1
|
Carter T, Valenzuela RK, Yerukala Sathipati S, Medina-Flores R. Gene signatures associated with prognosis and chemotherapy resistance in glioblastoma treated with temozolomide. Front Genet 2023; 14:1320789. [PMID: 38259614 PMCID: PMC10802164 DOI: 10.3389/fgene.2023.1320789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Glioblastoma (GBM) prognosis remains extremely poor despite standard treatment that includes temozolomide (TMZ) chemotherapy. To discover new GBM drug targets and biomarkers, genes signatures associated with survival and TMZ resistance in GBM patients treated with TMZ were identified. Methods: GBM cases in The Cancer Genome Atlas who received TMZ (n = 221) were stratified into subgroups that differed by median overall survival (mOS) using network-based stratification to cluster patients whose somatic mutations affected genes in similar modules of a gene interaction network. Gene signatures formed from differentially mutated genes in the subgroup with the longest mOS were used to confirm their association with survival and TMZ resistance in independent datasets. Somatic mutations in these genes also were assessed for an association with OS in an independent group of 37 GBM cases. Results: Among the four subgroups identified, subgroup four (n = 71 subjects) exhibited the longest mOS at 18.3 months (95% confidence interval: 16.2, 34.1; p = 0.0324). Subsets of the 86 genes that were differentially mutated in this subgroup formed 20-gene and 8-gene signatures that predicted OS in two independent datasets (Spearman's rho of 0.64 and 0.58 between actual and predicted OS; p < 0.001). Patients with mutations in five of the 86 genes had longer OS in a small, independent sample of 37 GBM cases, but this association did not reach statistical significance (p = 0.07). Thirty-one of the 86 genes formed signatures that distinguished TMZ-resistant GBM samples from controls in three independent datasets (area under the curve ≥ 0.75). The prognostic and TMZ-resistance signatures had eight genes in common (ANG, BACH1, CDKN2C, HMGA1, IFI16, PADI4, SDF4, and TP53INP1). The latter three genes have not been associated with GBM previously. Conclusion: PADI4, SDF4, and TP53INP1 are novel therapy and biomarker candidates for GBM. Further investigation of their oncologic functions may provide new insight into GBM treatment resistance mechanisms.
Collapse
Affiliation(s)
- Tonia Carter
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Robert K. Valenzuela
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | | | - Rafael Medina-Flores
- Department of Pathology (Neuropathology), Marshfield Clinic, Marshfield, WI, United States
| |
Collapse
|
2
|
Glass SE, Coffey RJ. Recent Advances in the Study of Extracellular Vesicles in Colorectal Cancer. Gastroenterology 2022; 163:1188-1197. [PMID: 35724732 PMCID: PMC9613516 DOI: 10.1053/j.gastro.2022.06.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022]
Abstract
There has been significant progress in the study of extracellular vesicles (EVs) since the 2017 American Gastroenterological Association-sponsored Freston Conference "Extracellular Vesicles: Biology, Translation and Clinical Application in GI Disorders." The burgeoning interest in this field stems from the increasing recognition that EVs represent an understudied form of cell-to-cell communication and contain cargo replete with biomarkers and therapeutic targets. This short review will highlight recent advances in the field, with an emphasis on colorectal cancer. After a brief introduction to secreted particles, we will describe how our laboratory became interested in EVs, which led to refined methods of isolation and identification of 2 secreted nanoparticles. We will then summarize the cargo found in small EVs released from colorectal cancer cells and other cells in the tumor microenvironment, as well as those found in the circulation of patients with colorectal cancer. Finally, we will consider the continuing challenges and future opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Sarah E Glass
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
3
|
Zhang J, Li S, Zhang X, Li C, Zhang J, Zhou W. LncRNA HLA-F-AS1 promotes colorectal cancer metastasis by inducing PFN1 in colorectal cancer-derived extracellular vesicles and mediating macrophage polarization. Cancer Gene Ther 2021; 28:1269-1284. [PMID: 33531647 DOI: 10.1038/s41417-020-00276-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy with high incidence and low 5-year survival. Long non-coding RNAs (lncRNAs), a kind of specific RNA transcript, are increasingly implicated in tumor growth, metastasis, invasion, and prognosis by regulating the tumor microenvironment in extracellular vesicles (EVs). This study aims at investigating the potential effect of lncRNA HLA-F-AS1 on CRC by affecting the profilin 1 (PFN1) expression pattern in the tumor EVs. The expression patterns of HLA-F-AS1 and miR-375 were determined by RT-qPCR in the CRC tissues and cells. CCK-8 and Transwell assays were conducted to detect the cell proliferation and migration, and invasion, respectively. Western blot analysis was performed to measure the expression pattern of the epithelial-mesenchymal transition (EMT) markers. Bioinformatics prediction website and dual-luciferase reporter assay were conducted to verify the interaction between HLA-F-AS1 and miR-375. The CRC-derived EVs were extracted with the expression pattern of PFN1 determined by ELISA, while its effect on the macrophage polarization was assessed by flow cytometry. The effect of PFN1-treated macrophages on CRC cell proliferation and migration was observed by subcutaneous tumorigenesis experiments in nude mice. The results indicated that the HLA-F-AS1 expression pattern was increased in the CRC tissues and cells, which promoted the migration, invasion, and EMT of CRC cells in vitro. Mechanistically, HLA-F-AS1 competitively bound to miR-375 and inversely regulated miR-375 expression pattern. Interestingly, PFN1 was identified as a direct target of miR-375, and positively modulated by HLA-F-AS1 by binding to miR-375. Overexpression of HLA-F-AS1 repressed miR-375 and promoted the PFN1 expression pattern in CRC cells and CRC-derived EVs, further promoting M2 polarization of macrophages. Furthermore, macrophages treated with PFN1 in CRC-derived EVs stimulated CRC cell proliferation and migration in vitro and in vivo. Collectively, these outcomes highlight that HLA-F-AS1 promotes the expression pattern of PFN1 in CRC-EVs by inhibiting miR-375, thereby polarizing macrophages toward M2 phenotype, and aggravating the tumorigenesis of CRC, eliciting that HLA-F-AS1 may serve as a viable and promising therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130000, P.R. China
| | - Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130000, P.R. China
| | - Xiaona Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, 130000, P.R. China
| | - Chao Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130000, P.R. China
| | - Jiantao Zhang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130000, P.R. China.
| | - Wenli Zhou
- Department of Neonatology, The First Hospital of Jilin University, Changchun, 130000, P.R. China.
| |
Collapse
|
4
|
Chi JY, Hsiao YW, Liu HL, Fan XJ, Wan XB, Liu TL, Hung SJ, Chen YT, Liang HY, Wang JM. Fibroblast CEBPD/SDF4 axis in response to chemotherapy-induced angiogenesis through CXCR4. Cell Death Discov 2021; 7:94. [PMID: 33953165 PMCID: PMC8099881 DOI: 10.1038/s41420-021-00478-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/25/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) play an essential role in supporting cancer progression. However, the details and consequent effects in response to the communication between CAFs and angiogenesis remain largely uninvestigated, especially in anticancer drug treatments. We found that cisplatin and 5-fluorouracil could induce fibroblast differentiation toward myofibroblasts via CCAAT/enhancer-binding protein delta (CEBPD) and consequently promote proliferation, migration, and in vitro tube formation of vascular endothelial cells and angiogenesis in vivo. Stromal-cell-derived factor 4 (SDF4) is responsive to anticancer drugs via CEBPD activation in CAFs and contributes to create a permissive environment for tumor cell angiogenesis and promotion of distant metastasis. Importantly, we demonstrated that SDF4 interacts with CXCR4 to trigger VEGFD expression through the activation of the ERK1/2 and p38 pathways in endothelial cells. Taken together, our novel findings support that SDF4 can be a therapeutic target in inhibition of angiogenesis for chemotherapy drug-administrated cancer patients.
Collapse
Affiliation(s)
- Jhih-Ying Chi
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Wei Hsiao
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hai-Ling Liu
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Xin-Juan Fan
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Xiang-Bo Wan
- Department of Radiation Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Tsung-Lin Liu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Sheng-Jou Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Ting Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hsin-Yin Liang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan. .,International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
5
|
Gong W, Martin TA, Sanders AJ, Jiang A, Sun P, Jiang WG. Location, function and role of stromal cell‑derived factors and possible implications in cancer (Review). Int J Mol Med 2021; 47:435-443. [PMID: 33416125 PMCID: PMC7797432 DOI: 10.3892/ijmm.2020.4811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
Despite improvements in therapy and management, cancer represents and remains a major cause of mortality and morbidity worldwide. Although genetics serve an important role in tumorigenesis and tumour progression, the tumour microenvironment (TME) in solid tumours is also important and has been indicated to contribute to these processes. Stromal cell‑derived factors (SDFs) represent an important family within the TME. The family includes SDF‑1, SDF‑2, SDF2‑like 1 (SDF2L1), SDF‑3, SDF‑4 and SDF‑5. SDF‑1 has been demonstrated to act as a positive regulator in a number of types of tumour, such as oesophago‑gastric, pancreatic, lung, breast, colorectal and ovarian cancer, while the biology and functions of other members of the SDF family, including SDF‑2, SDF2L1, SDF‑4 and SDF‑5, in cancer are different, complex and controversial, and remain mainly unknown. Full identification and understanding of the SDFs across multiple types of cancer is required to elucidate their function and establish potential key targets in cancer.
Collapse
Affiliation(s)
- Wenjing Gong
- Department of Oncology, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong 264000, P.R. China,Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Tracey A. Martin
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Andrew J. Sanders
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Aihua Jiang
- Department of Anaesthesiology, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ping Sun
- Department of Oncology, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK,Correspondence to: Professor Wen G. Jiang, Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Henry Wellcome Building, Cardiff CF14 4XN, UK, E-mail:
| |
Collapse
|
6
|
Suski M, Wiśniewska A, Kuś K, Kiepura A, Stachowicz A, Stachyra K, Czepiel K, Madej J, Olszanecki R. Decrease of the pro-inflammatory M1-like response by inhibition of dipeptidyl peptidases 8/9 in THP-1 macrophages - quantitative proteomics of the proteome and secretome. Mol Immunol 2020; 127:193-202. [PMID: 32998073 DOI: 10.1016/j.molimm.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/29/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cellular peptidases are an emerging target of novel pharmacological strategies in inflammatory diseases and cancer. In this context, the dipeptidyl peptidases 8 and 9 (DPP8/9) have gained special attention due to their activities in the immune cells. However, in spite of more than hundred protein substrates identified to date by mass spectrometry-based analysis, the cellular DPP8/9 functions are still elusive. METHODS We applied the proteomic approach (iTRAQ-2DLC-MS/MS) to comprehensively analyze the role of DPP8/9 in the regulation of macrophage activation by in-depth protein quantitation of THP-1 proteome and secretome. RESULTS Cells pre-incubated with DPP8/9 inhibitor (1G244) prior activation (LPS or IL-4/IL-13) diminished the expression levels of M1-like response markers, but not M2-like phenotype features. This was accompanied by multiple intra- and extra-cellular protein abundance changes in THP-1 cells, related to cellular metabolism, mitochondria and endoplasmic reticulum function, as well as those engaged with inflammatory and apoptotic processes, including previously reported and novel DPP8/9 targets. CONCLUSIONS Inhibition of DPP 8/9 had a profound effect on the THP-1 macrophage proteome and secretome, evidencing the decrease of the pro-inflammatory M1-like response. Presented results are to our best knowledge the first which, among others, highlight the metabolic effects of DPP8/9 inhibition in macrophages.
Collapse
Affiliation(s)
- Maciej Suski
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland.
| | - Anna Wiśniewska
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Katarzyna Kuś
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Anna Kiepura
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Aneta Stachowicz
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Kamila Stachyra
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Klaudia Czepiel
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Józef Madej
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| |
Collapse
|
7
|
Abstract
Profilin is a ubiquitously expressed protein well known as a key regulator of actin polymerisation. The actin cytoskeleton is involved in almost all cellular processes including motility, endocytosis, metabolism, signal transduction and gene transcription. Hence, profilin's role in the cell goes beyond its direct and essential function in regulating actin dynamics. This review will focus on the interactions of Profilin 1 and its ligands at the plasma membrane, in the cytoplasm and the nucleus of the cells and the regulation of profilin activity within those cell compartments. We will discuss the interactions of profilin in cell signalling pathways and highlight the importance of the cell context in the multiple functions that this small essential protein has in conjunction with its role in cytoskeletal organisation and dynamics. We will review some of the mechanisms that control profilin expression and the implications of changed expression of profilin in the light of cancer biology and other pathologies.
Collapse
|
8
|
da Cunha BR, Domingos C, Stefanini ACB, Henrique T, Polachini GM, Castelo-Branco P, Tajara EH. Cellular Interactions in the Tumor Microenvironment: The Role of Secretome. J Cancer 2019; 10:4574-4587. [PMID: 31528221 PMCID: PMC6746126 DOI: 10.7150/jca.21780] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/25/2019] [Indexed: 02/06/2023] Open
Abstract
Over the past years, it has become evident that cancer initiation and progression depends on several components of the tumor microenvironment, including inflammatory and immune cells, fibroblasts, endothelial cells, adipocytes, and extracellular matrix. These components of the tumor microenvironment and the neoplastic cells interact with each other providing pro and antitumor signals. The tumor-stroma communication occurs directly between cells or via a variety of molecules secreted, such as growth factors, cytokines, chemokines and microRNAs. This secretome, which derives not only from tumor cells but also from cancer-associated stromal cells, is an important source of key regulators of the tumorigenic process. Their screening and characterization could provide useful biomarkers to improve cancer diagnosis, prognosis, and monitoring of treatment responses.
Collapse
Affiliation(s)
- Bianca Rodrigues da Cunha
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Célia Domingos
- Department of Biomedical Sciences and Medicine, University of Algarve, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Ana Carolina Buzzo Stefanini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Giovana Mussi Polachini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Pedro Castelo-Branco
- Department of Biomedical Sciences and Medicine, University of Algarve, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Gambelas, Faro, Portugal
| | - Eloiza Helena Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| |
Collapse
|
9
|
Bandu R, Oh JW, Kim KP. Mass spectrometry-based proteome profiling of extracellular vesicles and their roles in cancer biology. Exp Mol Med 2019; 51:1-10. [PMID: 30872566 PMCID: PMC6418213 DOI: 10.1038/s12276-019-0218-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/12/2018] [Indexed: 01/19/2023] Open
Abstract
Over the past three decades, extracellular vesicles (EVs) have arisen as important mediators of intercellular communication that are involved in the transmission of biological signals between cells to regulate various biological processes. EVs are largely responsible for intercellular communication through the delivery of bioactive molecules, such as proteins, messenger RNAs (mRNAs), microRNAs (miRNAs), DNAs, lipids, and metabolites. EVs released from cancer cells play a significant role in signal transduction between cancer cells and the surrounding cells, which contributes to the formation of tumors and metastasis in the tumor microenvironment. In addition, EVs released from cancer cells migrate to blood vessels and flow into various biological fluids, including blood and urine. EVs and EV-loaded functional cargoes, including proteins and miRNAs, found in these biological fluids are important biomarkers for cancer diagnosis. Therefore, EV proteomics greatly contributes to the understanding of carcinogenesis and tumor progression and is critical for the development of biomarkers for the early diagnosis of cancer. To explore the potential use of EVs as a gateway to understanding cancer biology and to develop cancer biomarkers, we discuss the mass spectrometric identification and characterization of EV proteins from different cancers. Information provided in this review may help in understanding recent progress regarding EV biology and the potential roles of EVs as new noninvasive biomarkers and therapeutic targets. Tumor cells release tiny membrane-encapsulated packages known as extracellular vesicles containing proteins which could serve as prognostic disease biomarkers or therapeutic targets. Kwang Pyo Kim and colleagues from Kyung Hee University in Yongin, South Korea, review the use of mass spectrometry to profile the diversity of proteins found in these tumor-derived packages. The proteins found in these vesicles help mediate communication between cancer cells and their surrounding tissues. Different tumor types share many of these proteins in common, but there are differences in the protein profile related to cancer-associated biological processes such as metastasis and cell proliferation. Tests based on the proteins contained in these vesicles could help clinicians better identify, diagnose and treat specific cancers, although large, multicenter studies are needed to validate such strategies.
Collapse
Affiliation(s)
- Raju Bandu
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | - Jae Won Oh
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea. .,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Chen Z, Yang L, Cui Y, Zhou Y, Yin X, Guo J, Zhang G, Wang T, He QY. Cytoskeleton-centric protein transportation by exosomes transforms tumor-favorable macrophages. Oncotarget 2018; 7:67387-67402. [PMID: 27602764 PMCID: PMC5341883 DOI: 10.18632/oncotarget.11794] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/21/2016] [Indexed: 12/21/2022] Open
Abstract
The exosome is a key initiator of pre-metastatic niche in numerous cancers, where macrophages serve as primary inducers of tumor microenvironment. However, the proteome that can be exosomally transported from cancer cells to macrophages has not been sufficiently characterized so far. Here, we used colorectal cancer (CRC) exosomes to educate tumor-favorable macrophages. With a SILAC-based mass spectrometry strategy, we successfully traced the proteome transported from CRC exosomes to macrophages. Such a proteome primarily focused on promoting cytoskeleton rearrangement, which was biologically validated with multiple cell lines. We reproduced the exosomal transportation of functional vimentin as a proof-of-concept example. In addition, we found that some CRC exosomes could be recognized by macrophages via Fc receptors. Therefore, we revealed the active and necessary role of exosomes secreted from CRC cells to transform cancer-favorable macrophages, with the cytoskeleton-centric proteins serving as the top functional unit.
Collapse
Affiliation(s)
- Zhipeng Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lijuan Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yizhi Cui
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yanlong Zhou
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xingfeng Yin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiahui Guo
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Blank B, von Blume J. Cab45-Unraveling key features of a novel secretory cargo sorter at the trans-Golgi network. Eur J Cell Biol 2017; 96:383-390. [PMID: 28372832 DOI: 10.1016/j.ejcb.2017.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
The accurate and efficient delivery of proteins to specific domains of the plasma membrane or to the extracellular space is critical for the ordered function of surface receptors and proteins such as insulin, collagens, antibodies, extracellular proteases. The trans-Golgi network is responsible for sorting proteins onto specific carriers for transport to their final destination. The role of the mannose-6-phosphate receptor in the sorting of hydrolases destined for lysosomes has been studied extensively, but the sorting mechanisms for secreted proteins remains poorly understood. We recently described a novel process that links the cytoplasmic actin cytoskeleton to the membrane-anchored Ca2+ ATPase SPCA1 and the lumenal Ca2+-binding protein Cab45, which mediates sorting of a subset of secretory proteins at the TGN. In response to Ca2+ influx, Cab45 forms oligomers, enabling it to bind a variety of specific cargo molecules. Thus, we suggest that this represents a novel way to export cargo molecules without the need for a bona fide transmembrane cargo receptor. This review focuses on Cab45's molecular function and highlights its possible role in disease.
Collapse
Affiliation(s)
- Birgit Blank
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
12
|
Qiao J, Fang CY, Chen SX, Wang XQ, Cui SJ, Liu XH, Jiang YH, Wang J, Zhang Y, Yang PY, Liu F. Stroma derived COL6A3 is a potential prognosis marker of colorectal carcinoma revealed by quantitative proteomics. Oncotarget 2016; 6:29929-46. [PMID: 26338966 PMCID: PMC4745773 DOI: 10.18632/oncotarget.4966] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/04/2015] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) represents the third most common cancer in males and second in females worldwide. Here, we performed a quantitative 8-plex iTRAQ proteomics analysis of the secreted proteins from five colonic fibroblast cultures and three colon cancer epithelial cell lines. We identified 1114 proteins at 0% FDR, including 587 potential secreted proteins. We further recognized 116 fibroblast-enriched proteins which were significantly associated with cell movement, angiogenesis, proliferation and wound healing, and 44 epithelial cell-enriched proteins. By interrogation of Oncomine database, we found that 20 and 8 fibroblast-enriched proteins were up- and downregulated in CRC, respectively. Western blots confirmed the fibroblast-specific secretion of filamin C, COL6A3, COL4A1 and spondin-2. Upregulated mRNA and stroma expression of COL6A3 in CRC, which were revealed by Oncomine analyses and tissue-microarray-immunohistochemistry, indicated poor prognosis. COL6A3 expression was significantly associated with Dukes stage, T stage, stage, recurrence and smoking status. Circulating plasma COL6A3 in CRC patients was upregulated significantly comparing with healthy peoples. Receiver operating characteristic curve analysis revealed that COL6A3 has better predictive performance for CRC with an area under the curve of 0.885 and the best sensitivity/specificity of 92.9%/81.3%. Thus we demonstrated that COL6A3 was a potential diagnosis and prognosis marker of CRC.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Medical Systems Biology, School of Basic Medical Sciences, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Cai-Yun Fang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Sun-Xia Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao-Qing Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shu-Jian Cui
- College of Bioscience and Biotechnology, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xiao-Hui Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying-Hua Jiang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yang Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng-Yuan Yang
- Department of Medical Systems Biology, School of Basic Medical Sciences, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Feng Liu
- Department of Medical Systems Biology, School of Basic Medical Sciences, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Greening DW, Nguyen HPT, Evans J, Simpson RJ, Salamonsen LA. Modulating the endometrial epithelial proteome and secretome in preparation for pregnancy: The role of ovarian steroid and pregnancy hormones. J Proteomics 2016; 144:99-112. [PMID: 27262222 DOI: 10.1016/j.jprot.2016.05.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/21/2016] [Accepted: 05/24/2016] [Indexed: 12/30/2022]
Abstract
UNLABELLED Dialogue between an appropriately developed embryo and hormonally-primed endometrium is essential to achieve implantation and establish pregnancy. Importantly, the point-of-first-contact between the embryo and the maternal endometrium occurs at the endometrial luminal epithelium (LE). Implantation events occur within the uterine cavity microenvironment regulated by local factors. Defects in embryo-endometrial communication likely underlie unexplained infertility; enhanced knowledge of this communication, specifically at initial maternal-fetal contact may reveal targets to improve fertility. Using a human endometrial luminal-epithelial (LE) cell line (ECC1), this targeted proteomic study reveals unique protein changes in both cellular (98% unique identifications) and secreted (96% unique identifications) proteins in the transition to the progesterone-dominated secretory (receptive) phase and subsequently to pregnancy, mediated by embryo-derived human chorionic gonadotropin (hCG). This analysis identified 157 progesterone-regulated cellular proteins, with further 193 significantly altered in response to hCG. Cellular changes were associated with metabolism, basement membrane and cell connectivity, proliferation and differentiation. Secretome analysis identified 1059 proteins; 123 significantly altered by progesterone, and 43 proteins altered by hCG, including proteins associated with cellular adhesion, extracellular-matrix organization, developmental growth, growth factor regulation, and cell signaling. Collectively, our findings reveal dynamic intracellular and secreted protein changes in the endometrium that may modulate successful establishment of pregnancy. BIOLOGICAL SIGNIFICANCE This study provides unique insights into the developmental biology of embryo implantation using targeted proteomics by identifying endometrial epithelial cellular and secreted protein changes in response to ovarian steroid hormones and pregnancy hormones that are essential for receptivity and implantation.
Collapse
Affiliation(s)
- David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Hong P T Nguyen
- Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton, Victoria 3168, Australia.
| | - Jemma Evans
- Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton, Victoria 3168, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton, Victoria 3168, Australia
| |
Collapse
|
14
|
Zhao C, Ban N, Dai S, Zhang X, Zhang L, Xu P, Chen W, Sun J, Bao Z, Chang H, Wang D, Ren J. The role of Alix in the proliferation of human glioma cells. Hum Pathol 2016; 52:110-8. [PMID: 26980041 DOI: 10.1016/j.humpath.2015.09.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/31/2015] [Accepted: 09/10/2015] [Indexed: 12/15/2022]
Abstract
Apoptosis-linked-gene-2-interacting protein 1 (Alix) is involved in the endosome-lysosome system in the cytoplasm. The normal function of Alix may be altered by ALG-2 toward a destructive role during active cell death. Alix also may play a role in regulation of cell proliferation. However, the role of Alix in human glioma has not been elucidated yet. This study intended to clarify the relationship between Alix and glioma pathologic grades and its role in the proliferation of glioma cells. Our findings showed that Alix protein concentrations were significantly elevated in high-grade glioma tissue compared with low-grade glioma (P < .0001). Immunohistochemical study revealed that Alix was overexpressed in 75 resected glioma tissues and may forecast poor survival. Alix expression was increased in resting serum-stimulated glioma cells. Additionally, we reduced Alix expression in U251MG cells and then found that cell viability was decreased significantly when p21 expression increased. Colony formation assay and flow cytometry analysis demonstrated that reduced Alix expression may lead to growth inhibition and cell cycle arrest. In summary, our findings suggest that Alix plays an important role in the proliferation of glioma cells and may be a novel therapeutic target.
Collapse
Affiliation(s)
- Chengjin Zhao
- Department of Neurosurgery, Affiliated Second Peoples Hospital of NanTong, Nantong University, Nantong, 226002, Jiangsu Province, People's Republic of China
| | - Na Ban
- Department of Pathology, Medical College and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001
| | - Shirong Dai
- Department of Neurosurgery, Affiliated Second Peoples Hospital of NanTong, Nantong University, Nantong, 226002, Jiangsu Province, People's Republic of China
| | - Xiubing Zhang
- Department of Neurosurgery, Affiliated Second Peoples Hospital of NanTong, Nantong University, Nantong, 226002, Jiangsu Province, People's Republic of China
| | - Li Zhang
- Department of Pathology, Medical College and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001
| | - Peng Xu
- Department of Pathology, Medical College and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001
| | - Wenjuan Chen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001
| | - Jie Sun
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001
| | - Zhen Bao
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province
| | - Hao Chang
- Department of Neurosurgery, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Donglin Wang
- Department of Pathology, Medical College and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001
| | - Jianbing Ren
- Department of Neurosurgery, Affiliated Second Peoples Hospital of NanTong, Nantong University, Nantong, 226002, Jiangsu Province, People's Republic of China.
| |
Collapse
|
15
|
Quesenberry PJ, Aliotta J, Camussi G, Abdel-Mageed AB, Wen S, Goldberg L, Zhang HG, Tetta C, Franklin J, Coffey RJ, Danielson K, Subramanya V, Ghiran I, Das S, Chen CC, Pusic KM, Pusic AD, Chatterjee D, Kraig RP, Balaj L, Dooner M. Potential functional applications of extracellular vesicles: a report by the NIH Common Fund Extracellular RNA Communication Consortium. J Extracell Vesicles 2015; 4:27575. [PMID: 26320942 PMCID: PMC4553260 DOI: 10.3402/jev.v4.27575] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/15/2015] [Accepted: 07/24/2015] [Indexed: 12/13/2022] Open
Abstract
The NIH Extracellular RNA Communication Program's initiative on clinical utility of extracellular RNAs and therapeutic agents and developing scalable technologies is reviewed here. Background information and details of the projects are presented. The work has focused on modulation of target cell fate by extracellular vesicles (EVs) and RNA. Work on plant-derived vesicles is of intense interest, and non-mammalian sources of vesicles may represent a very promising source for different therapeutic approaches. Retro-viral-like particles are intriguing. Clearly, EVs share pathways with the assembly machinery of several other viruses, including human endogenous retrovirals (HERVs), and this convergence may explain the observation of viral-like particles containing viral proteins and nucleic acid in EVs. Dramatic effect on regeneration of damaged bone marrow, renal, pulmonary and cardiovascular tissue is demonstrated and discussed. These studies show restoration of injured cell function and the importance of heterogeneity of different vesicle populations. The potential for neural regeneration is explored, and the capacity to promote and reverse neoplasia by EV exposure is described. The tremendous clinical potential of EVs underlies many of these projects, and the importance of regulatory issues and the necessity of general manufacturing production (GMP) studies for eventual clinical trials are emphasized. Clinical trials are already being pursued and should expand dramatically in the near future.
Collapse
Affiliation(s)
- Peter J Quesenberry
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA;
| | - Jason Aliotta
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Torino, Italy
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sicheng Wen
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Laura Goldberg
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Huang-Ge Zhang
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Ciro Tetta
- Department of Medical Sciences, University of Turin, Torino, Italy
| | - Jeffrey Franklin
- Department of Molecular Biology, Vanderbilt University, Nashville, TN, USA
| | - Robert J Coffey
- Department of Molecular Biology, Vanderbilt University, Nashville, TN, USA
| | - Kirsty Danielson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vinita Subramanya
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ionita Ghiran
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Saumya Das
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Clark C Chen
- Department of Surgery, Center for Theoretical and Applied Neuro-Oncology, University of California, San Diego, CA, USA
| | - Kae M Pusic
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Aya D Pusic
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Devasis Chatterjee
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Richard P Kraig
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Leonora Balaj
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Mark Dooner
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
16
|
Shin J, Kim HJ, Kim G, Song M, Woo SJ, Lee ST, Kim H, Lee C. Discovery of melanotransferrin as a serological marker of colorectal cancer by secretome analysis and quantitative proteomics. J Proteome Res 2014; 13:4919-31. [PMID: 25216327 DOI: 10.1021/pr500790f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To discover serological colorectal cancer (CRC) markers, we analyzed cell line secretome to gather proteins of higher potential to be secreted from tissues into circulation. A total of 898 human proteins were identified, of which 62.2% were predicted to be released or shed from cells. The identified proteins were compared with tissue proteomes to find candidate proteins whose expressions were elevated in tumor tissues compared with normal tissues as revealed by (i) quantitative proteomic analysis based on cICAT and mTRAQ or (ii) data mining of immunohistochemical images piled in Human Protein Atlas database. By applying various stringent criteria, 11 candidate proteins were selected. Among these, we validated an significant increase (p = 0.0018) of melanotransferrin (TRFM) at the plasma level of CRC patients through Western blotting, using 130 plasma samples containing 30 healthy controls, 80 CRC patients, and 20 patients of other diseases. Finally, we measured the expression level of TRFM in 325 plasma samples containing 77 healthy controls and 228 CRC patients (34.6 ± 4.2 ng/mL and 67.0 ± 6.4 ng/mL, p < 0.0001) through ELISA and demonstrated the area under the receiver operating characteristic curve of 0.723 (p < 0.0001) with a 92.5% specificity, 48.2% sensitivity, and 95.7% positive predictive value. Furthermore, unlike CEA and PAI-1, up-regulation of TRFM in pathological stages I & II groups compared with stages III & IV groups lead us to expect the use TRFM for early-stage diagnosis of CRC. In this study, we suggest TRFM as a potential serological marker for CRC and expect our discovery strategy to help identify highly cancer-specific and body-fluid-accessible biomarkers.
Collapse
Affiliation(s)
- Jihye Shin
- Center for Theragnosis, Korea Institute of Science and Technology , Hwarangno 14-gil 5, Seongbuk, Seoul 136-791, Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen SX, Xu XE, Wang XQ, Cui SJ, Xu LL, Jiang YH, Zhang Y, Yan HB, Zhang Q, Qiao J, Yang PY, Liu F. Data from a proteomic analysis of colonic fibroblasts secretomes. Data Brief 2014. [PMID: 26217680 PMCID: PMC4459868 DOI: 10.1016/j.dib.2014.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The tumor cell proliferation, migration and invasion were influenced by the interaction between the cancer cells and their microenvironment. In current study, we established two pairs of the primary fibroblast cultures from colorectal adenocarcinoma tissues and the normal counterparts and identified 227 proteins in the colonic fibroblast secretomes; half of these proteins were novel. The mass spectrometry data and analyzed results presented here provide novel insights into the molecular characteristics and modulatory role of colon cancer associated fibroblasts. The data is related to “Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation” by Chen et al. [1].
Collapse
Affiliation(s)
- Sun-Xia Chen
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Xiao-En Xu
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Xiao-Qing Wang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Shu-Jian Cui
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Lei-Lei Xu
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Ying-Hua Jiang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Yang Zhang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Hai-Bo Yan
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Qian Zhang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Jie Qiao
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Peng-Yuan Yang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Feng Liu
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| |
Collapse
|
18
|
Chen SX, Xu XE, Wang XQ, Cui SJ, Xu LL, Jiang YH, Zhang Y, Yan HB, Zhang Q, Qiao J, Yang PY, Liu F. Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation. J Proteomics 2014; 110:155-71. [PMID: 25118038 DOI: 10.1016/j.jprot.2014.07.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 01/01/2023]
Abstract
UNLABELLED Stromal microenvironment influences tumor cell proliferation and migration. Fibroblasts represent the most abundant stromal constituents. Here, we established two pairs of normal fibroblast (NF) and cancer-associated fibroblast (CAF) cultures from colorectal adenocarcinoma tissues and the normal counterparts. The NFs and CAFs were stained positive for typical fibroblast markers and inhibited colon cancer (CC) cell proliferation in in vitro cocultures and in xenograft mouse models. The fibroblast conditioned media were analyzed using LC-MS and 227 proteins were identified at a false discovery rate of 1.3%, including 131 putative secretory and 20 plasma membrane proteins. These proteins were enriched for functional categories of extracellular matrix, adhesion, cell motion, inflammatory response, redox homeostasis and peptidase inhibitor. Secreted protein acidic and rich in cysteine, transgelin, follistatin-related protein 1 (FSTL1) and decorin was abundant in the fibroblast secretome as confirmed by Western blot. Silencing of FSTL1 and transgelin in colonic fibroblast cell line CCD-18Co induced an accelerated proliferation of CC cells in cocultures. Exogenous FSTL1 attenuates CC cell proliferation in a negative fashion. FSTL1 was upregulated in CC patient plasma and cancerous tissues but had no implication in prognosis. Our results provided novel insights into the molecular signatures and modulatory role of CC associated fibroblasts. BIOLOGICAL SIGNIFICANCE In this study, a label-free LC-MS was performed to analyze the secretomes of two paired primary fibroblasts, which were isolated from fresh surgical specimen of colorectal adenocarcinoma and adjacent normal colonic tissues and exhibited negative modulatory activity for colon cancer cell growth in in vitro cocultures and in vivo xenograph mouse models. Follistatin-related protein 1 was further revealed to be one of the stroma-derived factors of potential suppression role for colon cancer cell proliferation. Our results provide novel insights into the molecular signatures and the modulatory role of colon cancer associated fibroblasts, and establish a valuable resource for the development of therapeutic agents or novel clinic biomarker.
Collapse
Affiliation(s)
- Sun-Xia Chen
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Xiao-En Xu
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Xiao-Qing Wang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China; Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Shu-Jian Cui
- College of Bioscience and Biotechnology, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Lei-Lei Xu
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Ying-Hua Jiang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Yang Zhang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Hai-Bo Yan
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Qian Zhang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Jie Qiao
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Peng-Yuan Yang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China; Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Feng Liu
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China.
| |
Collapse
|
19
|
Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, Xu R, Adda C, Mathivanan S, Zhao W, Xue Y, Xu T, Zhu HJ, Simpson RJ. Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics 2013; 13:1672-86. [PMID: 23585443 DOI: 10.1002/pmic.201200562] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/08/2013] [Accepted: 03/26/2013] [Indexed: 12/14/2022]
Abstract
Exosomes are small extracellular 40-100 nm diameter membrane vesicles of late endosomal origin that can mediate intercellular transfer of RNAs and proteins to assist premetastatic niche formation. Using primary (SW480) and metastatic (SW620) human isogenic colorectal cancer cell lines we compared exosome protein profiles to yield valuable insights into metastatic factors and signaling molecules fundamental to tumor progression. Exosomes purified using OptiPrep™ density gradient fractionation were 40-100 nm in diameter, were of a buoyant density ~1.09 g/mL, and displayed stereotypic exosomal markers TSG101, Alix, and CD63. A major finding was the selective enrichment of metastatic factors (MET, S100A8, S100A9, TNC), signal transduction molecules (EFNB2, JAG1, SRC, TNIK), and lipid raft and lipid raft-associated components (CAV1, FLOT1, FLOT2, PROM1) in exosomes derived from metastatic SW620 cells. Additionally, using cryo-electron microscopy, ultrastructural components in exosomes were identified. A key finding of this study was the detection and colocalization of protein complexes EPCAM-CLDN7 and TNIK-RAP2A in colorectal cancer cell exosomes. The selective enrichment of metastatic factors and signaling pathway components in metastatic colon cancer cell-derived exosomes contributes to our understanding of the cross-talk between tumor and stromal cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Hong Ji
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bernhard OK, Greening DW, Barnes TW, Ji H, Simpson RJ. Detection of cadherin-17 in human colon cancer LIM1215 cell secretome and tumour xenograft-derived interstitial fluid and plasma. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2372-9. [DOI: 10.1016/j.bbapap.2013.03.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 12/21/2022]
|
21
|
Lee ST, Ji H, Greening DW, Speirs RWH, Rigopoulos A, Pillay V, Murone C, Vitali A, Stühler K, Johns TG, Corner GA, Mariadason JM, Simpson RJ, Scott AM. Global protein profiling reveals anti-EGFR monoclonal antibody 806-modulated proteins in A431 tumor xenografts. Growth Factors 2013; 31:154-64. [PMID: 23957735 DOI: 10.3109/08977194.2013.824435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An important mediator of tumorigenesis, the epidermal growth factor receptor (EGFR) is expressed in almost all non-transformed cell types, associated with tumor progression, angiogenesis and metastasis. The significance of the EGFR as a cancer therapeutic target is underscored by the clinical development of several different classes of EGFR antagonists, including monoclonal antibodies (mAb) and tyrosine kinase inhibitors. Extensive preclinical studies have demonstrated the anti-tumor effects of mAb806 against tumor xenografts overexpressing EGFR. EGF stimulation of A431 cells induces rapid tyrosine phosphorylation of intracellular signalling proteins which regulate cell proliferation and apoptosis. Detailed understanding of the intracellular signalling pathways and components modulated by mAbs (such as mAb806) to EGFR, and other growth factor receptors, remain limited. The use of fluorescence 2D difference gel electrophoresis (2D DIGE), coupled with sensitive MS-based protein profiling in A431 tumor (epidermoid carcinoma) xenografts, in combination with mAb806, revealed proteins modulating endocytosis, cell architecture, apoptosis, cell signalling pathways and cell cycle regulation, including Dynamin-1-like protein, cofilin-1 protein, and 14-3-3 protein zeta/delta. Further, we report various proteins, including Interferon-induced protein 53 (IFI53), and Oncogene EMS1 (EMS1) which have roles in the tumor microenvironment, regulating cancer cell invasiveness, angiogenesis and formation of metastases. These findings contribute to understanding the underlying biological processes associated with mAb806 therapy of EGFR-positive tumors, and identifying further potential protein markers that may contribute in assessment of the treatment response.
Collapse
Affiliation(s)
- Sze Ting Lee
- Ludwig Institute for Cancer Research , Victoria , Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rationale and Means to Target Pro-Inflammatory Interleukin-8 (CXCL8) Signaling in Cancer. Pharmaceuticals (Basel) 2013; 6:929-59. [PMID: 24276377 PMCID: PMC3817732 DOI: 10.3390/ph6080929] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/03/2013] [Accepted: 07/29/2013] [Indexed: 12/13/2022] Open
Abstract
It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies). Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations.
Collapse
|
23
|
Sulindac modulates secreted protein expression from LIM1215 colon carcinoma cells prior to apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2293-307. [PMID: 23899461 DOI: 10.1016/j.bbapap.2013.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 07/03/2013] [Accepted: 07/18/2013] [Indexed: 11/21/2022]
Abstract
Colorectal cancer (CRC) is a major cause of mortality in Western populations. Growing evidence from human and rodent studies indicate that nonsteroidal anti-inflammatory drugs (NSAIDs) cause regression of existing colon tumors and act as effective chemopreventive agents in sporadic colon tumor formation. Although much is known about the action of the NSAID sulindac, especially its role in inducing apoptosis, mechanisms underlying these effects is poorly understood. In previous secretome-based proteomic studies using 2D-DIGE/MS and cytokine arrays we identified over 150 proteins released from the CRC cell line LIM1215 whose expression levels were dysregulated by treatment with 1mM sulindac over 16h; many of these proteins are implicated in molecular and cellular functions such as cell proliferation, differentiation, adhesion, angiogenesis and apoptosis (Ji et al., Proteomics Clin. Appl. 2009, 3, 433-451). We have extended these studies and describe here an improved protein/peptide separation strategy that facilitated the identification of 987 proteins and peptides released from LIM1215 cells following 1mM sulindac treatment for 8h preceding the onset of apoptosis. This peptidome separation strategy involved fractional centrifugal ultrafiltration of concentrated cell culture media (CM) using nominal molecular weight membrane filters (NMWL 30K, 3K and 1K). Proteins isolated in the >30K and 3-30K fractions were electrophoretically separated by SDS-PAGE and endogenous peptides in the 1-3K membrane filter were fractioned by RP-HPLC; isolated proteins and peptides were identified by nanoLC-MS-MS. Collectively, our data show that LIM1215 cells treated with 1mM sulindac for 8h secrete decreased levels of proteins associated with extracellular matrix remodeling (e.g., collagens, perlecan, syndecans, filamins, dyneins, metalloproteinases and endopeptidases), cell adhesion (e.g., cadherins, integrins, laminins) and mucosal maintenance (e.g., glycoprotein 340 and mucins 5AC, 6, and 13). A salient finding of this study was the increased proteolysis of cell surface proteins following treatment with sulindac for 8h (40% higher than from untreated LIM1215 cells); several of these endogenous peptides contained C-terminal amino acids from transmembrane domains indicative of regulated intramembrane proteolysis (RIP). Taken together these results indicate that during the early-stage onset of sulindac-induced apoptosis (evidenced by increased annexin V binding, dephosphorylation of focal adhesion kinase (FAK), and cleavage of caspase-3), 1mM sulindac treatment of LIM1215 cells results in decreased expression of secreted proteins implicated in ECM remodeling, mucosal maintenance and cell-cell-adhesion. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
|
24
|
Marimuthu A, Subbannayya Y, Sahasrabuddhe NA, Balakrishnan L, Syed N, Sekhar NR, Katte TV, Pinto SM, Srikanth SM, Kumar P, Pawar H, Kashyap MK, Maharudraiah J, Ashktorab H, Smoot DT, Ramaswamy G, Kumar RV, Cheng Y, Meltzer SJ, Roa JC, Chaerkady R, Prasad TK, Harsha HC, Chatterjee A, Pandey A. SILAC-based quantitative proteomic analysis of gastric cancer secretome. Proteomics Clin Appl 2013; 7:355-66. [PMID: 23161554 PMCID: PMC3804263 DOI: 10.1002/prca.201200069] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/24/2012] [Accepted: 10/25/2012] [Indexed: 02/05/2023]
Abstract
PURPOSE Gastric cancer is a commonly occurring cancer in Asia and one of the leading causes of cancer deaths. However, there is no reliable blood-based screening test for this cancer. Identifying proteins secreted from tumor cells could lead to the discovery of clinically useful biomarkers for early detection of gastric cancer. EXPERIMENTAL DESIGN A SILAC-based quantitative proteomic approach was employed to identify secreted proteins that were differentially expressed between neoplastic and non-neoplastic gastric epithelial cells. Proteins from the secretome were subjected to SDS-PAGE and SCX-based fractionation, followed by mass spectrometric analysis on an LTQ-Orbitrap Velos mass spectrometer. Immunohistochemical labeling was employed to validate a subset of candidates using tissue microarrays. RESULTS We identified 2205 proteins in the gastric cancer secretome of which 263 proteins were overexpressed greater than fourfold in gastric cancer-derived cell lines as compared to non-neoplastic gastric epithelial cells. Three candidate proteins, proprotein convertase subtilisin/kexin type 9 (PCSK9), lectin mannose binding 2 (LMAN2), and PDGFA-associated protein 1 (PDAP1) were validated by immunohistochemical labeling. CONCLUSIONS AND CLINICAL RELEVANCE We report here the largest cancer secretome described to date. The novel biomarkers identified in the current study are excellent candidates for further testing as early detection biomarkers for gastric adenocarcinoma.
Collapse
Affiliation(s)
- Arivusudar Marimuthu
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Yashwanth Subbannayya
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Rajiv Gandhi University of Health Sciences, Bangalore 560041, India
- Department of Biochemistry, Kidwai Memorial Institute of Oncology, Bangalore, 560066, India
| | - Nandini A. Sahasrabuddhe
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Lavanya Balakrishnan
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Department of Biotechnology, Kuvempu University, Shankaraghatta 577 451, India
| | - Nazia Syed
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry-605014, India
| | - Nirujogi Raja Sekhar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Teesta V. Katte
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Sneha M. Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Srinivas M. Srikanth
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Praveen Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Harsh Pawar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Rajiv Gandhi University of Health Sciences, Bangalore 560041, India
| | - Manoj K. Kashyap
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Jagadeesha Maharudraiah
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington DC 20060, USA
| | - Duane T Smoot
- Department of Medicine, Meharry Medical College, Nashville 37208, Tennessee, USA
| | - Girija Ramaswamy
- Rajiv Gandhi University of Health Sciences, Bangalore 560041, India
- Department of Biochemistry, Kidwai Memorial Institute of Oncology, Bangalore, 560066, India
| | - Rekha V. Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, 560066, India
| | - Yulan Cheng
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen J Meltzer
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan Carlos Roa
- Department of Pathology, Universidad de La Frontera, Temuco, Chile
| | - Raghothama Chaerkady
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205 Maryland, USA
| | - T.S. Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
- Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - H. C. Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Akhilesh Pandey
- Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205 Maryland, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205 Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, USA
- To whom correspondence should be addressed: Akhilesh Pandey M.D., Ph.D., McKusick-Nathans Institute of Genetic Medicine, 733 N. Broadway, BRB 527, Johns Hopkins University, Baltimore, MD 21205. Tel.: 410-502-6662; Fax: 410-502-7544;
| |
Collapse
|
25
|
Fanayan S, Smith JT, Sethi MK, Cantor D, Goode R, Simpson RJ, Baker MS, Hancock WS, Nice E. Chromosome 7-Centric Analysis of Proteomics Data from a Panel of Human Colon Carcinoma Cell Lines. J Proteome Res 2012; 12:89-96. [DOI: 10.1021/pr300906y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Susan Fanayan
- Department of Chemistry and
Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Joshua T. Smith
- Barnett Institute and Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Manveen K. Sethi
- Department of Chemistry and
Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - David Cantor
- Department of Chemistry and
Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Robert Goode
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Richard J. Simpson
- La
Trobe Institute for Molecular
Science, La Trobe University, Bundoora,
Victoria 3086, Australia
| | - Mark S. Baker
- Department of Chemistry and
Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - William S. Hancock
- Department of Chemistry and
Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Barnett Institute and Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Edouard Nice
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
26
|
García-Lorenzo A, Rodríguez-Piñeiro AM, Rodríguez-Berrocal FJ, Cadena MPDL, Martínez-Zorzano VS. Changes on the Caco-2 secretome through differentiation analyzed by 2-D differential in-gel electrophoresis (DIGE). Int J Mol Sci 2012. [PMID: 23203071 PMCID: PMC3509587 DOI: 10.3390/ijms131114401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is still a major health burden worldwide, and its diagnosis has not improved in recent years due to a lack of appropriate diagnostic serum markers. Aiming to find new diagnostic proteins, we applied the proteomic DIGE technology to analyze changes in the secretome before/after differentiation of the colon adenocarcinoma Caco-2 cell line, an accepted in vitro model to study colorectal tumorigenesis. When the secretomes from undifferentiated (tumor-like) and differentiated cells (resembling healthy enterocytes) were compared, we found 96 spots differentially expressed. After MS/MS analysis, 22 spots corresponding to 15 different proteins were identified. Principal component analysis demonstrated these 22 spots could serve as a discriminatory panel between the tumor-like and normal-like cells. Among the identified proteins, the translationally-controlled tumor protein (TCTP), the transforming growth factor-beta-induced protein ig-h3 (TGFβIp), and the Niemann-Pick disease type C2 protein (NPC2) are interesting candidates for future studies focused on their utility as serum biomarkers of colorectal cancer.
Collapse
Affiliation(s)
- Andrés García-Lorenzo
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain.
| | | | | | | | | |
Collapse
|
27
|
Effective enrichment of cholangiocarcinoma secretomes using the hollow fiber bioreactor culture system. Talanta 2012; 99:294-301. [DOI: 10.1016/j.talanta.2012.05.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 11/20/2022]
|
28
|
Abstract
Bone is the one of the most common sites of distant metastasis of solid tumors. Secreted proteins are known to influence pathological interactions between metastatic cancer cells and the bone stroma. To comprehensively profile secreted proteins associated with bone metastasis, we used quantitative and non-quantitative mass spectrometry to globally analyze the secretomes of nine cell lines of varying bone metastatic ability from multiple species and cancer types. By comparing the secretomes of parental cells and their bone metastatic derivatives, we identified the secreted proteins that were uniquely associated with bone metastasis in these cell lines. We then incorporated bioinformatic analyses of large clinical metastasis datasets to obtain a list of candidate novel bone metastasis proteins of several functional classes that were strongly associated with both clinical and experimental bone metastasis. Functional validation of selected proteins indicated that in vivo bone metastasis can be promoted by high expression of (1) the salivary cystatins CST1, CST2, and CST4; (2) the plasminogen activators PLAT and PLAU; or (3) the collagen functionality proteins PLOD2 and COL6A1. Overall, our study has uncovered several new secreted mediators of bone metastasis and therefore demonstrated that secretome analysis is a powerful method for identification of novel biomarkers and candidate therapeutic targets.
Collapse
|
29
|
Zoidakis J, Makridakis M, Zerefos PG, Bitsika V, Esteban S, Frantzi M, Stravodimos K, Anagnou NP, Roubelakis MG, Sanchez-Carbayo M, Vlahou A. Profilin 1 is a potential biomarker for bladder cancer aggressiveness. Mol Cell Proteomics 2011; 11:M111.009449. [PMID: 22159600 DOI: 10.1074/mcp.m111.009449] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Of the most important clinical needs for bladder cancer (BC) management is the identification of biomarkers for disease aggressiveness. Urine is a "gold mine" for biomarker discovery, nevertheless, with multiple proteins being in low amounts, urine proteomics becomes challenging. In the present study we applied a fractionation strategy of urinary proteins based on the use of immobilized metal affinity chromatography for the discovery of biomarkers for aggressive BC. Urine samples from patients with non invasive (two pools) and invasive (two pools) BC were subjected to immobilized metal affinity chromatography fractionation and eluted proteins analyzed by 1D-SDS-PAGE, band excision and liquid chromatography tandem MS. Among the identified proteins, multiple corresponded to proteins with affinity for metals and/or reported to be phosphorylated and included proteins with demonstrated association with BC such as MMP9, fibrinogen forms, and clusterin. In agreement to the immobilized metal affinity chromatography results, aminopeptidase N, profilin 1, and myeloblastin were further found to be differentially expressed in urine from patients with invasive compared with non invasive BC and benign controls, by Western blot or Elisa analysis, nevertheless exhibiting high interindividual variability. By tissue microarray analysis, profilin 1 was found to have a marked decrease of expression in the epithelial cells of the invasive (T2+) versus high risk non invasive (T1G3) tumors with occasional expression in stroma; importantly, this pattern strongly correlated with poor prognosis and increased mortality. The functional relevance of profilin 1 was investigated in the T24 BC cells where blockage of the protein by the use of antibodies resulted in decreased cell motility with concomitant decrease in actin polymerization. Collectively, our study involves the application of a fractionation method of urinary proteins and as one main result of this analysis reveals the association of profilin 1 with BC paving the way for its further investigation in BC stratification.
Collapse
Affiliation(s)
- Jerome Zoidakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|