1
|
Pfau K, Lengyel I, Ossewaarde-van Norel J, van Leeuwen R, Risseeuw S, Leftheriotis G, Scholl HPN, Feltgen N, Holz FG, Pfau M. Pseudoxanthoma elasticum - Genetics, pathophysiology, and clinical presentation. Prog Retin Eye Res 2024; 102:101274. [PMID: 38815804 DOI: 10.1016/j.preteyeres.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Pseudoxanthoma elasticum (PXE) is an autosomal-recessively inherited multisystem disease. Mutations in the ABCC6-gene are causative, coding for a transmembrane transporter mainly expressed in hepatocytes, which promotes the efflux of adenosine triphosphate (ATP). This results in low levels of plasma inorganic pyrophosphate (PPi), a critical anti-mineralization factor. The clinical phenotype of PXE is characterized by the effects of elastic fiber calcification in the skin, the cardiovascular system, and the eyes. In the eyes, calcification of Bruch's membrane results in clinically visible lesions, including peau d'orange, angioid streaks, and comet tail lesions. Frequently, patients must be treated for secondary macular neovascularization. No effective therapy is available for treating the cause of PXE, but several promising approaches are emerging. Finding appropriate outcome measures remains a significant challenge for clinical trials in this slowly progressive disease. This review article provides an in-depth summary of the current understanding of PXE and its multi-systemic manifestations. The article offers a detailed overview of the ocular manifestations, including their morphological and functional consequences, as well as potential complications. Lastly, previous and future clinical trials of causative treatments for PXE are discussed.
Collapse
Affiliation(s)
- Kristina Pfau
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland; Department of Ophthalmology, University Hospital Bonn, Bonn, Germany.
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | | | - Redmer van Leeuwen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Sara Risseeuw
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Georges Leftheriotis
- University Hospital Nice, Vascular Physiology and Medicine Unit, 06000, Nice, France
| | | | - Nicolas Feltgen
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Maximilian Pfau
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel, Basel, Basel-Stadt, Switzerland
| |
Collapse
|
2
|
Brampton C, Pomozi V, Le Corre Y, Zoll J, Kauffenstein G, Ma C, Hoffmann PR, Martin L, Le Saux O. Bone Marrow-Derived ABCC6 Is an Essential Regulator of Ectopic Calcification In Pseudoxanthoma Elasticum. J Invest Dermatol 2024; 144:1772-1783.e3. [PMID: 38367909 PMCID: PMC11260544 DOI: 10.1016/j.jid.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Physiological calcification of soft tissues is a common occurrence in aging and various acquired and inherited disorders. ABCC6 sequence variations cause the calcification phenotype of pseudoxanthoma elasticum (PXE) as well as some cases of generalized arterial calcification of infancy, which is otherwise caused by defective ENPP1. ABCC6 is primarily expressed in the liver, which has given the impression that the liver is central to the pathophysiology of PXE/generalized arterial calcification of infancy. The emergence of inflammation as a contributor to the calcification in PXE suggested that peripheral tissues play a larger role than expected. In this study, we investigated whether bone marrow-derived ABCC6 contributes to the calcification in PXE. In Abcc6‒/‒ mice, we observed prevalent mineralization in several lymph nodes and surrounding connective tissues and an extensive network of lymphatic vessels within vibrissae, a calcified tissue in Abcc6‒/‒ mice. Furthermore, we found evidence of lymphangiogenesis in patients with PXE and mouse skin, suggesting an inflammatory process. Finally, restoring wild-type bone marrow in Abcc6‒/‒ mice produced a significant reduction of calcification, suggesting that the liver alone is not sufficient to fully inhibit mineralization. With evidence that ABCC6 is expressed in lymphocytes, we suggest that the adaptative immune system and inflammation largely contribute to the calcification in PXE/generalized arterial calcification of infancy.
Collapse
Affiliation(s)
- Christopher Brampton
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA; Bio-Rad Laboratories, Hercules, California, USA
| | - Viola Pomozi
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA; Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Yannick Le Corre
- PXE National Reference Center (MAGEC Nord), University Hospital of Angers, Angers, France
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Gilles Kauffenstein
- UMR INSERM 1260, Nano Regenerative Medicine, University of Strasbourg, Strasbourg, France
| | - Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Ludovic Martin
- PXE National Reference Center (MAGEC Nord), University Hospital of Angers, Angers, France; CNRS 6015, UMR INSERM U1083, MITOVASC Laboratory, University of Angers, Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
| |
Collapse
|
3
|
Lofaro FD, Costa S, Simone ML, Quaglino D, Boraldi F. Fibroblasts' secretome from calcified and non-calcified dermis in Pseudoxanthoma elasticum differently contributes to elastin calcification. Commun Biol 2024; 7:577. [PMID: 38755434 PMCID: PMC11099146 DOI: 10.1038/s42003-024-06283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare disease characterized by ectopic calcification, however, despite the widely spread effect of pro/anti-calcifying systemic factors associated with this genetic metabolic condition, it is not known why elastic fibers in the same patient are mainly fragmented or highly mineralized in clinically unaffected (CUS) and affected (CAS) skin, respectively. Cellular morphology and secretome are investigated in vitro in CUS and CAS fibroblasts. Here we show that, compared to CUS, CAS fibroblasts exhibit: a) differently distributed and organized focal adhesions and stress fibers; b) modified cell-matrix interactions (i.e., collagen gel retraction); c) imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases; d) differentially expressed pro- and anti-calcifying proteoglycans and elastic-fibers associated glycoproteins. These data emphasize that in the development of pathologic mineral deposition fibroblasts play an active role altering the stability of elastic fibers and of the extracellular matrix milieu creating a local microenvironment guiding the level of matrix remodeling at an extent that may lead to degradation (in CUS) or to degradation and calcification (in CAS) of the elastic component. In conclusion, this study contributes to a better understanding of the mechanisms of the mineral deposition that can be also associated with several inherited or age-related diseases (e.g., diabetes, atherosclerosis, chronic kidney diseases).
Collapse
Affiliation(s)
| | - Sonia Costa
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Luisa Simone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
4
|
Mitochondrial Dysfunction and Oxidative Stress in Hereditary Ectopic Calcification Diseases. Int J Mol Sci 2022; 23:ijms232315288. [PMID: 36499615 PMCID: PMC9738718 DOI: 10.3390/ijms232315288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Ectopic calcification (EC) is characterized by an abnormal deposition of calcium phosphate crystals in soft tissues such as blood vessels, skin, and brain parenchyma. EC contributes to significant morbidity and mortality and is considered a major health problem for which no effective treatments currently exist. In recent years, growing emphasis has been placed on the role of mitochondrial dysfunction and oxidative stress in the pathogenesis of EC. Impaired mitochondrial respiration and increased levels of reactive oxygen species can be directly linked to key molecular pathways involved in EC such as adenosine triphosphate homeostasis, DNA damage signaling, and apoptosis. While EC is mainly encountered in common diseases such as diabetes mellitus and chronic kidney disease, studies in rare hereditary EC disorders such as pseudoxanthoma elasticum or Hutchinson-Gilford progeria syndrome have been instrumental in identifying the precise etiopathogenetic mechanisms leading to EC. In this narrative review, we describe the current state of the art regarding the role of mitochondrial dysfunction and oxidative stress in hereditary EC diseases. In-depth knowledge of aberrant mitochondrial metabolism and its local and systemic consequences will benefit the research into novel therapies for both rare and common EC disorders.
Collapse
|
5
|
Huang J, Ralph D, Boraldi F, Quaglino D, Uitto J, Li Q. Inhibition of the DNA Damage Response Attenuates Ectopic Calcification in Pseudoxanthoma Elasticum. J Invest Dermatol 2022; 142:2140-2148.e1. [PMID: 35143822 PMCID: PMC9329183 DOI: 10.1016/j.jid.2022.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/27/2022]
Abstract
Pseudoxanthoma elasticum (PXE) is a heritable ectopic calcification disorder with multi-organ clinical manifestations. The gene at default, ABCC6, encodes an efflux transporter, ABCC6, which is a new player regulating the homeostasis of inorganic pyrophosphate (PPi), a potent endogenous anti-calcification factor. Previous studies suggested that systemic PPi deficiency is the major, but not the exclusive, cause of ectopic calcification in PXE. In this study, we demonstrate that the DNA damage response (DDR) and poly(ADP-ribose) (PAR) pathways are involved locally in PXE at sites of ectopic calcification. Genetic inhibition of PARP1, the predominant PAR-producing enzyme, showed a 54% reduction of calcification in the muzzle skin in Abcc6-/-Parp1-/- mice, as compared to age-matched Abcc6-/-Parp1+/+ littermates. Subsequently, oral administration of minocycline, an inhibitor of DDR/PAR signaling, resulted in an 86% reduction of calcification in the muzzle skin of Abcc6-/- mice. Minocycline treatment also attenuated the DDR/PAR signaling and reduced calcification of dermal fibroblasts derived from PXE patients. The anti-calcification effect of DDR/PAR inhibition was not accompanied by alterations in plasma PPi concentrations. These results suggest that local DDR/PAR signaling in calcification-prone tissues contributes to PXE pathogenesis, and its inhibition might provide a promising treatment strategy for ectopic calcification in PXE, a currently intractable disease.
Collapse
Affiliation(s)
- Jianhe Huang
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Douglas Ralph
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Federica Boraldi
- Department of Life Science, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Daniela Quaglino
- Department of Life Science, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Jouni Uitto
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Qiaoli Li
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
6
|
Shimada BK, Pomozi V, Zoll J, Kuo S, Martin L, Le Saux O. ABCC6, Pyrophosphate and Ectopic Calcification: Therapeutic Solutions. Int J Mol Sci 2021; 22:ijms22094555. [PMID: 33925341 PMCID: PMC8123679 DOI: 10.3390/ijms22094555] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Pathological (ectopic) mineralization of soft tissues occurs during aging, in several common conditions such as diabetes, hypercholesterolemia, and renal failure and in certain genetic disorders. Pseudoxanthoma elasticum (PXE), a multi-organ disease affecting dermal, ocular, and cardiovascular tissues, is a model for ectopic mineralization disorders. ABCC6 dysfunction is the primary cause of PXE, but also some cases of generalized arterial calcification of infancy (GACI). ABCC6 deficiency in mice underlies an inducible dystrophic cardiac calcification phenotype (DCC). These calcification diseases are part of a spectrum of mineralization disorders that also includes Calcification of Joints and Arteries (CALJA). Since the identification of ABCC6 as the “PXE gene” and the development of several animal models (mice, rat, and zebrafish), there has been significant progress in our understanding of the molecular genetics, the clinical phenotypes, and pathogenesis of these diseases, which share similarities with more common conditions with abnormal calcification. ABCC6 facilitates the cellular efflux of ATP, which is rapidly converted into inorganic pyrophosphate (PPi) and adenosine by the ectonucleotidases NPP1 and CD73 (NT5E). PPi is a potent endogenous inhibitor of calcification, whereas adenosine indirectly contributes to calcification inhibition by suppressing the synthesis of tissue non-specific alkaline phosphatase (TNAP). At present, therapies only exist to alleviate symptoms for both PXE and GACI; however, extensive studies have resulted in several novel approaches to treating PXE and GACI. This review seeks to summarize the role of ABCC6 in ectopic calcification in PXE and other calcification disorders, and discuss therapeutic strategies targeting various proteins in the pathway (ABCC6, NPP1, and TNAP) and direct inhibition of calcification via supplementation by various compounds.
Collapse
Affiliation(s)
- Briana K Shimada
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Viola Pomozi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Sheree Kuo
- Department of Pediatrics, Kapi'olani Medical Center for Women and Children, University of Hawaii, Honolulu, HI 96826, USA
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Reference Center for Rare Skin Diseases, Angers University Hospital, 49100 Angers, France
- BNMI, CNRS 6214/INSERM 1083, University Bretagne-Loire, 49100 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| |
Collapse
|
7
|
Lofaro FD, Boraldi F, Garcia-Fernandez M, Estrella L, Valdivielso P, Quaglino D. Relationship Between Mitochondrial Structure and Bioenergetics in Pseudoxanthoma elasticum Dermal Fibroblasts. Front Cell Dev Biol 2020; 8:610266. [PMID: 33392199 PMCID: PMC7773789 DOI: 10.3389/fcell.2020.610266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic disease considered as a paradigm of ectopic mineralization disorders, being characterized by multisystem clinical manifestations due to progressive calcification of skin, eyes, and the cardiovascular system, resembling an age-related phenotype. Although fibroblasts do not express the pathogenic ABCC6 gene, nevertheless these cells are still under investigation because they regulate connective tissue homeostasis, generating the "arena" where cells and extracellular matrix components can promote pathologic calcification and where activation of pro-osteogenic factors can be associated to pathways involving mitochondrial metabolism. The aim of the present study was to integrate structural and bioenergenetic features to deeply investigate mitochondria from control and from PXE fibroblasts cultured in standard conditions and to explore the role of mitochondria in the development of the PXE fibroblasts' pathologic phenotype. Proteomic, biochemical, and morphological data provide new evidence that in basal culture conditions (1) the protein profile of PXE mitochondria reveals a number of differentially expressed proteins, suggesting changes in redox balance, oxidative phosphorylation, and calcium homeostasis in addition to modified structure and organization, (2) measure of oxygen consumption indicates that the PXE mitochondria have a low ability to cope with a sudden increased need for ATP via oxidative phosphorylation, (3) mitochondrial membranes are highly polarized in PXE fibroblasts, and this condition contributes to increased reactive oxygen species levels, (4) ultrastructural alterations in PXE mitochondria are associated with functional changes, and (5) PXE fibroblasts exhibit a more abundant, branched, and interconnected mitochondrial network compared to control cells, indicating that fusion prevail over fission events. In summary, the present study demonstrates that mitochondria are modified in PXE fibroblasts. Since mitochondria are key players in the development of the aging process, fibroblasts cultured from aged individuals or aged in vitro are more prone to calcify, and in PXE, calcified tissues remind features of premature aging syndromes; it can be hypothesized that mitochondria represent a common link contributing to the development of ectopic calcification in aging and in diseases. Therefore, ameliorating mitochondrial functions and cell metabolism could open new strategies to positively regulate a number of signaling pathways associated to pathologic calcification.
Collapse
Affiliation(s)
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Lara Estrella
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Pedro Valdivielso
- Department of Medicine and Dermatology, Instituto de Investigación Biomédica de Málaga, University of Malaga, Málaga, Spain
- Internal Medicine Unit, Hospital Virgen de la Victoria, Málaga, Spain
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
8
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
9
|
Daamen WF, Quaglino D. Signaling pathways in elastic tissues. Cell Signal 2019; 63:109364. [DOI: 10.1016/j.cellsig.2019.109364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
|
10
|
Carrillo-Linares JL, García-Fernández MI, Morillo MJ, Sánchez P, Rioja J, Barón FJ, Ariza MJ, Harrington DJ, Card D, Boraldi F, Quaglino D, Valdivielso P. The Effects of Parenteral K1 Administration in Pseudoxanthoma Elasticum Patients Versus Controls. A Pilot Study. Front Med (Lausanne) 2018; 5:86. [PMID: 29713628 PMCID: PMC5911498 DOI: 10.3389/fmed.2018.00086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Introduction Pseudoxanthoma elasticum (PXE) is a rare disease caused by mutations in the ABCC6 gene. Vitamin K1 is involved in the posttranslational carboxylation of some proteins related to inhibition of the calcification process. Our aim was to investigate, in patients affected by PXE, baseline levels of vitamin K1-dependent proteins and -metabolites and whether parenteral administration of phytomenadione was effective in modulating their levels. Methods We included eight PXE patients with typical clinical symptoms (skin, retina, and vascular calcification) and two ABCC6 causative mutations; 13 clinically unaffected first-degree patients’ relatives (9 carrying one ABCC6 mutation and 4 non-carriers). We assessed urinary vitamin K1 metabolites and serum Glu- and Gla-OC, Gas6 and undercaboxylated prothrombin (PIVKA-II), at baseline and after 1 and 6 weeks after a single intramuscular injection of 10 mg vitamin K1. Results Comparison of PXE patients, heterozygous, and non-carriers revealed differences in baseline levels of serum MK-4 and of urinary vitamin K metabolites. The response to phytomenadione administration on vitamin K-dependent proteins was similar in all groups. Conclusion The physiological axis between vitamin K1 and vitamin K-dependent proteins is preserved; however, differences in the concentration of vitamin K metabolites and of MK-4 suggest that vitamin K1 metabolism/catabolism could be altered in PXE patients.
Collapse
Affiliation(s)
| | | | - María José Morillo
- Ophtalmology, Hospital Clínico Universitario Virgen de la Victoria, Málaga, Spain
| | - Purificación Sánchez
- Department of Medicine and Dermatology and Instituto de Biomedicina (IBIMA), University of Malaga, Málaga, Spain
| | - José Rioja
- Department of Medicine and Dermatology and Instituto de Biomedicina (IBIMA), University of Malaga, Málaga, Spain
| | - Francisco Javier Barón
- Department of Preventive Medicine, Public Health and Science History, University of Málaga, Málaga, Spain
| | - María José Ariza
- Department of Medicine and Dermatology and Instituto de Biomedicina (IBIMA), University of Malaga, Málaga, Spain
| | - Dominic J Harrington
- The Nutristasis Unit, Viapath, King's Healthcare Partners, St. Thomas' Hospital, London, United Kingdom
| | - David Card
- The Nutristasis Unit, Viapath, King's Healthcare Partners, St. Thomas' Hospital, London, United Kingdom
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pedro Valdivielso
- Internal Medicine, Hospital Clínico Universitario Virgen de la Victoria, Málaga, Spain.,Department of Medicine and Dermatology and Instituto de Biomedicina (IBIMA), University of Malaga, Málaga, Spain
| |
Collapse
|
11
|
Jover E, Silvente A, Marin F, Martinez‐Gonzalez J, Orriols M, Martinez CM, Puche CM, Valdés M, Rodriguez C, Hernández‐Romero D. Inhibition of enzymes involved in collagen cross‐linking reduces vascular smooth muscle cell calcification. FASEB J 2018; 32:4459-4469. [DOI: 10.1096/fj.201700653r] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eva Jover
- Hospital Clínico Universitario Virgen de la ArrixacaUniversidad de MurciaInstituto Murciano de Investigatión Biosanitaria (IMIB)‐ArrixacaMurciaSpain
- Bristol Medical School of Translational Health SciencesUniversity of BristolBristolUnited Kingdom
| | - Ana Silvente
- Hospital Clínico Universitario Virgen de la ArrixacaUniversidad de MurciaInstituto Murciano de Investigatión Biosanitaria (IMIB)‐ArrixacaMurciaSpain
| | - Francisco Marin
- Hospital Clínico Universitario Virgen de la ArrixacaUniversidad de MurciaInstituto Murciano de Investigatión Biosanitaria (IMIB)‐ArrixacaMurciaSpain
- Centro de Investigatión Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Jose Martinez‐Gonzalez
- Centro de Investigatión Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
- Instituto de Investigaciones Biomédicas de Barcelona‐Consejo Superior de Investigaciones Cientificas (IIBB‐CSIC)Institut d'Investigacions Biomèdiques (IIB)‐Sant PauBarcelonaSpain
| | - Mar Orriols
- Centro de Investigatión Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | | | - Carmen María Puche
- Hospital Clínico Universitario Virgen de la ArrixacaUniversidad de MurciaInstituto Murciano de Investigatión Biosanitaria (IMIB)‐ArrixacaMurciaSpain
| | - Mariano Valdés
- Hospital Clínico Universitario Virgen de la ArrixacaUniversidad de MurciaInstituto Murciano de Investigatión Biosanitaria (IMIB)‐ArrixacaMurciaSpain
- Centro de Investigatión Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Cristina Rodriguez
- Centro de Investigatión Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau‐Programa Instituto Catalán de Ciencias Cardiovasculares (ICCC)IIB‐Sant PauBarcelonaSpain
| | - Diana Hernández‐Romero
- Hospital Clínico Universitario Virgen de la ArrixacaUniversidad de MurciaInstituto Murciano de Investigatión Biosanitaria (IMIB)‐ArrixacaMurciaSpain
- Centro de Investigatión Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| |
Collapse
|
12
|
Boraldi F, Moscarelli P, Bochicchio B, Pepe A, Salvi AM, Quaglino D. Heparan sulfates facilitate harmless amyloidogenic fibril formation interacting with elastin-like peptides. Sci Rep 2018; 8:3115. [PMID: 29449596 PMCID: PMC5814424 DOI: 10.1038/s41598-018-21472-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfates (HSs) modulate tissue elasticity in physiopathological conditions by interacting with various matrix constituents as tropoelastin and elastin-derived peptides. HSs bind also to protein moieties accelerating amyloid formation and influencing cytotoxic properties of insoluble fibrils. Interestingly, amyloidogenic polypeptides, despite their supposed pathogenic role, have been recently explored as promising bio-nanomaterials due to their unique and interesting properties. Therefore, we investigated the interactions of HSs, obtained from different sources and exhibiting various degree of sulfation, with synthetic amyloidogenic elastin-like peptides (ELPs), also looking at the effects of these interactions on cell viability and cell behavior using in vitro cultured fibroblasts, as a prototype of mesenchymal cells known to modulate the soft connective tissue environment. Results demonstrate, for the first time, that HSs, with differences depending on their sulfation pattern and chain length, interact with ELPs accelerating aggregation kinetics and amyloid-like fibril formation as well as self-association. Furthermore, these fibrils do not negatively affect fibroblasts’ cell growth and parameters of redox balance, and influence cellular adhesion properties. Data provide information for a better understanding of the interactions altering the elastic component in aging and in pathologic conditions and may pave the way for the development of composite matrix-based biomaterials.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pasquale Moscarelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Antonietta Pepe
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Anna M Salvi
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
13
|
Miglionico R, Ostuni A, Armentano MF, Milella L, Crescenzi E, Carmosino M, Bisaccia F. ABCC6 knockdown in HepG2 cells induces a senescent-like cell phenotype. Cell Mol Biol Lett 2017; 22:7. [PMID: 28536638 PMCID: PMC5415800 DOI: 10.1186/s11658-017-0036-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/02/2017] [Indexed: 11/17/2022] Open
Abstract
Background Pseudoxanthoma elasticum (PXE) is characterized by progressive ectopic mineralization of elastic fibers in dermal, ocular and vascular tissues. No effective treatment exists. It is caused by inactivating mutations in the gene encoding for the ATP-binding cassette, sub-family C member 6 transporter (ABCC6), which is mainly expressed in the liver. The ABCC6 substrate (s) and the PXE pathomechanism remain unknown. Recent studies have shown that overexpression of ABCC6 in HEK293 cells results in efflux of ATP, which is rapidly converted into nucleoside monophosphates and pyrophosphate (PPi). Since the latter inhibits mineralization, it was proposed that the absence of circulating PPi in PXE patients results in the characteristic ectopic mineralization. These studies also demonstrated that the presence of ABCC6 modifies cell secretory activity and suggested that ABCC6 can change the cell phenotype. Methods Stable ABCC6 knockdown HepG2 clones were generated using small hairpin RNA (shRNA) technology. The intracellular glutathione and ROS levels were determined. Experiments using cell cycle analysis, real-time PCR and western blot were performed on genes involved in the senescence phenotype. Results To shed light on the physiological role of ABCC6, we focused on the phenotype of HepG2 cells that lack ABCC6 activity. Interestingly, we found that ABCC6 knockdown HepG2 cells show: 1) intracellular reductive stress; 2) cell cycle arrest in G1 phase; 3) upregulation of p21Cip p53 independent; and 4) downregulation of lamin A/C. Conclusions These findings show that the absence of ABCC6 profoundly changes the HepG2 phenotype, suggesting that the PXE syndrome is a complex metabolic disease that is not exclusively related to the absence of pyrophosphate in the bloodstream.
Collapse
Affiliation(s)
- Rocchina Miglionico
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 85100 Potenza, Italy
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 85100 Potenza, Italy
| | | | - Luigi Milella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 85100 Potenza, Italy
| | - Elvira Crescenzi
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 85100 Potenza, Italy
| | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 85100 Potenza, Italy
| |
Collapse
|
14
|
New perspectives on rare connective tissue calcifying diseases. Curr Opin Pharmacol 2016; 28:14-23. [DOI: 10.1016/j.coph.2016.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/27/2016] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
|
15
|
De Vilder EYG, Hosen MJ, Vanakker OM. The ABCC6 Transporter as a Paradigm for Networking from an Orphan Disease to Complex Disorders. BIOMED RESEARCH INTERNATIONAL 2015; 2015:648569. [PMID: 26356190 PMCID: PMC4555454 DOI: 10.1155/2015/648569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 01/16/2023]
Abstract
The knowledge on the genetic etiology of complex disorders largely results from the study of rare monogenic disorders. Often these common and rare diseases show phenotypic overlap, though monogenic diseases generally have a more extreme symptomatology. ABCC6, the gene responsible for pseudoxanthoma elasticum, an autosomal recessive ectopic mineralization disorder, can be considered a paradigm gene with relevance that reaches far beyond this enigmatic orphan disease. Indeed, common traits such as chronic kidney disease or cardiovascular disorders have been linked to the ABCC6 gene. While during the last decade the awareness of the wide ramifications of ABCC6 has increased significantly, the gene itself and the transmembrane transporter it encodes have not unveiled all of the mysteries that surround them. To gain more insights, multiple approaches are being used including next-generation sequencing, computational methods, and various "omics" technologies. Much effort is made to place the vast amount of data that is gathered in an integrated system-biological network; the involvement of ABCC6 in common disorders provides a good view on the wide implications and potential of such a network. In this review, we summarize the network approaches used to study ABCC6 and the role of this gene in several complex diseases.
Collapse
Affiliation(s)
- Eva Y. G. De Vilder
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Ophthalmology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Mohammad Jakir Hosen
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | | |
Collapse
|
16
|
Jover E, Marín F, Quintana M, Pérez-Andreu J, Hurtado JA, Rodríguez C, Martínez-González J, González-Conejero R, Valdés M, Hernández-Romero D. CALU polymorphism A29809G affects calumenin availability involving vascular calcification. J Mol Cell Cardiol 2015; 82:218-27. [PMID: 25823396 DOI: 10.1016/j.yjmcc.2015.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/09/2015] [Accepted: 03/24/2015] [Indexed: 01/07/2023]
Abstract
Calumenin inhibits gamma-carboxylation of matrix-Gla-protein preventing BMP2-dependent calcification. Our aim was to explore the clinical relevance and functionality of the CALU polymorphism rs1043550, and the relationship of calumenin time-dependent expression profile with the active calcification of human vascular smooth muscle cells (hVSMC). Coronary artery calcium score and lesion severity were assessed by cardiac computed tomography in 139 consecutive low-risk patients genotyped for rs1043550. Polymorphic (G) allele carriage was associated with lower calcium (OR: 6.19, p=0.042). Calcified arteries from CALU 'A' allele carriers undergoing cardiovascular surgery exhibited higher residual calcification, higher calumenin immunostaining and lower matrix-Gla-protein, contrary to 'G' allele carriers. In a luciferase reporter system in vascular cells, polymorphic 'G' allele reduced the mRNA stability by 30% (p < 0.05). Osteogenic high-phosphate media induced active differentiation of hVSMC onto functional osteoblast-like cells as demonstrated by extracellular matrix mineralization and osteoblast markers expression. Calumenin was early over-expressed at day 3 (p < 0.05), but decreased thereafter (mRNA and protein) with implications on gamma-carboxylation system. Calumenin was found released and co-localizing with extracellular matrix calcifications. The CALU polymorphism rs1043550 affects mRNA stability and tissue availability of calumenin thus supporting the protective clinical significance. Calumenin shows a time-dependent profile during induced calcification. These data demonstrate a novel association of vascular calcification with the VSMC phenotypic transition into osteoblast-like cells. Moreover, hyperphosphatemic stimuli render calumenin accumulation in the mineralized extracellular matrix.
Collapse
MESH Headings
- Alleles
- Calcium/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Culture Techniques
- Cell Differentiation
- Cells, Cultured
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Extracellular Matrix/metabolism
- Extracellular Matrix Proteins/metabolism
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Osteoblasts/cytology
- Osteoblasts/metabolism
- Polymorphism, Single Nucleotide
- RNA Stability/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Matrix Gla Protein
Collapse
Affiliation(s)
- Eva Jover
- Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Francisco Marín
- Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - Míriam Quintana
- Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Joaquín Pérez-Andreu
- Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - José Antonio Hurtado
- Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Cristina Rodríguez
- Centro de Investigación Cardiovascular, CSIC-ICCC, Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - José Martínez-González
- Centro de Investigación Cardiovascular, CSIC-ICCC, Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | | | - Mariano Valdés
- Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Diana Hernández-Romero
- Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
17
|
Taverna D, Boraldi F, De Santis G, Caprioli RM, Quaglino D. Histology-directed and imaging mass spectrometry: An emerging technology in ectopic calcification. Bone 2015; 74:83-94. [PMID: 25595835 PMCID: PMC4355241 DOI: 10.1016/j.bone.2015.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/24/2014] [Accepted: 01/07/2015] [Indexed: 01/18/2023]
Abstract
The present study was designed to demonstrate the potential of an optimized histology directed protein identification combined with imaging mass spectrometry technology to reveal and identify molecules associated to ectopic calcification in human tissue. As a proof of concept, mineralized and non-mineralized areas were compared within the same dermal tissue obtained from a patient affected by Pseudoxanthoma elasticum, a genetic disorder characterized by calcification only at specific sites of soft connective tissues. Data have been technically validated on a contralateral dermal tissue from the same subject and compared with those from control healthy skin. Results demonstrate that this approach 1) significantly reduces the effects generated by techniques that, disrupting tissue organization, blend data from affected and unaffected areas; 2) demonstrates that, abolishing differences due to inter-individual variability, mineralized and non-mineralized areas within the same sample have a specific protein profile and have a different distribution of molecules; and 3) avoiding the bias of focusing on already known molecules, reveals a number of proteins that have been never related to the disease nor to the calcification process, thus paving the way for the selection of new molecules to be validated as pathogenic or as potential pharmacological targets.
Collapse
Affiliation(s)
- Domenico Taverna
- Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio De Santis
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Richard M Caprioli
- Departments of Biochemistry, Medicine, Pharmacology and Chemistry and the Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, USA
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
18
|
Boraldi F, Costa S, Rabacchi C, Ciani M, Vanakker O, Quaglino D. Can APOE and MTHFR polymorphisms have an influence on the severity of cardiovascular manifestations in Italian Pseudoxanthoma elasticum affected patients? Mol Genet Metab Rep 2014; 1:477-482. [PMID: 27896127 PMCID: PMC5121367 DOI: 10.1016/j.ymgmr.2014.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 11/26/2022] Open
Abstract
Background The clinical phenotype of Pseudoxanthoma elasticum (PXE) affected patients, although progressive with age, is very heterogeneous, even in the presence of identical ABCC6 mutations, thus suggesting the occurrence of modifier genes. Beside typical skin manifestations, the cardiovascular (CV) system, and especially the peripheral vasculature, is frequently and prematurely compromised. Methods and results A cohort of 119 Italian PXE patients has been characterized for apolipoprotein E (APOE) and methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms by PCR. The severity of the clinical phenotype has been quantified according to the Phenodex PXE International score system. Statistical analysis (chi2 test, odd ratio, regression analysis, analysis of variance) were done by GraphPad. Data demonstrate that the frequency of APOE alleles is similar in PXE patients and in healthy subjects and that the allelic variant E2 confers a protection against the age-related increase of CV manifestations. By contrast, PXE patients are characterized by high frequency of the MTHFR-T677T polymorphism. With age, CV manifestations in T677T, but also in C677T, patients are more severe than those associated with the C677C genotype. Interestingly, compound heterozygosity for C677T and A1298C polymorphisms is present in 70% of PXE patients. Conclusions PXE patients may be screened for these polymorphisms in order to support clinicians for a better management of disease-associated CV complications.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sonia Costa
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Rabacchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Miriam Ciani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
19
|
Kuzaj P, Kuhn J, Michalek RD, Karoly ED, Faust I, Dabisch-Ruthe M, Knabbe C, Hendig D. Large-scaled metabolic profiling of human dermal fibroblasts derived from pseudoxanthoma elasticum patients and healthy controls. PLoS One 2014; 9:e108336. [PMID: 25265166 PMCID: PMC4181624 DOI: 10.1371/journal.pone.0108336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/29/2014] [Indexed: 12/18/2022] Open
Abstract
Mutations in the ABC transporter ABCC6 were recently identified as cause of Pseudoxanthoma elasticum (PXE), a rare genetic disorder characterized by progressive mineralization of elastic fibers. We used an untargeted metabolic approach to identify biochemical differences between human dermal fibroblasts from healthy controls and PXE patients in an attempt to find a link between ABCC6 deficiency, cellular metabolic alterations and disease pathogenesis. 358 compounds were identified by mass spectrometry covering lipids, amino acids, peptides, carbohydrates, nucleotides, vitamins and cofactors, xenobiotics and energy metabolites. We found substantial differences in glycerophospholipid composition, leucine dipeptides, and polypeptides as well as alterations in pantothenate and guanine metabolism to be significantly associated with PXE pathogenesis. These findings can be linked to extracellular matrix remodeling and increased oxidative stress, which reflect characteristic hallmarks of PXE. Our study could facilitate a better understanding of biochemical pathways involved in soft tissue mineralization.
Collapse
Affiliation(s)
- Patricia Kuzaj
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Ryan D. Michalek
- Metabolon, Inc., Durham, North Carolina, United States of America
| | - Edward D. Karoly
- Metabolon, Inc., Durham, North Carolina, United States of America
| | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Mareike Dabisch-Ruthe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
20
|
Moscarelli P, Boraldi F, Bochicchio B, Pepe A, Salvi AM, Quaglino D. Structural characterization and biological properties of the amyloidogenic elastin-like peptide (VGGVG)3. Matrix Biol 2014; 36:15-27. [DOI: 10.1016/j.matbio.2014.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
|
21
|
Hosen MJ, Coucke PJ, Le Saux O, De Paepe A, Vanakker OM. Perturbation of specific pro-mineralizing signalling pathways in human and murine pseudoxanthoma elasticum. Orphanet J Rare Dis 2014; 9:66. [PMID: 24775865 PMCID: PMC4022264 DOI: 10.1186/1750-1172-9-66] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/14/2014] [Indexed: 01/26/2023] Open
Abstract
Background Pseudoxanthoma elasticum (PXE) is characterized by skin (papular lesions), ocular (subretinal neovascularisation) and cardiovascular manifestations (peripheral artery disease), due to mineralization and fragmentation of elastic fibres in the extracellular matrix (ECM). Caused by mutations in the ABCC6 gene, the mechanisms underlying this disease remain unknown. The knowledge on the molecular background of soft tissue mineralization largely comes from insights in vascular calcification, with involvement of the osteoinductive Transforming Growth Factor beta (TGFβ) family (TGFβ1-3 and Bone Morphogenetic Proteins [BMP]), together with ectonucleotides (ENPP1), Wnt signalling and a variety of local and systemic calcification inhibitors. In this study, we have investigated the relevance of the signalling pathways described in vascular soft tissue mineralization in the PXE knock-out mouse model and in PXE patients. Methods The role of the pro-osteogenic pathways BMP2-SMADs-RUNX2, TGFβ-SMAD2/3 and Wnt-MSX2, apoptosis and ER stress was evaluated using immunohistochemistry, mRNA expression profiling and immune-co-staining in dermal tissues and fibroblast cultures of PXE patients and the eyes and whiskers of the PXE knock-out mouse. Apoptosis was further evaluated by TUNEL staining and siRNA mediated gene knockdown. ALPL activity in PXE fibroblasts was studied using ALPL stains. Results We demonstrate the upregulation of the BMP2-SMADs-RUNX2 and TGFβ-2-SMAD2/3 pathway, co-localizing with the mineralization sites, and the involvement of MSX2-canonical Wnt signalling. Further, we show that apoptosis is also involved in PXE with activation of Caspases and BCL-2. In contrast to vascular calcification, neither the other BMPs and TGFβs nor endoplasmic reticulum stress pathways seem to be perturbed in PXE. Conclusions Our study shows that we cannot simply extrapolate knowledge on cell signalling in vascular soft tissue calcification to a multisystem ectopic mineralisation disease as PXE. Contrary, we demonstrate a specific set of perturbed signalling pathways in PXE patients and the knock-out mouse model. Based on our findings and previously reported data, we propose a preliminary cell model of ECM calcification in PXE.
Collapse
|
22
|
Boraldi F, Annovi G, Bartolomeo A, Quaglino D. Fibroblasts from patients affected by Pseudoxanthoma elasticum exhibit an altered PPi metabolism and are more responsive to pro-calcifying stimuli. J Dermatol Sci 2014; 74:72-80. [PMID: 24461675 DOI: 10.1016/j.jdermsci.2013.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Pseudoxanthoma elasticum (PXE) is a genetic disorder characterized by progressive calcification of soft connective tissues. The pathogenesis is still hard to pin down. In PXE dermal fibroblasts, in addition to impaired carboxylation of the vitamin K-dependent inhibitor matrix Gla protein (MGP), we have also demonstrated an up-regulation of alkaline phosphatase activity. In the light of these data we have suggested that both calcium and phosphate metabolism might be locally altered, both pathways acting in synergy on the occurrence of matrix calcification. OBJECTIVE This study aims to better explore if cultured PXE fibroblasts, compared to control cells, exhibit a modified inorganic pyrophosphate (PPi) metabolism and are more responsive to pro-calcifying stimuli. METHODS Primary human dermal fibroblasts isolated from healthy individuals and from PXE patients were cultured for different time points in standard and in pro-calcifying media. The expression of ANKH/ANKH, ENPP1/PC1, ALPL/TNAP, SPP1/OPN was evaluated by qRT-PCR and Western blot, respectively. TNAP activity was measured by spectrophotometric analyses, whereas calcification was investigated by light and electron microscopy as well as by micro-analytical techniques. RESULTS In the presence of pro-calcifying stimuli, dermal fibroblasts alter their phenotype favouring matrix mineralization. In particular, ENPP1/PC1 and SPP1/OPN expression, as well as TNAP activity, was differently expressed in control and in PXE fibroblasts. Moreover, in pathologic cells the ratio between factors favouring and reducing PPi availability exhibits a more pronounced shift towards a pro-calcifying balance. CONCLUSION PXE fibroblasts are more susceptible to pro-calcifying stimuli and in these cells an altered PPi metabolism contributes to matrix calcification.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Annovi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Angelica Bartolomeo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
23
|
Boraldi F, Bartolomeo A, Li Q, Uitto J, Quaglino D. Changes in dermal fibroblasts from Abcc6(-/-) mice are present before and after the onset of ectopic tissue mineralization. J Invest Dermatol 2014; 134:1855-1861. [PMID: 24670382 PMCID: PMC4057957 DOI: 10.1038/jid.2014.88] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
Abstract
Pseudoxanthoma elasticum (PXE), a rare genetic disease caused by mutations in the ABCC6 gene, is characterized by progressive calcification of elastic fibers in the skin, eyes and the cardiovascular system. The pathomechanisms of the mineralization is still obscure. Several hypotheses have been proposed, one of them suggesting a role for fibroblasts in controlling the amount and the quality of the calcified extracellular matrix. This hypothesis raises the question whether changes in mesenchymal cells are the cause and/or the consequences of the calcification process. In this study, fibroblasts were isolated and cultured from Abcc6+/+ and Abcc6−/− mice of different ages in order to investigate parameters known to be associated with the phenotype of fibroblasts from PXE patients. Results demonstrate few changes (Ank and Opn down-regulation) are already present before the occurrence of calcification. By contrast, a modification of other parameters (intracellular O2− content, Tnap activity and Bmp2 up-regulation) can be observed in Abcc6−/− mice after the onset of tissue mineralization. These data suggest that in the Abcc6−/− genotype, dermal fibroblasts actively contribute to changes that promote matrix calcification and that these cells can be further modulated with time by the calcified environment, thus contributing to the age-dependent progression of the disease.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Angelica Bartolomeo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
24
|
Boraldi F, Garcia-Fernandez M, Paolinelli-Devincenzi C, Annovi G, Schurgers L, Vermeer C, Cianciulli P, Ronchetti I, Quaglino D. Ectopic calcification in β-thalassemia patients is associated with increased oxidative stress and lower MGP carboxylation. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:2077-84. [PMID: 23899606 DOI: 10.1016/j.bbadis.2013.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/24/2013] [Accepted: 07/22/2013] [Indexed: 11/29/2022]
Abstract
A number of beta-thalassemia (β-thal) patients in the course of the disease exhibit ectopic calcification affecting skin, eyes and the cardiovascular system. Clinical and histopathological features have been described similar to those in pseudoxanthoma elasticum (PXE), although different genes are affected in the two diseases. Cultured dermal fibroblasts from β-thal patients with and without PXE-like clinical manifestations have been compared for parameters of redox balance and for the expression of proteins, which have been already associated with the pathologic mineralisation of soft connective tissues. Even though oxidative stress is a well-known condition of β-thal patients, our results indicate that the occurrence of mineralized elastin is associated with a more pronounced redox disequilibrium, as demonstrated by the intracellular increase of anion superoxide and of oxidized proteins and lipids. Moreover, fibroblasts from β-thal PXE-like patients are characterized by decreased availability of carboxylated matrix Gla protein (MGP), as well as by altered expression of proteins involved in the vitamin K-dependent carboxylation process. Results demonstrate that elastic fibre calcification is promoted when redox balance threshold levels are exceeded and the vitamin K-dependent carboxylation process is affected decreasing the activity of MGP, a well-known inhibitor of ectopic calcification. Furthermore, independently from the primary gene defect, these pathways are similarly involved in fibroblasts from PXE and from β-thal PXE-like patients as well as in other diseases leading to ectopic calcification, thus suggesting that can be used as markers of pathologic mineralisation.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; PXELab, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Akoglu G, Li Q, Gokoz O, Gazyagci AS, Uitto J. Clinical and histopathological characteristics of a family with R1141X mutation of pseudoxanthoma elasticum - presymptomatic testing and lack of carrier phenotypes. Int J Dermatol 2013; 53:692-8. [PMID: 23675997 DOI: 10.1111/ijd.12008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pseudoxanthoma elasticum (PXE) is a heritable ectopic mineralization disorder affecting cutaneous, ocular, and cardiovascular systems, caused by mutations in the ABCC6 gene. PXE presents with a marked clinical and genetic heterogeneity. Furthermore, heterozygous carriers may present with limited histopathological features. This study was conducted to investigate a patient with PXE and her family members clinically, histopathologically, and genetically. METHODS Clinical and histopathological examinations and mutation analyses of ABCC6 gene were performed. RESULTS Lesional skin biopsy of the patient with PXE demonstrated clumping and fragmentation of elastic fibers, and calcification in the dermis. Non-lesional axillary skin samples of the husband, daughter, and older son were histopathologically normal. The skin from a similar region of a younger son revealed elastic fibers with some fragmentation and clumping but no mineralization. The patient with PXE was homozygous for the R1141X mutation in the ABCC6 gene. The husband had wild-type alleles, while all children were heterozygous carriers. Daily treatment of antioxidant therapy with tocopherol acetate and ascorbic acid was prescribed to the patient with PXE. After one year, both clinical and histopathological regression of the lesions was observed; however, lesions began to progress during the additional 6-month period of treatment. CONCLUSION The mutation analyses of ABCC6 gene are important to determine the genotype of both patients with PXE and putative heterozygous carriers, as histopathological features of carriers may differ even in the same family. The role of antioxidant therapy for PXE is unclear, and there is a need for controlled clinical trials.
Collapse
Affiliation(s)
- Gulsen Akoglu
- Dermatology Clinic, Ankara Halil Sivgin Cubuk State Hospital, Ankara, Turkey
| | | | | | | | | |
Collapse
|
26
|
Boraldi F, Annovi G, Vermeer C, Schurgers LJ, Trenti T, Tiozzo R, Guerra D, Quaglino D. Matrix gla protein and alkaline phosphatase are differently modulated in human dermal fibroblasts from PXE patients and controls. J Invest Dermatol 2013; 133:946-54. [PMID: 23223140 DOI: 10.1038/jid.2012.460] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mineralization of elastic fibers in pseudoxanthoma elasticum (PXE) has been associated with low levels of carboxylated matrix gla protein (MGP), most likely as a consequence of reduced vitamin K (vit K) availability. Unexpectedly, vit K supplementation does not exert beneficial effects on soft connective tissue mineralization in the PXE animal model. To understand the effects of vit K supplementation and in the attempt to interfere with pathways leading to the accumulation of calcium and phosphate within PXE-mineralized soft connective tissues, we have conducted in vitro studies on dermal fibroblasts isolated from control subjects and from PXE patients. Cells were cultured in standard conditions and in calcifying medium (CM) in the presence of vit K1 and K2, or levamisole, an alkaline phosphatase (ALP) inhibitor. Control and PXE fibroblasts were characterized by a similar dose-dependent uptake of both vit K1 and vit K2, thus promoting a significant increase of total protein carboxylation in all cell lines. Nevertheless, MGP carboxylation remained much less in PXE fibroblasts. Interestingly, PXE fibroblasts exhibited a significantly higher ALP activity. Consistently, the mineralization process induced in vitro by a long-term culture in CM appeared unaffected by vit K, whereas it was abolished by levamisole.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ronchetti I, Boraldi F, Annovi G, Cianciulli P, Quaglino D. Fibroblast involvement in soft connective tissue calcification. Front Genet 2013; 4:22. [PMID: 23467434 PMCID: PMC3588566 DOI: 10.3389/fgene.2013.00022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/11/2013] [Indexed: 12/19/2022] Open
Abstract
Soft connective tissue calcification is not a passive process, but the consequence of metabolic changes of local mesenchymal cells that, depending on both genetic and environmental factors, alter the balance between pro- and anti-calcifying pathways. While the role of smooth muscle cells and pericytes in ectopic calcifications has been widely investigated, the involvement of fibroblasts is still elusive. Fibroblasts isolated from the dermis of pseudoxanthoma elasticum (PXE) patients and of patients exhibiting PXE-like clinical and histopathological findings offer an attractive model to investigate the mechanisms leading to the precipitation of mineral deposits within elastic fibers and to explore the influence of the genetic background and of the extracellular environment on fibroblast-associated calcifications, thus improving the knowledge on the role of mesenchymal cells on pathologic mineralization.
Collapse
Affiliation(s)
| | - Federica Boraldi
- PXELab, University of Modena and Reggio EmiliaModena, Italy
- Department of Life Science, University of Modena and Reggio EmiliaModena, Italy
| | - Giulia Annovi
- PXELab, University of Modena and Reggio EmiliaModena, Italy
- Department of Life Science, University of Modena and Reggio EmiliaModena, Italy
| | | | - Daniela Quaglino
- PXELab, University of Modena and Reggio EmiliaModena, Italy
- Department of Life Science, University of Modena and Reggio EmiliaModena, Italy
| |
Collapse
|
28
|
Rasmussen MR, Sommerlund M, Moestrup SK. Is classical pseudoxanthoma elasticum a consequence of hepatic 'intoxication' due to ABCC6 substrate accumulation in the liver? Expert Rev Endocrinol Metab 2013; 8:37-46. [PMID: 30731651 DOI: 10.1586/eem.12.72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pseudoxanthoma elasticum (PXE) is a serious genetic disorder with ectopic mineralization affecting the skin, the eye and the cardiovascular system. The disease is predominantly caused by mutations in the transmembrane ABC protein ABCC6, a putative small substrate transporter. Interestingly, ABCC6 seems virtually absent in the affected organs, whereas a high expression is seen in hepatocytes. This and further published experimental evidence indicate that PXE is a systemic, metabolic liver disease where circulatory changes affect the peripheral mineralization process. Owing to the well-characterized transport of organic substrates by related ABC proteins, it has been proposed that PXE is caused by impaired export of an antimineralization compound to the blood. The authors here present an alternative hypothesis that explains ectopic mineralization in PXE as a consequence of hepatic accumulation of ABCC6 substrate(s) that via gene-regulating effects leads to altered hepatic secretion and activation of antimineralization/anticalcification proteins such as fetuin-A and Gla proteins.
Collapse
Affiliation(s)
- Mie Rostved Rasmussen
- a Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | - Mette Sommerlund
- b Department of Dermatology and Venereology, Aarhus University Hospital, P. P. Ørumsgade 11, 8000 Aarhus C, Denmark
| | - Søren Kragh Moestrup
- a Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
- c Department of Clinical Biochemistry, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark.
| |
Collapse
|
29
|
van Varik BJ, Rennenberg RJMW, Reutelingsperger CP, Kroon AA, de Leeuw PW, Schurgers LJ. Mechanisms of arterial remodeling: lessons from genetic diseases. Front Genet 2012; 3:290. [PMID: 23248645 PMCID: PMC3521155 DOI: 10.3389/fgene.2012.00290] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/23/2012] [Indexed: 12/27/2022] Open
Abstract
Vascular disease is still the leading cause of morbidity and mortality in the Western world, and the primary cause of myocardial infarction, stroke, and ischemia. The biology of vascular disease is complex and still poorly understood in terms of causes and consequences. Vascular function is determined by structural and functional properties of the arterial vascular wall. Arterial stiffness, that is a pathological alteration of the vascular wall, ultimately results in target-organ damage and increased mortality. Arterial remodeling is accelerated under conditions that adversely affect the balance between arterial function and structure such as hypertension, atherosclerosis, diabetes mellitus, chronic kidney disease, inflammatory disease, lifestyle aspects (smoking), drugs (vitamin K antagonists), and genetic abnormalities [e.g., pseudoxanthoma elasticum (PXE), Marfan's disease]. The aim of this review is to provide an overview of the complex mechanisms and different factors that underlie arterial remodeling, learning from single gene defect diseases like PXE, and PXE-like, Marfan's disease and Keutel syndrome in vascular remodeling.
Collapse
Affiliation(s)
- Bernard J van Varik
- Department of Internal Medicine, Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University Maastricht, Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Uitto J, Bercovitch L, Terry SF, Terry PF. Pseudoxanthoma elasticum: progress in diagnostics and research towards treatment : Summary of the 2010 PXE International Research Meeting. Am J Med Genet A 2011; 155A:1517-26. [PMID: 21671388 PMCID: PMC3121926 DOI: 10.1002/ajmg.a.34067] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/25/2011] [Indexed: 11/07/2022]
Abstract
Pseudoxanthoma elasticum (PXE), a prototypic heritable disorder with ectopic mineralization, manifests with characteristic skin findings, ocular involvement, and cardiovascular problems. The classic forms of PXE are due to loss-of-function mutations in the ABCC6 gene, which encodes ABCC6, a putative transmembrane efflux transporter expressed primarily in the liver. While considerable progress has recently been made in understanding the molecular genetics and pathomechanisms of PXE, no effective or specific treatment is currently available for this disorder. PXE International, the premiere patient advocacy organization, organized a workshop in November 2010 to assess the current state of diagnostics and research to develop an agenda towards treatment of PXE. This overview summarizes the progress in PXE research, with emphasis on molecular therapies for this, currently intractable, disorder.
Collapse
Affiliation(s)
- Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | | | | |
Collapse
|