Allergology Outpatient Department, Provincial Hospital No 2, Rzeszow, Poland
| |
Collapse
|
13
|
Wallmeier J, Frank D, Shoemark A, Nöthe-Menchen T, Cindric S, Olbrich H, Loges NT, Aprea I, Dougherty GW, Pennekamp P, Kaiser T, Mitchison HM, Hogg C, Carr SB, Zariwala MA, Ferkol T, Leigh MW, Davis SD, Atkinson J, Dutcher SK, Knowles MR, Thiele H, Altmüller J, Krenz H, Wöste M, Brentrup A, Ahrens F, Vogelberg C, Morris-Rosendahl DJ, Omran H. De Novo Mutations in FOXJ1 Result in a Motile Ciliopathy with Hydrocephalus and Randomization of Left/Right Body Asymmetry. Am J Hum Genet 2019; 105:1030-1039. [PMID: 31630787 PMCID: PMC6849114 DOI: 10.1016/j.ajhg.2019.09.022] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022] Open
Abstract
Hydrocephalus is one of the most prevalent form of developmental central nervous system (CNS) malformations. Cerebrospinal fluid (CSF) flow depends on both heartbeat and body movement. Furthermore, it has been shown that CSF flow within and across brain ventricles depends on cilia motility of the ependymal cells lining the brain ventricles, which play a crucial role to maintain patency of the narrow sites of CSF passage during brain formation in mice. Using whole-exome and whole-genome sequencing, we identified an autosomal-dominant cause of a distinct motile ciliopathy related to defective ciliogenesis of the ependymal cilia in six individuals. Heterozygous de novo mutations in FOXJ1, which encodes a well-known member of the forkhead transcription factors important for ciliogenesis of motile cilia, cause a motile ciliopathy that is characterized by hydrocephalus internus, chronic destructive airway disease, and randomization of left/right body asymmetry. Mutant respiratory epithelial cells are unable to generate a fluid flow and exhibit a reduced number of cilia per cell, as documented by high-speed video microscopy (HVMA), transmission electron microscopy (TEM), and immunofluorescence analysis (IF). TEM and IF demonstrate mislocalized basal bodies. In line with this finding, the focal adhesion protein PTK2 displays aberrant localization in the cytoplasm of the mutant respiratory epithelial cells.
Collapse
Affiliation(s)
- Julia Wallmeier
- Department of General Pediatrics, University Children’s Hospital Muenster, 48149 Muenster, Germany
| | - Diana Frank
- Department of General Pediatrics, University Children’s Hospital Muenster, 48149 Muenster, Germany
| | - Amelia Shoemark
- Molecular & Clinical Medicine, University of Dundee, Dundee DD1 4HN, UK,Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, London SW3 6NP, UK
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Children’s Hospital Muenster, 48149 Muenster, Germany
| | - Sandra Cindric
- Department of General Pediatrics, University Children’s Hospital Muenster, 48149 Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Children’s Hospital Muenster, 48149 Muenster, Germany
| | - Niki T. Loges
- Department of General Pediatrics, University Children’s Hospital Muenster, 48149 Muenster, Germany
| | - Isabella Aprea
- Department of General Pediatrics, University Children’s Hospital Muenster, 48149 Muenster, Germany
| | - Gerard W. Dougherty
- Department of General Pediatrics, University Children’s Hospital Muenster, 48149 Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children’s Hospital Muenster, 48149 Muenster, Germany
| | - Thomas Kaiser
- Department of General Pediatrics, University Children’s Hospital Muenster, 48149 Muenster, Germany
| | - Hannah M. Mitchison
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Claire Hogg
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, London SW3 6NP, UK
| | - Siobhán B. Carr
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, London SW3 6NP, UK
| | - Maimoona A. Zariwala
- Department of Pathology and Laboratory Medicine, Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas Ferkol
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Margaret W. Leigh
- Department of Pediatrics, Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie D. Davis
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey Atkinson
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Susan K. Dutcher
- McDonnell Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Michael R. Knowles
- Department of Medicine, Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Holger Thiele
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Henrike Krenz
- Institute of Medical Informatics, University of Muenster, 48149 Muenster, Germany
| | - Marius Wöste
- Institute of Medical Informatics, University of Muenster, 48149 Muenster, Germany
| | - Angela Brentrup
- Department of Neurosurgery, University Hospital Muenster, 48149 Muenster, Germany
| | - Frank Ahrens
- Children’s Hospital “Altona,” 22763 Hamburg, Germany
| | - Christian Vogelberg
- Paediatric Department, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
| | - Deborah J. Morris-Rosendahl
- Clinical Genetics and Genomics, Royal Brompton and Harefield NHS Foundation Trust, SW3 6NP London, UK,National Heart and Lung Institute, Imperial College London, SW3 6LY London, UK
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany.
| |
Collapse
|
14
|
Ferraro VA, Zanconato S, Baraldi E, Carraro S. Nitric Oxide and Biological Mediators in Pediatric Chronic Rhinosinusitis and Asthma. J Clin Med 2019; 8:jcm8111783. [PMID: 31731479 PMCID: PMC6912805 DOI: 10.3390/jcm8111783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In the context of the so-called unified airway theory, chronic rhinosinusitis (CRS) and asthma may coexist. The inflammation underlying these conditions can be studied through the aid of biomarkers. Main body: We described the main biological mediators that have been studied in pediatric CRS and asthma, and, according to the available literature, we reported their potential role in the diagnosis and management of these conditions. As for CRS, we discussed the studies that investigated nasal nitric oxide (nNO), pendrin, and periostin. As for asthma, we discussed the role of fractional exhaled nitric oxide (feNO), the role of periostin, and that of biological mediators measured in exhaled breath condensate (EBC) and exhaled air (volatile organic compounds, VOCs). CONCLUSION Among non-invasive biomarkers, nNO seems the most informative in CRS and feNO in asthma. Other biological mediators seem promising, but further studies are needed before they can be applied in clinical practice.
Collapse
|
15
|
Shapiro AJ, Davis SD, Polineni D, Manion M, Rosenfeld M, Dell SD, Chilvers MA, Ferkol TW, Zariwala MA, Sagel SD, Josephson M, Morgan L, Yilmaz O, Olivier KN, Milla C, Pittman JE, Daniels MLA, Jones MH, Janahi IA, Ware SM, Daniel SJ, Cooper ML, Nogee LM, Anton B, Eastvold T, Ehrne L, Guadagno E, Knowles MR, Leigh MW, Lavergne V. Diagnosis of Primary Ciliary Dyskinesia. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2019; 197:e24-e39. [PMID: 29905515 DOI: 10.1164/rccm.201805-0819st] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND This document presents the American Thoracic Society clinical practice guidelines for the diagnosis of primary ciliary dyskinesia (PCD). TARGET AUDIENCE Clinicians investigating adult and pediatric patients for possible PCD. METHODS Systematic reviews and, when appropriate, meta-analyses were conducted to summarize all available evidence pertinent to our clinical questions. Evidence was assessed using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach for diagnosis and discussed by a multidisciplinary panel with expertise in PCD. Predetermined conflict-of-interest management strategies were applied, and recommendations were formulated, written, and graded exclusively by the nonconflicted panelists. Three conflicted individuals were also prohibited from writing, editing, or providing feedback on the relevant sections of the manuscript. RESULTS After considering diagnostic test accuracy, confidence in the estimates for each diagnostic test, relative importance of test results studied, desirable and undesirable direct consequences of each diagnostic test, downstream consequences of each diagnostic test result, patient values and preferences, costs, feasibility, acceptability, and implications for health equity, the panel made recommendations for or against the use of specific diagnostic tests as compared with using the current reference standard (transmission electron microscopy and/or genetic testing) for the diagnosis of PCD. CONCLUSIONS The panel formulated and provided a rationale for the direction as well as for the strength of each recommendation to establish the diagnosis of PCD.
Collapse
|
16
|
Leigh MW, Horani A, Kinghorn B, O'Connor MG, Zariwala MA, Knowles MR. Primary Ciliary Dyskinesia (PCD): A genetic disorder of motile cilia. ACTA ACUST UNITED AC 2019; 4:51-75. [PMID: 31572664 DOI: 10.3233/trd-190036] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Margaret W Leigh
- Department of Pediatrics and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - BreAnna Kinghorn
- Seattle Children's Hospital, Department of Pediatrics, University of Washington School of Medicine; Seattle, Washington
| | - Michael G O'Connor
- Department of Pediatrics, Vanderbilt University Medical Center and Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Maimoona A Zariwala
- Department of Pathology/Lab Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Michael R Knowles
- Department of Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
17
|
Guo Z, Chen W, Huang J, Wang L, Qian L. Clinical and genetic analysis of patients with primary ciliary dyskinesia caused by novel DNAAF3 mutations. J Hum Genet 2019; 64:711-719. [PMID: 31186518 DOI: 10.1038/s10038-019-0609-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 12/30/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a rare phenotypically and genetically heterogeneous disorder resulting from abnormal cilia ultrastructure and function. Few studies have reported the phenotype and genetic characteristics of PCD caused by mutations in DNAAF3. In this study, four PCD patients with DNAAF3 mutations underwent extensive clinical assessments, cilia ultrastructural and motion evaluations. All patients presented with situs inversus totalis, neonatal respiratory distress, and sinusitis; however, they did not have recurrent infections of the lower airways. The nasal nitric oxide level of these patients was markedly reduced. The respiratory cilia were found to be uniformly immotile, with their dynein arms defects. A total of 7 (5 novel) variants in DNAAF3 were identified and cosegregated in their families by Trio-based whole-exome sequencing. As the first report on DNAAF3 mutations in PCD patients in China, our study not only contributes to a deeper appreciation of the phenotypic characteristics of patients with DNAAF3 mutations but also expands the spectrum of DNAAF3 mutations and may contribute to the genetic diagnosis of and counseling for PCD.
Collapse
Affiliation(s)
- Zhuoyao Guo
- Respirology Department, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, PR China
| | - Weicheng Chen
- Cardiothoracic Surgery Department, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, PR China
| | - Jianfeng Huang
- Respirology Department, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, PR China
| | - Libo Wang
- Respirology Department, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, PR China.
| | - Liling Qian
- Respirology Department, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, PR China.
| |
Collapse
|
18
|
Holgersen MG, Marthin JK, Nielsen KG. Proof of Concept: Very Rapid Tidal Breathing Nasal Nitric Oxide Sampling Discriminates Primary Ciliary Dyskinesia from Healthy Subjects. Lung 2019; 197:209-216. [PMID: 30762092 DOI: 10.1007/s00408-019-00202-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/06/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Nasal nitric oxide (nNO) is extremely low in individuals with primary ciliary dyskinesia (PCD) and is recommended as part of early workup. We investigated whether tidal breathing sampling for a few seconds was as discriminative between PCD and healthy controls (HC) as conventional tidal breathing sampling (cTB-nNO) for 20-30 s. METHODS We performed very rapid sampling of tidal breathing (vrTB-nNO) for 2, 4 and 6 s, respectively. Vacuum sampling with applied negative pressure (vrTB-nNOvac; negative pressure was applied by pinching the sampling tube) for < 2 s resulted in enhanced suction of nasal air during measurement. Feasibility, success rate, discriminatory capacity, repeatability and agreement were assessed for all four sampling modalities. RESULTS We included 13 patients with PCD, median (IQR) age of 21.8 (12.2-27.7) years and 17 HC, 25.3 (14.5-33.4) years. Measurements were highly feasible (96.7% success rate). Measured NO values with vrTB-nNO modalities differed significantly from TB-nNO measurements (HC: p < 0.001, PCD: p < 0.05). All modalities showed excellent discrimination. The vacuum method gave remarkably high values of nNO in both groups (1865 vs. 86 ppb), but retained excellent discrimination. vrTB-nNO4sec, vrTB-nNO6sec and vrTB-nNOvac showed identical specificity to cTB-nNO (all: 1.0, 95% CI 0.77-1.0). CONCLUSION vrTB-nNO sampling requires only a few seconds of probe-in-nose time, is feasible, and provides excellent discrimination between PCD and HC. Rapid TB-nNO sampling needs standardisation and further investigations in infants, young children and patients referred for PCD workup.
Collapse
Affiliation(s)
- Mathias G Holgersen
- Danish PCD & chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - June K Marthin
- Danish PCD & chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kim G Nielsen
- Danish PCD & chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
19
|
Lack of GAS2L2 Causes PCD by Impairing Cilia Orientation and Mucociliary Clearance. Am J Hum Genet 2019; 104:229-245. [PMID: 30665704 DOI: 10.1016/j.ajhg.2018.12.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/14/2018] [Indexed: 01/01/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetic disorder in which impaired ciliary function leads to chronic airway disease. Exome sequencing of a PCD subject identified an apparent homozygous frameshift variant, c.887_890delTAAG (p.Val296Glyfs∗13), in exon 5; this frameshift introduces a stop codon in amino acid 308 of the growth arrest-specific protein 2-like 2 (GAS2L2). Further genetic screening of unrelated PCD subjects identified a second proband with a compound heterozygous variant carrying the identical frameshift variant and a large deletion (c.867_∗343+1207del; p.?) starting in exon 5. Both individuals had clinical features of PCD but normal ciliary axoneme structure. In this research, using human nasal cells, mouse models, and X.laevis embryos, we show that GAS2L2 is abundant at the apical surface of ciliated cells, where it localizes with basal bodies, basal feet, rootlets, and actin filaments. Cultured GAS2L2-deficient nasal epithelial cells from one of the affected individuals showed defects in ciliary orientation and had an asynchronous and hyperkinetic (GAS2L2-deficient = 19.8 Hz versus control = 15.8 Hz) ciliary-beat pattern. These results were recapitulated in Gas2l2-/- mouse tracheal epithelial cell (mTEC) cultures and in X. laevis embryos treated with Gas2l2 morpholinos. In mice, the absence of Gas2l2 caused neonatal death, and the conditional deletion of Gas2l2 impaired mucociliary clearance (MCC) and led to mucus accumulation. These results show that a pathogenic variant in GAS2L2 causes a genetic defect in ciliary orientation and impairs MCC and results in PCD.
Collapse
|
20
|
Ren L, Zhang W, Zhang Y, Zhang L. Nasal Nitric Oxide Is Correlated With Nasal Patency and Nasal Symptoms. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:367-380. [PMID: 30912326 PMCID: PMC6439193 DOI: 10.4168/aair.2019.11.3.367] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Nitric oxide (NO) is an important endogenous mediator in both upper and lower respiratory systems. The purpose of the present study was to extract nasal NO (nNO) normal range of Chinese adults and the internal influencing factors. The differences in nNO levels between rhinitis and asymptomatic atopic subjects, and the diagnostic value of nNO in allergic rhinitis (AR) were further investigated. METHODS One thousand adults were recruited from the general public. Participants were divided into different subgroups according to the questionnaires and skin prick tests. In all of these subjects, nNO, fractional exhaled NO (FeNO) and nasal airflow resistance were measured. The normal ranges of nNO and FeNO, the differences between subgroups, and the correlations between NO (nNO and FeNO) and other internal factors were analyzed. RESULTS Both nNO and FeNO levels were significantly higher in AR patients than in healthy and asymptomatic atopic subjects. The nNO levels were significantly lower in asymptomatic atopic subjects than in normal adults. FeNO levels were significantly higher in non-AR patients than in the healthy and asymptomatic atopic adults. The cutoff value of nNO for the diagnosis of AR was 117.5 ppb (sensitivity, 50.9%; specificity, 63.9%). The nNO levels were correlated with FeNO levels, total nasal resistance measured at 75Pa, nasal volume within 0-7 cm from the anterior nares (V0-7cm) and nasal symptom visual analogue scale (VAS) scores, while the FeNO levels were correlated with age, height, weight, body surface area, nasal volume of V0-7cm and the nasal symptom VAS score. CONCLUSIONS The nNO level can be significantly different between healthy and AR patients and may be significantly correlated with nasal symptoms and nasal patency of rhinitis patients. However, the clinical value of nNO is still in the exploration stage.
Collapse
Affiliation(s)
- Lei Ren
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yuan Zhang
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Luo Zhang
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Loges NT, Antony D, Maver A, Deardorff MA, Güleç EY, Gezdirici A, Nöthe-Menchen T, Höben IM, Jelten L, Frank D, Werner C, Tebbe J, Wu K, Goldmuntz E, Čuturilo G, Krock B, Ritter A, Hjeij R, Bakey Z, Pennekamp P, Dworniczak B, Brunner H, Peterlin B, Tanidir C, Olbrich H, Omran H, Schmidts M. Recessive DNAH9 Loss-of-Function Mutations Cause Laterality Defects and Subtle Respiratory Ciliary-Beating Defects. Am J Hum Genet 2018; 103:995-1008. [PMID: 30471718 PMCID: PMC6288205 DOI: 10.1016/j.ajhg.2018.10.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/23/2018] [Indexed: 11/29/2022] Open
Abstract
Dysfunction of motile monocilia, altering the leftward flow at the embryonic node essential for determination of left-right body asymmetry, is a major cause of laterality defects. Laterality defects are also often associated with reduced mucociliary clearance caused by defective multiple motile cilia of the airway and are responsible for destructive airway disease. Outer dynein arms (ODAs) are essential for ciliary beat generation, and human respiratory cilia contain different ODA heavy chains (HCs): the panaxonemally distributed γ-HC DNAH5, proximally located β-HC DNAH11 (defining ODA type 1), and the distally localized β-HC DNAH9 (defining ODA type 2). Here we report loss-of-function mutations in DNAH9 in five independent families causing situs abnormalities associated with subtle respiratory ciliary dysfunction. Consistent with the observed subtle respiratory phenotype, high-speed video microscopy demonstrates distally impaired ciliary bending in DNAH9 mutant respiratory cilia. DNAH9-deficient cilia also lack other ODA components such as DNAH5, DNAI1, and DNAI2 from the distal axonemal compartment, demonstrating an essential role of DNAH9 for distal axonemal assembly of ODAs type 2. Yeast two-hybrid and co-immunoprecipitation analyses indicate interaction of DNAH9 with the ODA components DNAH5 and DNAI2 as well as the ODA-docking complex component CCDC114. We further show that during ciliogenesis of respiratory cilia, first proximally located DNAH11 and then distally located DNAH9 is assembled in the axoneme. We propose that the β-HC paralogs DNAH9 and DNAH11 achieved specific functional roles for the distinct axonemal compartments during evolution with human DNAH9 function matching that of ancient β-HCs such as that of the unicellular Chlamydomonas reinhardtii.
Collapse
|
22
|
Contarini M, Shoemark A, Rademacher J, Finch S, Gramegna A, Gaffuri M, Roncoroni L, Seia M, Ringshausen FC, Welte T, Blasi F, Aliberti S, Chalmers JD. Why, when and how to investigate primary ciliary dyskinesia in adult patients with bronchiectasis. Multidiscip Respir Med 2018; 13:26. [PMID: 30151188 PMCID: PMC6101078 DOI: 10.1186/s40248-018-0143-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Bronchiectasis represents the final pathway of several infectious, genetic, immunologic or allergic disorders. Accurate and prompt identification of the underlying cause is a key recommendation of several international guidelines, in order to tailor treatment appropriately. Primary ciliary dyskinesia (PCD) is a genetic cause of bronchiectasis in which failure of motile cilia leads to poor mucociliary clearance. Due to poor ciliary function in other organs, individuals can suffer from chronic rhinosinusitis, otitis media and infertility. This paper explores the current literature describing why, when and how to investigate PCD in adult patients with bronchiectasis. We describe the main PCD diagnostic tests and compare the two international PCD diagnostic guidelines. The expensive multi-test diagnostic approach requiring a high level of expertise and specialist equipment, make the multifaceted PCD diagnostic pathway complex. Therefore, the risk of late or missed diagnosis is high and has clinical and research implications. Defining the number of patients with bronchiectasis due to PCD is complex. To date, few studies outlining the aetiology of adult patients with bronchiectasis conduct screening tests for PCD, but they do differ in their diagnostic approach. Comparison of these studies reveals an estimated PCD prevalence of 1-13% in adults with bronchiectasis and describe patients as younger than their counterparts with moderate impairment of lung function and higher rates of chronic infection with Pseudomonas aeruginosa. Diagnosing PCD has clinical, socioeconomic and psychological implications, which affect patients' life, including the possibility to have a specific and multidisciplinary team approach in a PCD referral centre, as well as a genetic and fertility counselling and special legal aspects in some countries. To date no specific treatments for PCD have been approved, standardized diagnostic protocols for PCD and recent diagnostic guidelines will be helpful to accurately define a population on which planning RCT studies to evaluate efficacy, safety and accuracy of PCD specific treatments.
Collapse
Affiliation(s)
- Martina Contarini
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Jessica Rademacher
- Department of Respiratory Medicine, Hannover Medical School and German Center for Lung Research (DZL), Hannover, Germany
| | - Simon Finch
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Andrea Gramegna
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Michele Gaffuri
- Department of Otolaryngology and Head and Neck Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luca Roncoroni
- Department of Otolaryngology and Head and Neck Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Manuela Seia
- Medical Genetics Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Felix C. Ringshausen
- Department of Respiratory Medicine, Hannover Medical School and German Center for Lung Research (DZL), Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School and German Center for Lung Research (DZL), Hannover, Germany
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefano Aliberti
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
23
|
Marthin JK, Philipsen MC, Rosthoj S, Nielsen KG. Infant nasal nitric oxide over time: natural evolution and impact of respiratory tract infection. Eur Respir J 2018; 51:13993003.02503-2017. [PMID: 29748307 DOI: 10.1183/13993003.02503-2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/26/2018] [Indexed: 11/05/2022]
Abstract
Nasal nitric oxide (NO) discriminates between patients with primary ciliary dyskinesia (PCD) and healthy individuals. We report feasibility of measurement and natural evolution of nasal NO and upon the impact of respiratory tract infection (RTI) on nasal NO in healthy infants (HI), followed from birth until age 2 years, with comparison to nasal NO in infant PCD.Tidal-breathing nasal NO measurements were performed at scheduled visits at 2 weeks old and at 4, 8, 12, 18 and 24 months old, with extra visits during RTIs. Historical nasal NO measurements for infant PCD were included for comparison.Altogether, 224 nasal NO measurements were performed in 44 enrolled infants. Median newborn nasal NO was 46 ppb (interquartile range (IQR) 29-69 ppb), increasing at a rate of 5.4% per month up to 283 ppb (IQR 203-389 ppb) at the age of 2 years. RTIs in 27 out of 44 infants temporarily suppressed nasal NO by 79%. Values for nasal NO in seven infants with PCD ranged from 6-80 ppb. The success rate to accept nasal NO sampling was 223 out of 224 measurements (99.6%).Tidal-breathing nasal NO measurement was indeed feasible in infancy and nasal NO in HI increased significantly up to 2 years of age, in opposition to nasal NO in PCD cases, which stayed low past 2 years of age. RTI episodes caused marked, temporary reductions in nasal NO in HI indistinguishable from that in infant PCD, suggesting that nasal NO should be measured in RTI-free intervals.
Collapse
Affiliation(s)
- June K Marthin
- Danish PCD & chILD Centre, CF Centre Copenhagen, Pediatric Pulmonary Service, Dept of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maria C Philipsen
- Danish PCD & chILD Centre, CF Centre Copenhagen, Pediatric Pulmonary Service, Dept of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Susanne Rosthoj
- Faculty of Health Sciences, Institute of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Kim G Nielsen
- Danish PCD & chILD Centre, CF Centre Copenhagen, Pediatric Pulmonary Service, Dept of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
24
|
Lucas JS, Walker WT. NO way! Nasal nitric oxide measurement in infants. Eur Respir J 2018; 51:51/6/1800958. [DOI: 10.1183/13993003.00958-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
|
25
|
Accuracy of Nasal Nitric Oxide Measurement as a Diagnostic Test for Primary Ciliary Dyskinesia. A Systematic Review and Meta-analysis. Ann Am Thorac Soc 2018; 14:1184-1196. [PMID: 28481653 DOI: 10.1513/annalsats.201701-062sr] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Primary ciliary dyskinesia (PCD) is a rare disorder causing chronic otosinopulmonary disease, generally diagnosed through evaluation of respiratory ciliary ultrastructure and/or genetic testing. Nasal nitric oxide (nNO) measurement is used as a PCD screening test because patients with PCD have low nNO levels, but its value as a diagnostic test remains unknown. OBJECTIVES To perform a systematic review to assess the utility of nNO measurement (index test) as a diagnostic tool compared with the reference standard of electron microscopy (EM) evaluation of ciliary defects and/or detection of biallelic mutations in PCD genes. DATA SOURCES Ten databases were searched for reference sources from database inception through July 29, 2016. DATA EXTRACTION Study inclusion was limited to publications with rigorous nNO index testing, reference standard diagnostic testing with EM and/or genetics, and calculable diagnostic accuracy information for cooperative patients (generally >5 yr old) with high suspicion of PCD. SYNTHESIS Meta-analysis provided a summary estimate for sensitivity and specificity and a hierarchical summary receiver operating characteristic curve. The Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess study quality, and Grading of Recommendations Assessment, Development, and Evaluation was used to assess the certainty of evidence. In 12 study populations (1,344 patients comprising 514 with PCD and 830 without PCD), using a reference standard of EM alone or EM and/or genetic testing, summary sensitivity was 97.6% (92.7-99.2) and specificity was 96.0% (87.9-98.7), with a positive likelihood ratio of 24.3 (7.6-76.9), a negative likelihood ratio of 0.03 (0.01-0.08), and a diagnostic odds ratio of 956.8 (141.2-6481.5) for nNO measurements. After studies using EM alone as the reference standard were excluded, the seven studies using an extended reference standard of EM and/or genetic testing showed a summary sensitivity of nNO measurements of 96.3% (88.7-98.9) and specificity of 96.4% (85.1-99.2), with a positive likelihood ratio of 26.5 (5.9-119.1), a negative likelihood ratio of 0.04 (0.01-0.12), and a diagnostic odds ratio of 699.3 (67.4-7256.0). Certainty of the evidence was graded as moderate. CONCLUSIONS nNO is a sensitive and specific test for PCD in cooperative patients (generally >5 yr old) with high clinical suspicion for this disease. With a moderate level of evidence, this meta-analysis confirms that nNO testing using velum closure maneuvers has diagnostic accuracy similar to EM and/or genetic testing for PCD when cystic fibrosis is ruled out. Thus, low nNO values accompanied by an appropriate clinical phenotype could be used as a diagnostic PCD test, though EM and/or genetics will continue to provide confirmatory information.
Collapse
|
26
|
Simpson K, Brodlie M. How to use nasal nitric oxide in a child with suspected primary ciliary dyskinesia. Arch Dis Child Educ Pract Ed 2017; 102:314-318. [PMID: 28495666 DOI: 10.1136/archdischild-2016-311468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2017] [Indexed: 11/04/2022]
Abstract
Measuring nasal nitric oxide (nNO) is increasingly used as part of testing for primary ciliary dyskinesia (PCD). The diagnosis of PCD is often delayed until after bronchiectasis is established and auditory damage has occurred. It is important that all paediatricians are aware of clinical features that are suggestive of PCD that should prompt diagnostic testing. nNO levels are recognised to be low in people with PCD and results generated by static chemiluminescence analysers using velum closure technique in older children have good sensitivity and specificity. However, to conclusively rule PCD in or out, further tests of ciliary function are required and assessment of cilia ultrastructure, immunohistochemistry studies and genotyping may also be indicated. These tests are more complex, invasive and expensive than nNO. nNO is less well studied in younger children where tidal breathing measurements are required. Portable nitric oxide analysers are also increasingly used in practice. This paper discusses when to consider PCD as a possible diagnosis in a child along with the indications, physiological and technical background and clinical utility of nNO as a test for PCD in children.
Collapse
Affiliation(s)
- Kim Simpson
- Department of Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Malcolm Brodlie
- Department of Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
27
|
Airway ciliary dysfunction: Association with adverse postoperative outcomes in nonheterotaxy congenital heart disease patients. J Thorac Cardiovasc Surg 2017; 155:755-763.e7. [PMID: 29056267 DOI: 10.1016/j.jtcvs.2017.09.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/30/2017] [Accepted: 09/10/2017] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Heterotaxy (HTX) congenital heart disease (CHD) patients with ciliary dysfunction (CD) have been shown to have increased postoperative respiratory morbidity. We hypothesized that non-HTX CHD infants with CD also will have increased postoperative morbidity, particularly respiratory complications. METHODS Sixty-three infants with non-HTX CHD undergoing cardiac surgery were enrolled. Tests commonly used to assess for CD, nasal nitric oxide (nNO) measurements and nasal epithelial ciliary motion (CM) assessment, were obtained. Baseline characteristics and postoperative outcomes were collected and analyzed. RESULTS Non-HTX CHD infants exhibited a high prevalence of abnormal CM (32%) and low nNO (39%). This finding was not correlated with demographics or surgical complexity. Infants with abnormal CM had increased odds of requiring noninvasive positive pressure ventilation (odds ratio [OR], 6.5; 95% confidence interval [CI], 1.5-29.4; P = .016) and respiratory medication use (OR, 4.4; 95% CI, 1.5-13.3; P = .01). In contrast, infants with low nNO showed evidence of abnormal pre- and postoperative systolic function (40% vs 4%; P = .004, and 34% vs 13%; P = .056, respectively) and had greater odds of acquiring infections (OR, 4.9; 95% CI, 1.4-17; P = .014). CONCLUSIONS Non-HTX CHD infants with abnormal CM showed increased postoperative morbidity associated with poor respiratory outcomes. In contrast, low nNO correlated with reduced hemodynamic function. These findings suggest screening for abnormal CM may allow perioperative interventions to reduce pulmonary morbidities. Whether low nNO may prognosticate poor hemodynamic function warrants further investigation.
Collapse
|
28
|
Damseh N, Quercia N, Rumman N, Dell SD, Kim RH. Primary ciliary dyskinesia: mechanisms and management. APPLICATION OF CLINICAL GENETICS 2017; 10:67-74. [PMID: 29033599 PMCID: PMC5614735 DOI: 10.2147/tacg.s127129] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Primary ciliary dyskinesia is a genetically heterogeneous disorder of motile cilia that is predominantly inherited in an autosomal-recessive fashion. It is associated with abnormal ciliary structure and/or function leading to chronic upper and lower respiratory tract infections, male infertility, and situs inversus. The estimated prevalence of primary ciliary dyskinesia is approximately one in 10,000-40,000 live births. Diagnosis depends on clinical presentation, nasal nitric oxide, high-speed video-microscopy analysis, transmission electron microscopy, genetic testing, and immunofluorescence. Here, we review its clinical features, diagnostic methods, molecular basis, and available therapies.
Collapse
Affiliation(s)
| | - Nada Quercia
- Division of Clinical and Metabolic Genetics.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nisreen Rumman
- Pediatric Department, Makassed Hospital, Jerusalem, Palestine
| | - Sharon D Dell
- Division of Respiratory Medicine, Department of Pediatrics, Child Health Evaluative Sciences, Hospital for Sick Children
| | - Raymond H Kim
- Fred A Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Menou A, Babeanu D, Paruit HN, Ordureau A, Guillard S, Chambellan A. Normal values of offline exhaled and nasal nitric oxide in healthy children and teens using chemiluminescence. J Breath Res 2017; 11:036008. [PMID: 28579561 DOI: 10.1088/1752-7163/aa76ef] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nitric oxide (NO) can be used to detect respiratory or ciliary diseases. Fractional exhaled nitric oxide (FeNO) measurement can reflect ongoing eosinophilic airway inflammation and has a diagnostic utility as a test for asthma screening and follow-up while nasal nitric oxide (nNO) is a valuable screening tool for the diagnosis of primary ciliary dyskinesia. The possibility of collecting airway gas samples in an offline manner offers the advantage to extend these measures and improve the screening and management of these diseases, but normal values from healthy children and teens remain sparse. METHODS Samples were consecutively collected using the offline method for eNO and nNO chemiluminescence measurement in 88 and 31 healthy children and teens, respectively. Offline eNO measurement was also performed in 30 consecutive children with naïve asthma and/or respiratory allergy. RESULTS The normal offline eNO value was determined by the following regression equation -8.206 + 0.176 × height. The upper limit of the norm for the offline eNO value was 27.4 parts per billion (ppb). A separate analysis was performed in children, pre-teens and teens, for which offline eNO was 13.6 ± 4.7 ppb, 16.3 ± 13.7 ppb and 20.0 ± 7.2 ppb, respectively. The optimal cut-off value of the offline eNO to predict asthma or respiratory allergies was 23.3 ppb, with a sensitivity and specificity of 77% and 91%, respectively. Mean offline nNO was determined at 660 ppb with the lower limit of the norm at 197 ppb. CONCLUSION The use of offline eNO and nNO normal values should favour the widespread screening of respiratory diseases in children of school age in their usual environment.
Collapse
Affiliation(s)
- A Menou
- Faculte des Sciences, Université de Nantes, Nantes, France
| | | | | | | | | | | |
Collapse
|
30
|
Lucas JS, Barbato A, Collins SA, Goutaki M, Behan L, Caudri D, Dell S, Eber E, Escudier E, Hirst RA, Hogg C, Jorissen M, Latzin P, Legendre M, Leigh MW, Midulla F, Nielsen KG, Omran H, Papon JF, Pohunek P, Redfern B, Rigau D, Rindlisbacher B, Santamaria F, Shoemark A, Snijders D, Tonia T, Titieni A, Walker WT, Werner C, Bush A, Kuehni CE. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J 2017; 49:13993003.01090-2016. [PMID: 27836958 DOI: 10.1183/13993003.01090-2016] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/25/2016] [Indexed: 01/30/2023]
Abstract
The diagnosis of primary ciliary dyskinesia is often confirmed with standard, albeit complex and expensive, tests. In many cases, however, the diagnosis remains difficult despite the array of sophisticated diagnostic tests. There is no "gold standard" reference test. Hence, a Task Force supported by the European Respiratory Society has developed this guideline to provide evidence-based recommendations on diagnostic testing, especially in light of new developments in such tests, and the need for robust diagnoses of patients who might enter randomised controlled trials of treatments. The guideline is based on pre-defined questions relevant for clinical care, a systematic review of the literature, and assessment of the evidence using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach. It focuses on clinical presentation, nasal nitric oxide, analysis of ciliary beat frequency and pattern by high-speed video-microscopy analysis, transmission electron microscopy, genotyping and immunofluorescence. It then used a modified Delphi survey to develop an algorithm for the use of diagnostic tests to definitively confirm and exclude the diagnosis of primary ciliary dyskinesia; and to provide advice when the diagnosis was not conclusive. Finally, this guideline proposes a set of quality criteria for future research on the validity of diagnostic methods for primary ciliary dyskinesia.
Collapse
Affiliation(s)
- Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK .,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - Angelo Barbato
- Primary Ciliary Dyskinesia Centre, Dept of Woman and Child Health (SDB), University of Padova, Padova, Italy
| | - Samuel A Collins
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - Myrofora Goutaki
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,Dept of Paediatrics, Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Laura Behan
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - Daan Caudri
- Telethon Kids Institute, The University of Western Australia, Subiaco, Australia.,Dept of Pediatrics/Respiratory Medicine, Erasmus University, Rotterdam, The Netherlands
| | - Sharon Dell
- Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Dept of Pediatrics and Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Ernst Eber
- Division of Paediatric Pulmonology and Allergology, Dept of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Estelle Escudier
- Service de Génétique et Embryologie Médicales, Centre de Référence des Maladies Respiratoires Rares, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Inserm UMR_S933, Sorbonne Universités (UPMC Univ Paris 06), Paris, France
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester Royal Infirmary, Leicester, UK
| | - Claire Hogg
- Depts of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Mark Jorissen
- ENT Dept, University Hospitals Leuven, Leuven, Belgium
| | - Philipp Latzin
- Dept of Paediatrics, Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Marie Legendre
- Service de Génétique et Embryologie Médicales, Centre de Référence des Maladies Respiratoires Rares, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Inserm UMR_S933, Sorbonne Universités (UPMC Univ Paris 06), Paris, France
| | - Margaret W Leigh
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fabio Midulla
- Paediatric Dept, Sapienza University of Rome, Rome, Italy
| | - Kim G Nielsen
- Danish PCD & chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Dept of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Heymut Omran
- Dept of Pediatrics, University Hospital Muenster, Münster Germany
| | - Jean-Francois Papon
- AP-HP, Hôpital Kremlin-Bicetre, service d'ORL et de chirurgie cervico-faciale, Le Kremlin-Bicetre, France.,Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | - Petr Pohunek
- Paediatric Dept, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - David Rigau
- Iberoamerican Cochrane Center, Barcelona, Spain
| | | | - Francesca Santamaria
- Pediatric Pulmonology, Dept of Translational Medical Sciences, Federico II University, Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Amelia Shoemark
- Depts of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Deborah Snijders
- Primary Ciliary Dyskinesia Centre, Dept of Woman and Child Health (SDB), University of Padova, Padova, Italy
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Andrea Titieni
- Dept of Pediatrics, University Hospital Muenster, Münster Germany
| | - Woolf T Walker
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - Claudius Werner
- Dept of Pediatrics, University Hospital Muenster, Münster Germany
| | - Andrew Bush
- Depts of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Claudia E Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Lucas JS, Paff T, Goggin P, Haarman E. Diagnostic Methods in Primary Ciliary Dyskinesia. Paediatr Respir Rev 2016; 18:8-17. [PMID: 26362507 DOI: 10.1016/j.prrv.2015.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
Diagnosing primary ciliary dyskinesia is difficult. With no reference standard, a combination of tests is needed; most tests require expensive equipment and specialist scientists. We review the advances in diagnostic testing over the past hundred years, with emphasis on recent advances. We particularly focus on use of high-speed video analysis, transmission electron microscopy, nasal nitric oxide and genetic testing. We discuss the international efforts that are in place to advance the evidence base for diagnostic tests.
Collapse
Affiliation(s)
- Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Tamara Paff
- Department of Pediatric Pulmonology, VU University Medical Center, Amsterdam, the Netherlands; Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, the Netherlands
| | - Patricia Goggin
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Eric Haarman
- Department of Pediatric Pulmonology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Kouis P, Papatheodorou SI, Yiallouros PK. Diagnostic accuracy of nasal nitric oxide for establishing diagnosis of primary ciliary dyskinesia: a meta-analysis. BMC Pulm Med 2015; 15:153. [PMID: 26634346 PMCID: PMC4669667 DOI: 10.1186/s12890-015-0147-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To date, diagnosis of Primary Ciliary Dyskinesia (PCD) remains difficult and challenging. We systematically evaluated the diagnostic performance of nasal Nitric Oxide (nNO) measurement for the detection of PCD, using either velum-closure (VC) or non-velum-closure (non-VC) techniques. METHODS All major electronic databases were searched from inception until March 2015 using appropriate terms. The sensitivity and specificity of nNO measurement was calculated in PCD patients diagnosed by transmission electron microscopy, high speed video-microscopy or genetic testing. Summary receiver operating characteristic (HSROC) curves were drawn using the parameters of the fitted models. RESULTS Twelve studies provided data for 13 different populations, including nine case-control (n = 793) and four prospective cohorts (n = 392). The overall sensitivity of nNO measured by VC techniques was 0.95 (95 % CI 0.91-0.97), while specificity was 0.94 (95 % CI 0.88-0.97). The positive likelihood ratio (LR+) of the test was 15.8 (95 % CI 8.1-30.6), whereas the negative likelihood ratio (LR-) was 0.06 (95 % CI 0.04-0.09). For non-VC techniques, the overall sensitivity of nNO measurement was 0.93 (95 % CI 0.89-0.96) whereas specificity was 0.95 (95 % CI 0.82-0.99). The LR+ of the test was 18.5 (95 % CI 4.6-73.8) whereas the LR- was 0.07 (95 % CI 0.04-0.12). CONCLUSIONS Diagnostic accuracy of nNO measurement both with VC and non-VC maneuvers is high and can be effectively employed in the clinical setting to detect PCD even in young children, thus potentiating early diagnosis. Measurement of nNO merits to be part of a revised diagnostic algorithm with the most efficacious combination of tests to achieve PCD diagnosis.
Collapse
Affiliation(s)
- Panayiotis Kouis
- Cyprus International Institute for Environmental & Public Health in Association with Harvard School of Public Health, Cyprus University of Technology, 95 Irenes Street, 3041, Limassol, Cyprus.
| | - Stefania I Papatheodorou
- Cyprus International Institute for Environmental & Public Health in Association with Harvard School of Public Health, Cyprus University of Technology, 95 Irenes Street, 3041, Limassol, Cyprus.
| | - Panayiotis K Yiallouros
- Cyprus International Institute for Environmental & Public Health in Association with Harvard School of Public Health, Cyprus University of Technology, 95 Irenes Street, 3041, Limassol, Cyprus. .,Department of Pediatrics, Hospital "Archbishop Makarios III", Nicosia, Cyprus.
| |
Collapse
|
33
|
Establishing normative nasal nitric oxide values in infants. Respir Med 2015; 109:1126-30. [PMID: 26233707 DOI: 10.1016/j.rmed.2015.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/02/2015] [Accepted: 07/13/2015] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Primary ciliary dyskinesia (PCD), a disease of impaired respiratory cilia motility, is often difficult to diagnose. Recent studies show low nasal nitric oxide (nNO) is closely linked to PCD, allowing the use of nNO measurement for PCD assessments. Nasal NO cutoff values for PCD are stratified by age, given nNO levels normally increase with age. However, normative values for nNO have not been established for infants less than 1 year old. In this study, we aim to establish normative values for nNO in infants and determine their utility in guiding infant PCD assessment. METHODS AND RESULTS We obtained 42 nNO values from infants less than 1 year old without a history of PCD or recurrent sinopulmonary disease. Using regression analysis, we estimated the mean age-adjusted nNO values and established a 95% prediction interval (PI) for normal nNO. Using these findings, we were able to show 14 of 15 infant PCD patients had abnormally low nNO with values below the 95% PI. CONCLUSIONS In this study we determined a regression model that best fits normative nNO values for infants less than 1 year old. This model identified the majority of PCD infants as having abnormally low nNO. These findings suggest nNO measurement can help guide PCD assessment in infants, and perhaps other pulmonary diseases with a link to low nNO. With early assessments, earlier clinical intervention may be possible to slow disease progression and help reduce pulmonary morbidity.
Collapse
|