1
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
2
|
Genome-engineering technologies for modeling and treatment of cystic fibrosis. Adv Med Sci 2023; 68:111-120. [PMID: 36917892 DOI: 10.1016/j.advms.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by defects in the CF transmembrane conductance regulator (CFTR) protein. Due to the genetic nature of the disease, interventions in the genome can target any underlying alterations and potentially provide permanent disease resolution. The current development of gene-editing tools, such as designer nuclease technology capable of genome correction, holds great promise for both CF and other genetic diseases. In recent years, Cas9-based technologies have enabled the generation of genetically defined human stem cell and disease models based on induced pluripotent stem cells (iPSC). In this article, we outline the potential and possibilities of using CRISPR/Cas9-based gene-editing technology in CF modeling.
Collapse
|
3
|
Wong SL, Awatade NT, Astore MA, Allan KM, Carnell MJ, Slapetova I, Chen PC, Capraro A, Fawcett LK, Whan RM, Griffith R, Ooi CY, Kuyucak S, Jaffe A, Waters SA. Molecular dynamics and functional characterization of I37R-CFTR lasso mutation provide insights into channel gating activity. iScience 2022; 25:103710. [PMID: 35072004 PMCID: PMC8761696 DOI: 10.1016/j.isci.2021.103710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/27/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
Characterization of I37R, a mutation located in the lasso motif of the CFTR chloride channel, was conducted by theratyping several CFTR modulators from both potentiator and corrector classes. Intestinal current measurements in rectal biopsies, forskolin-induced swelling (FIS) in intestinal organoids, and short circuit current measurements in organoid-derived monolayers from an individual with I37R/F508del CFTR genotype demonstrated that the I37R-CFTR results in a residual function defect amenable to treatment with potentiators and type III, but not type I, correctors. Molecular dynamics of I37R using an extended model of the phosphorylated, ATP-bound human CFTR identified an altered lasso motif conformation which results in an unfavorable strengthening of the interactions between the lasso motif, the regulatory (R) domain, and the transmembrane domain 2 (TMD2). Structural and functional characterization of the I37R-CFTR mutation increases understanding of CFTR channel regulation and provides a potential pathway to expand drug access to CF patients with ultra-rare genotypes.
Collapse
Affiliation(s)
- Sharon L. Wong
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
| | - Nikhil T. Awatade
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
| | - Miro A. Astore
- School of Physics, University of Sydney, Sydney, Australia
| | - Katelin M. Allan
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
| | - Michael J. Carnell
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | - Iveta Slapetova
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | - Po-chia Chen
- School of Physics, University of Sydney, Sydney, Australia
| | - Alexander Capraro
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
| | - Laura K. Fawcett
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Randwick, Australia
| | - Renee M. Whan
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | | | - Chee Y. Ooi
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
- Department of Gastroenterology, Sydney Children's Hospital, Randwick, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Randwick, Australia
| | - Shafagh A. Waters
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Randwick, Australia
| |
Collapse
|
4
|
Last A, Maurer M, S. Mosig A, S. Gresnigt M, Hube B. In vitro infection models to study fungal-host interactions. FEMS Microbiol Rev 2021; 45:fuab005. [PMID: 33524102 PMCID: PMC8498566 DOI: 10.1093/femsre/fuab005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Fungal infections (mycoses) affect over a billion people per year. Approximately, two million of these infections are life-threatening, especially for patients with a compromised immune system. Fungi of the genera Aspergillus, Candida, Histoplasma and Cryptococcus are opportunistic pathogens that contribute to a substantial number of mycoses. To optimize the diagnosis and treatment of mycoses, we need to understand the complex fungal-host interplay during pathogenesis, the fungal attributes causing virulence and how the host resists infection via immunological defenses. In vitro models can be used to mimic fungal infections of various tissues and organs and the corresponding immune responses at near-physiological conditions. Furthermore, models can include fungal interactions with the host-microbiota to mimic the in vivo situation on skin and mucosal surfaces. This article reviews currently used in vitro models of fungal infections ranging from cell monolayers to microfluidic 3D organ-on-chip (OOC) platforms. We also discuss how OOC models can expand the toolbox for investigating interactions of fungi and their human hosts in the future.
Collapse
Affiliation(s)
- Antonia Last
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Michelle Maurer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Alexander S. Mosig
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 24, 07743, Jena, Germany
| |
Collapse
|
5
|
Woodall MNJ, Masonou T, Case K, Smith CM. Human models for COVID-19 research. J Physiol 2021; 599:4255-4267. [PMID: 34287894 PMCID: PMC8447334 DOI: 10.1113/jp281499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Currently, therapeutics for COVID-19 are limited. To overcome this, it is important that we use physiologically relevant models to reproduce the pathology of infection and evaluate the efficacy of antiviral drugs. Models of airway infection, including the use of a human infection challenge model or well-defined, disease relevant in vitro systems can help determine the key components that perpetuate the severity of the disease. Here, we briefly review the human models that are currently being used in COVID-19 research and drug development.
Collapse
Affiliation(s)
| | - Tereza Masonou
- GOS Institute of Child HealthUniversity College LondonLondonUK
| | | | - Claire M. Smith
- GOS Institute of Child HealthUniversity College LondonLondonUK
| |
Collapse
|
6
|
Goldsteen PA, Yoseif C, Dolga AM, Gosens R. Human pluripotent stem cells for the modelling and treatment of respiratory diseases. Eur Respir Rev 2021; 30:30/161/210042. [PMID: 34348980 PMCID: PMC9488746 DOI: 10.1183/16000617.0042-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
Respiratory diseases are among the leading causes of morbidity and mortality worldwide, representing a major unmet medical need. New chemical entities rarely make it into the clinic to treat respiratory diseases, which is partially due to a lack of adequate predictive disease models and the limited availability of human lung tissues to model respiratory disease. Human pluripotent stem cells (hPSCs) may help fill this gap by serving as a scalable human in vitro model. In addition, human in vitro models of rare genetic mutations can be generated using hPSCs. hPSC-derived epithelial cells and organoids have already shown great potential for the understanding of disease mechanisms, for finding new potential targets by using high-throughput screening platforms, and for personalised treatments. These potentials can also be applied to other hPSC-derived lung cell types in the future. In this review, we will discuss how hPSCs have brought, and may continue to bring, major changes to the field of respiratory diseases by understanding the molecular mechanisms of the pathology and by finding efficient therapeutics. Human pluripotent stem cells may help to develop animal-free, fully human in vitro models to advance our understanding of disease mechanisms, for finding new potential targets by using high-throughput screening platforms, and for personalised treatments.https://bit.ly/3cahaqz
Collapse
Affiliation(s)
- Pien A Goldsteen
- Dept of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands .,GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Christina Yoseif
- Dept of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Dept of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Dept of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Walton NI, Zhang X, Soltis AR, Starr J, Dalgard CL, Wilkerson MD, Conrad D, Pollard HB. Tensin 1 (TNS1) is a modifier gene for low body mass index (BMI) in homozygous [F508del]CFTR patients. Physiol Rep 2021; 9:e14886. [PMID: 34086412 PMCID: PMC8176904 DOI: 10.14814/phy2.14886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/02/2021] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis (CF) is a life‐limiting autosomal recessive genetic disease caused by variants in the CFTR gene, most commonly by the [F508del] variant. Although CF is a classical Mendelian disease, genetic variants in several modifier genes have been associated with variation of the clinical phenotype for pulmonary and gastrointestinal function and urogenital development. We hypothesized that whole genome sequencing of a well‐phenotyped CF populations might identify novel variants in known, or hitherto unknown, modifier genes. Whole genome sequencing was performed on the Illumina HiSeq X platform for 98 clinically diagnosed cystic fibrosis patient samples from the Adult CF Clinic at the University of California San Diego (UCSD). We compared protein‐coding, non‐silent variants genome wide between CFTR [F508del] homozygotes vs CFTR compound heterozygotes. Based on a single variant score test, we found 3 SNPs in common variants (MAF >5%) that occurred at significantly different rates between homozygous [F508del]CFTR and compound heterozygous [F508del]CFTR patients. The 3 SNPs were all located in one gene on chromosome 2: Tensin 1 (TNS1: rs3796028; rs2571445: and rs918949). We observed significantly lower BMIs in homozygous [F508del]CFTR patients who were also homozygous for Tensin 1 rs918949 (T/T) (p = 0.023) or rs2571445 (G/G) (p = 0.02) variants. The Tensin 1 gene is thus a potential modifier gene for low BMI in CF patients homozygous for the [F508del]CFTR variant.
Collapse
Affiliation(s)
- Nathan I Walton
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Xijun Zhang
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Anthony R Soltis
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Joshua Starr
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Clifton L Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Matthew D Wilkerson
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Douglas Conrad
- Department of Medicine, University of California, San Diego, CA, USA
| | - Harvey B Pollard
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
8
|
McCarron A, Parsons D, Donnelley M. Animal and Cell Culture Models for Cystic Fibrosis: Which Model Is Right for Your Application? THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:228-242. [PMID: 33232694 DOI: 10.1016/j.ajpath.2020.10.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Over the past 30 years, a range of cystic fibrosis (CF) animal models have been generated for research purposes. Different species, including mice, rats, ferrets, rabbits, pigs, sheep, zebrafish, and fruit flies, have all been used to model CF disease. While access to such a variety of animal models is a luxury for any research field, it also complicates the decision-making process when it comes to selecting the right model for an investigation. The purpose of this review is to provide a guide for selecting the most appropriate CF animal model for any given application. In this review, the characteristics and phenotypes of each animal model are described, along with a discussion of the key considerations that must be taken into account when choosing a suitable animal model. Available in vitro systems of CF are also described and can offer a useful alternative to using animal models. Finally, the future of CF animal model generation and its use in research are speculated upon.
Collapse
Affiliation(s)
- Alexandra McCarron
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia.
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Montefusco-Pereira CV, Carvalho-Wodarz CDS, Seeger J, Kloft C, Michelet R, Lehr CM. Decoding (patho-)physiology of the lung by advanced in vitro models for developing novel anti-infectives therapies. Drug Discov Today 2020; 26:148-163. [PMID: 33232842 DOI: 10.1016/j.drudis.2020.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/11/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Advanced lung cell culture models provide physiologically-relevant and complex data for mathematical models to exploit host-pathogen responses during anti-infective drug testing.
Collapse
Affiliation(s)
- Carlos Victor Montefusco-Pereira
- Department of Pharmacy, Saarland University, Saarbruecken, Germany; Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany
| | | | - Johanna Seeger
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbruecken, Germany; Department of Pharmacy, Saarland University, Saarbruecken, Germany
| |
Collapse
|
10
|
Gopal S, Rodrigues AL, Dordick JS. Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. Front Bioeng Biotechnol 2020; 8:692. [PMID: 32671050 PMCID: PMC7326781 DOI: 10.3389/fbioe.2020.00692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) cell culture methods have been widely used on a range of cell types, including stem cells to modulate precisely the cellular biophysical and biochemical microenvironment and control various cell signaling cues. As a result, more in vivo-like microenvironments are recapitulated, particularly through the formation of multicellular spheroids and organoids, which may yield more valid mechanisms of disease. Recently, genome-engineering tools such as CRISPR Cas9 have expanded the repertoire of techniques to control gene expression, which complements external signaling cues with intracellular control elements. As a result, the combination of CRISPR Cas9 and 3D cell culture methods enhance our understanding of the molecular mechanisms underpinning several disease phenotypes and may lead to developing new therapeutics that may advance more quickly and effectively into clinical candidates. In addition, using CRISPR Cas9 tools to rescue genes brings us one step closer to its use as a gene therapy tool for various degenerative diseases. Herein, we provide an overview of bridging of CRISPR Cas9 genome editing with 3D spheroid and organoid cell culture to better understand disease progression in both patient and non-patient derived cells, and we address potential remaining gaps that must be overcome to gain widespread use.
Collapse
Affiliation(s)
- Sneha Gopal
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - André Lopes Rodrigues
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
11
|
Yang Q, Soltis AR, Sukumar G, Zhang X, Caohuy H, Freedy J, Dalgard CL, Wilkerson MD, Pollard HB, Pollard BS. Gene therapy-emulating small molecule treatments in cystic fibrosis airway epithelial cells and patients. Respir Res 2019; 20:290. [PMID: 31864360 PMCID: PMC6925517 DOI: 10.1186/s12931-019-1214-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background Several small molecule corrector and potentiator drugs have recently been licensed for Cystic Fibrosis (CF) therapy. However, other aspects of the disease, especially inflammation, are less effectively treated by these drugs. We hypothesized that small molecule drugs could function either alone or as an adjuvant to licensed therapies to treat these aspects of the disease, perhaps emulating the effects of gene therapy in CF cells. The cardiac glycoside digitoxin, which has been shown to inhibit TNFα/NFκB signaling in CF lung epithelial cells, may serve as such a therapy. Methods IB3–1 CF lung epithelial cells were treated with different Vertex (VX) drugs, digitoxin, and various drug mixtures, and ELISA assays were used to assess suppression of baseline and TNFα-activated secretion of cytokines and chemokines. Transcriptional responses to these drugs were assessed by RNA-seq and compared with gene expression in AAV-[wildtype]CFTR-treated IB3–1 (S9) cells. We also compared in vitro gene expression signatures with in vivo data from biopsied nasal epithelial cells from digitoxin-treated CF patients. Results CF cells exposed to digitoxin exhibited significant suppression of both TNFα/NFκB signaling and downstream secretion of IL-8, IL-6 and GM-CSF, with or without co-treatment with VX drugs. No evidence of drug-drug interference was observed. RNA-seq analysis showed that gene therapy-treated CF lung cells induced changes in 3134 genes. Among these, 32.6% were altered by digitoxin treatment in the same direction. Shared functional gene ontology themes for genes suppressed by both digitoxin and gene therapy included inflammation (84 gene signature), and cell-cell interactions and fibrosis (49 gene signature), while genes elevated by both were enriched for epithelial differentiation (82 gene signature). A new analysis of mRNA data from digitoxin-treated CF patients showed consistent trends in expression for genes in these signatures. Conclusions Adjuvant gene therapy-emulating activities of digitoxin may contribute to enhancing the efficacy of currently licensed correctors and potentiators in CF patients.
Collapse
Affiliation(s)
- Q Yang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - A R Soltis
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - G Sukumar
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - X Zhang
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - H Caohuy
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - J Freedy
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - C L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA.,Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - M D Wilkerson
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA.,Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - H B Pollard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA. .,Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA.
| | - B S Pollard
- Silver Pharmaceuticals, Rockville, MD, 20854, USA.
| |
Collapse
|
12
|
Barcia Durán JG, Lis R, Rafii S. Haematopoietic stem cell reprogramming and the hope for a universal blood product. FEBS Lett 2019; 593:3253-3265. [PMID: 31725897 DOI: 10.1002/1873-3468.13681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Haematopoietic stem cells (HSCs) are the only adult stem cells with a demonstrated clinical use, even though a tractable method to maintain and expand human HSCs in vitro has not yet been found. Owing to the introduction of transplantation strategies for the treatment of haematological malignancies and, more recently, the promise of gene therapy, the need to improve the generation, manipulation and scalability of autologous or allogeneic HSCs has risen steeply over the past decade. In that context, reprogramming strategies based on the expression of exogenous transcription factors have emerged as a means to produce functional HSCs in vitro. These approaches largely stem from the assumption that key master transcription factors direct the expression of downstream target genes thereby triggering haematopoiesis. Both somatic and pluripotent cells have been used to this end, yielding variable results in terms of haematopoietic phenotype and functionality. Here, we present an overview of the haematopoietic reprogramming methods reported to date, provide the appropriate historical context and offer some critical insight about where the field stands at present.
Collapse
Affiliation(s)
- José Gabriel Barcia Durán
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Raphaël Lis
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA.,Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Li K, Yang X, Xue C, Zhao L, Zhang Y, Gao X. Biomimetic human lung-on-a-chip for modeling disease investigation. BIOMICROFLUIDICS 2019; 13:031501. [PMID: 31263514 PMCID: PMC6597342 DOI: 10.1063/1.5100070] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/13/2019] [Indexed: 05/11/2023]
Abstract
The lung is the primary respiratory organ of the human body and has a complicated and precise tissue structure. It comprises conductive airways formed by the trachea, bronchi and bronchioles, and many alveoli, the smallest functional units where gas-exchange occurs via the unique gas-liquid exchange interface known as the respiratory membrane. In vitro bionic simulation of the lung or its microenvironment, therefore, presents a great challenge, which requires the joint efforts of anatomy, physics, material science, cell biology, tissue engineering, and other disciplines. With the development of micromachining and miniaturization technology, the concept of a microfluidics-based organ-on-a-chip has received great attention. An organ-on-a-chip is a small cell-culture device that can accurately simulate tissue and organ functions in vitro and has the potential to replace animal models in evaluations of drug toxicity and efficacy. A lung-on-a-chip, as one of the first proposed and developed organs-on-a-chip, provides new strategies for designing a bionic lung cell microenvironment and for in vitro construction of lung disease models, and it is expected to promote the development of basic research and translational medicine in drug evaluation, toxicological detection, and disease model-building for the lung. This review summarizes current lungs-on-a-chip models based on the lung-related cellular microenvironment, including the latest advances described in studies of lung injury, inflammation, lung cancer, and pulmonary fibrosis. This model should see effective use in clinical medicine to promote the development of precision medicine and individualized diagnosis and treatment.
Collapse
Affiliation(s)
- Kaiyan Li
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xingyuan Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chang Xue
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Lijuan Zhao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | | | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
14
|
Li K, Yang X, Xue C, Zhao L, Zhang Y, Gao X. Biomimetic human lung-on-a-chip for modeling disease investigation. BIOMICROFLUIDICS 2019. [PMID: 31263514 DOI: 10.1063/1.5119052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The lung is the primary respiratory organ of the human body and has a complicated and precise tissue structure. It comprises conductive airways formed by the trachea, bronchi and bronchioles, and many alveoli, the smallest functional units where gas-exchange occurs via the unique gas-liquid exchange interface known as the respiratory membrane. In vitro bionic simulation of the lung or its microenvironment, therefore, presents a great challenge, which requires the joint efforts of anatomy, physics, material science, cell biology, tissue engineering, and other disciplines. With the development of micromachining and miniaturization technology, the concept of a microfluidics-based organ-on-a-chip has received great attention. An organ-on-a-chip is a small cell-culture device that can accurately simulate tissue and organ functions in vitro and has the potential to replace animal models in evaluations of drug toxicity and efficacy. A lung-on-a-chip, as one of the first proposed and developed organs-on-a-chip, provides new strategies for designing a bionic lung cell microenvironment and for in vitro construction of lung disease models, and it is expected to promote the development of basic research and translational medicine in drug evaluation, toxicological detection, and disease model-building for the lung. This review summarizes current lungs-on-a-chip models based on the lung-related cellular microenvironment, including the latest advances described in studies of lung injury, inflammation, lung cancer, and pulmonary fibrosis. This model should see effective use in clinical medicine to promote the development of precision medicine and individualized diagnosis and treatment.
Collapse
Affiliation(s)
- Kaiyan Li
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xingyuan Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chang Xue
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Lijuan Zhao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | | | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
15
|
Surendran H, Rajamoorthy M, Pal R. Differentiating Human Induced Pluripotent Stem Cells (iPSCs) Into Lung Epithelial Cells. ACTA ACUST UNITED AC 2019; 49:e86. [DOI: 10.1002/cpsc.86] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Harshini Surendran
- Eyestem Research, Centre for Cellular and Molecular Platforms (CCAMP), National Centre for Biological Sciences (NCBS) Campus Bengaluru India
| | - Mohanapriya Rajamoorthy
- The University of Trans‐Disciplinary Health Sciences and Technology Yelahanka Bengaluru India
| | - Rajarshi Pal
- Eyestem Research, Centre for Cellular and Molecular Platforms (CCAMP), National Centre for Biological Sciences (NCBS) Campus Bengaluru India
- The University of Trans‐Disciplinary Health Sciences and Technology Yelahanka Bengaluru India
| |
Collapse
|
16
|
Paolicelli G, Luca AD, Jose SS, Antonini M, Teloni I, Fric J, Zelante T. Using Lung Organoids to Investigate Epithelial Barrier Complexity and IL-17 Signaling During Respiratory Infection. Front Immunol 2019; 10:323. [PMID: 30873173 PMCID: PMC6403157 DOI: 10.3389/fimmu.2019.00323] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/07/2019] [Indexed: 01/23/2023] Open
Affiliation(s)
| | - Antonella De Luca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Shyam S Jose
- Center for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czechia
| | - Martina Antonini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Irene Teloni
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Jan Fric
- Center for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czechia
| | - Teresa Zelante
- Center for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
17
|
Pranke I, Golec A, Hinzpeter A, Edelman A, Sermet-Gaudelus I. Emerging Therapeutic Approaches for Cystic Fibrosis. From Gene Editing to Personalized Medicine. Front Pharmacol 2019; 10:121. [PMID: 30873022 PMCID: PMC6400831 DOI: 10.3389/fphar.2019.00121] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
An improved understanding of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein structure and the consequences of CFTR gene mutations have allowed the development of novel therapies targeting specific defects underlying CF. Some strategies are mutation specific and have already reached clinical development; some strategies include a read-through of the specific premature termination codons (read-through therapies, nonsense mediated decay pathway inhibitors for Class I mutations); correction of CFTR folding and trafficking to the apical plasma membrane (correctors for Class II mutations); and an increase in the function of CFTR channel (potentiators therapy for Class III mutations and any mutant with a residual function located at the membrane). Other therapies that are in preclinical development are not mutation specific and include gene therapy to edit the genome and stem cell therapy to repair the airway tissue. These strategies that are directed at the basic CF defects are now revolutionizing the treatment for patients and should positively impact their survival rates.
Collapse
Affiliation(s)
- Iwona Pranke
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Anita Golec
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Alexandre Hinzpeter
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Aleksander Edelman
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France.,Centre de Référence Maladie Rare, Mucoviscidose et Maladies de CFTR, Paris, France.,Faculté de Médecine, Université Paris Descartes, Paris, France
| |
Collapse
|
18
|
Awatade NT, Wong SL, Hewson CK, Fawcett LK, Kicic A, Jaffe A, Waters SA. Human Primary Epithelial Cell Models: Promising Tools in the Era of Cystic Fibrosis Personalized Medicine. Front Pharmacol 2018; 9:1429. [PMID: 30581387 PMCID: PMC6293199 DOI: 10.3389/fphar.2018.01429] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder where individual disease etiology and response to therapeutic intervention is impacted by CF transmembrane regulator (CFTR) mutations and other genetic modifiers. CFTR regulates multiple mechanisms in a diverse range of epithelial tissues. In this Review, we consolidate the latest updates in the development of primary epithelial cellular model systems relevant for CF. We discuss conventional two-dimensional (2-D) airway epithelial cell cultures, the backbone of in vitro cellular models to date, as well as improved expansion protocols to overcome finite supply of the cellular source. We highlight a range of strategies for establishment of three dimensional (3-D) airway and intestinal organoid models and evaluate the limitations and potential improvements in each system, focusing on their application in CF. The in vitro CFTR functional assays in patient-derived organoids allow for preclinical pharmacotherapy screening to identify responsive patients. It is likely that organoids will be an invaluable preclinical tool to unravel disease mechanisms, design novel treatments, and enable clinicians to provide personalized management for patients with CF.
Collapse
Affiliation(s)
- Nikhil T. Awatade
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Sharon L. Wong
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Chris K. Hewson
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Laura K. Fawcett
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Anthony Kicic
- Centre for Child Health Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Occupation and Environment, School of Public Health, Curtin University, Bentley, WA, Australia
- Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA, Australia
| | - Adam Jaffe
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Shafagh A. Waters
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|