1
|
Tezel G. Multiplex protein analysis for the study of glaucoma. Expert Rev Proteomics 2021; 18:911-924. [PMID: 34672220 PMCID: PMC8712406 DOI: 10.1080/14789450.2021.1996232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Glaucoma, a leading cause of irreversible blindness in the world, is a chronic neurodegenerative disease of multifactorial origin. Extensive research is ongoing to better understand, prevent, and treat progressive degeneration of retinal ganglion cells in glaucoma. While experimental models of glaucoma and postmortem tissues of human donors are analyzed for pathophysiological comprehension and improved treatment of this blinding disease, clinical samples of intraocular biofluids and blood collected from glaucoma patients are analyzed to identify predictive, diagnostic, and prognostic biomarkers. Multiplexing techniques for protein analysis offer a valuable approach for translational glaucoma research. AREAS COVERED This review provides an overview of the increasing applications of multiplex protein analysis for glaucoma research and also highlights current research challenges in the field and expected solutions from emerging technological advances. EXPERT OPINION Analytical techniques for multiplex analysis of proteins can help uncover neurodegenerative processes for enhanced treatment of glaucoma and can help identify molecular biomarkers for improved clinical testing and monitoring of this complex disease. This evolving field and continuously growing availability of new technologies are expected to broaden the comprehension of this complex neurodegenerative disease and speed up the progress toward new therapeutics and personalized patient care to prevent blindness from glaucoma.
Collapse
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, Edward S. Harkness Eye Institute, New York, NY, USA
| |
Collapse
|
2
|
Cueto AFV, Álvarez L, García M, Álvarez-Barrios A, Artime E, Cueto LFV, Coca-Prados M, González-Iglesias H. Candidate Glaucoma Biomarkers: From Proteins to Metabolites, and the Pitfalls to Clinical Applications. BIOLOGY 2021; 10:763. [PMID: 34439995 PMCID: PMC8389649 DOI: 10.3390/biology10080763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022]
Abstract
Glaucoma is an insidious group of eye diseases causing degeneration of the optic nerve, progressive loss of vision, and irreversible blindness. The number of people affected by glaucoma is estimated at 80 million in 2021, with 3.5% prevalence in people aged 40-80. The main biomarker and risk factor for the onset and progression of glaucoma is the elevation of intraocular pressure. However, when glaucoma is diagnosed, the level of retinal ganglion cell death usually amounts to 30-40%; hence, the urgent need for its early diagnosis. Molecular biomarkers of glaucoma, from proteins to metabolites, may be helpful as indicators of pathogenic processes observed during the disease's onset. The discovery of human glaucoma biomarkers is hampered by major limitations, including whether medications are influencing the expression of molecules in bodily fluids, or whether tests to validate glaucoma biomarker candidates should include human subjects with different types and stages of the disease, as well as patients with other ocular and neurodegenerative diseases. Moreover, the proper selection of the biofluid or tissue, as well as the analytical platform, should be mandatory. In this review, we have summarized current knowledge concerning proteomics- and metabolomics-based glaucoma biomarkers, with specificity to human eye tissue and fluid, as well the analytical approach and the main results obtained. The complex data published to date, which include at least 458 different molecules altered in human glaucoma, merit a new, integrative approach allowing for future diagnostic tests based on the absolute quantification of local and/or systemic biomarkers of glaucoma.
Collapse
Affiliation(s)
- Andrés Fernández-Vega Cueto
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Montserrat García
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Ana Álvarez-Barrios
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Enol Artime
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Luis Fernández-Vega Cueto
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Miguel Coca-Prados
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Héctor González-Iglesias
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| |
Collapse
|
3
|
Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells 2021; 10:cells10061372. [PMID: 34199494 PMCID: PMC8228726 DOI: 10.3390/cells10061372] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cell (RGC) somas, degeneration of axons, and loss of synapses at dendrites and axon terminals. Glaucomatous neurodegeneration encompasses multiple triggers, multiple cell types, and multiple molecular pathways through the etiological paths with biomechanical, vascular, metabolic, oxidative, and inflammatory components. As much as intrinsic responses of RGCs themselves, divergent responses and intricate interactions of the surrounding glia also play decisive roles for the cell fate. Seen from a broad perspective, multitarget treatment strategies have a compelling pathophysiological basis to more efficiently manipulate multiple pathogenic processes at multiple injury sites in such a multifactorial neurodegenerative disease. Despite distinct molecular programs for somatic and axonal degeneration, mitochondrial dysfunction and glia-driven neuroinflammation present interdependent processes with widespread impacts in the glaucomatous retina and optic nerve. Since dysfunctional mitochondria stimulate inflammatory responses and proinflammatory mediators impair mitochondria, mitochondrial restoration may be immunomodulatory, while anti-inflammatory treatments protect mitochondria. Manipulation of these converging routes may thus allow a unified treatment strategy to protect RGC axons, somas, and synapses. This review presents an overview of recent research advancements with emphasis on potential treatment targets to achieve the best treatment efficacy to preserve visual function in glaucoma.
Collapse
|
4
|
Mirzaei M, Gupta VK, Chitranshi N, Deng L, Pushpitha K, Abbasi M, Chick JM, Rajput R, Wu Y, McKay MJ, Salekdeh GH, Gupta VB, Haynes PA, Graham SL. Retinal proteomics of experimental glaucoma model reveal intraocular pressure-induced mediators of neurodegenerative changes. J Cell Biochem 2020; 121:4931-4944. [PMID: 32692886 DOI: 10.1002/jcb.29822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/27/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Current evidence suggests that exposure to chronically induced intraocular pressure (IOP) leads to neurodegenerative changes in the inner retina. This study aimed to determine retinal proteomic alterations in a rat model of glaucoma and compared findings with human retinal proteomics changes in glaucoma reported previously. We developed an experimental glaucoma rat model by subjecting the rats to increased IOP (9.3 ± 0.1 vs 20.8 ± 1.6 mm Hg) by weekly microbead injections into the eye (8 weeks). The retinal tissues were harvested from control and glaucomatous eyes and protein expression changes analysed using a multiplexed quantitative proteomics approach (TMT-MS3). Immunofluorescence was performed for selected protein markers for data validation. Our study identified 4304 proteins in the rat retinas. Out of these, 139 proteins were downregulated (≤0.83) while the expression of 109 proteins was upregulated (≥1.2-fold change) under glaucoma conditions (P ≤ .05). Computational analysis revealed reduced expression of proteins associated with glutathione metabolism, mitochondrial dysfunction/oxidative phosphorylation, cytoskeleton, and actin filament organisation, along with increased expression of proteins in coagulation cascade, apoptosis, oxidative stress, and RNA processing. Further functional network analysis highlighted the differential modulation of nuclear receptor signalling, cellular survival, protein synthesis, transport, and cellular assembly pathways. Alterations in crystallin family, glutathione metabolism, and mitochondrial dysfunction associated proteins shared similarities between the animal model of glaucoma and the human disease condition. In contrast, the activation of the classical complement pathway and upregulation of cholesterol transport proteins were exclusive to human glaucoma. These findings provide insights into the neurodegenerative mechanisms that are specifically affected in the retina in response to chronically elevated IOP.
Collapse
Affiliation(s)
- Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| | - Nitin Chitranshi
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| | | | - Kanishka Pushpitha
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| | - Mojdeh Abbasi
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| | - Joel M Chick
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Rashi Rajput
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| | - Yunqi Wu
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Matthew J McKay
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Ghasem H Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Veer B Gupta
- School of Medicine, Deakin University, Melbourne, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| |
Collapse
|
5
|
Tezel G. A broad perspective on the molecular regulation of retinal ganglion cell degeneration in glaucoma. PROGRESS IN BRAIN RESEARCH 2020; 256:49-77. [PMID: 32958215 DOI: 10.1016/bs.pbr.2020.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glaucoma is a complex neurodegenerative disease involving RGC axons, somas, and synapses at dendrites and axon terminals. Recent research advancements in the field have revealed a bigger picture of glaucomatous neurodegeneration that encompasses multiple stressors, multiple injury sites, multiple cell types, and multiple signaling pathways for asynchronous degeneration of RGCs during a chronic disease period. Optic nerve head is commonly viewed as the critical site of injury in glaucoma, where early injurious insults initiate distal and proximal signaling for axonal and somatic degeneration. Despite compartmentalized processes for degeneration of RGC axons and somas, there are intricate interactions between the two compartments and mechanistic overlaps between the molecular pathways that mediate degeneration in axonal and somatic compartments. This review summarizes the recent progress in the molecular understanding of RGC degeneration in glaucoma and highlights various etiological paths with biomechanical, metabolic, oxidative, and inflammatory components. Through this growing body of knowledge, the glaucoma community moves closer toward causative treatment of this blinding disease.
Collapse
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, Edward S. Harkness Eye Institute, New York, NY, United States.
| |
Collapse
|
6
|
Hondur G, Göktas E, Yang X, Al-Aswad L, Auran JD, Blumberg DM, Cioffi GA, Liebmann JM, Suh LH, Trief D, Tezel G. Oxidative Stress-Related Molecular Biomarker Candidates for Glaucoma. Invest Ophthalmol Vis Sci 2017; 58:4078-4088. [PMID: 28820925 PMCID: PMC5685420 DOI: 10.1167/iovs.17-22242] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Glaucoma-related molecular biomarkers can improve clinical testing to diagnose the disease early, predict its prognosis, and monitor treatment responses. Based on the evidence of increased oxidative stress in glaucomatous tissues, this study analyzed oxidative stress–related biomarker candidates in blood and aqueous humor samples with or without glaucoma. Methods The blood and aqueous humor samples collected from carefully selected groups of 96 patients with glaucoma and 64 healthy subjects without glaucoma were included in the study. The samples were analyzed for protein carbonyls and advanced glycation end products (AGEs) through ELISA-based quantification assays. To allow proper comparisons, the Goldmann-Witmer coefficient that reflects the ratio of aqueous humor to blood values corrected to total protein concentration in individual samples was calculated. Results Blood and aqueous humor levels of protein carbonyls and AGEs were found significantly higher in glaucomatous samples compared with age-matched nonglaucomatous controls (P < 0.001). The glaucoma-related increase in protein carbonyls and AGEs was more prominent in aqueous humor samples than blood samples (2.6-fold versus 1.9-fold for protein carbonyls, and 3.1-fold versus 1.9-fold for AGEs; P < 0.001). Comparison of the Goldmann-Witmer coefficients indicated greater values for protein carbonyls (1.37 ± 0.3 vs. 3.07 ± 0.8) and AGEs (1.2 ± 0.3 vs. 3.2 ± 1.1) in the glaucoma group (P < 0.001). Conclusions Findings of this study encourage further validation studies of oxidative stress–related biomarkers in glaucoma. Analysis of protein carbonyls and AGEs in longitudinal studies of larger and heterogeneous patient cohorts should better assess the value of these promising candidates as molecular biomarkers of glaucoma for clinical predictions.
Collapse
Affiliation(s)
- Gözde Hondur
- Columbia University, College of Physicians and Surgeons, Department of Ophthalmology, New York, New York, United States
| | - Emre Göktas
- Columbia University, College of Physicians and Surgeons, Department of Ophthalmology, New York, New York, United States
| | - Xiangjun Yang
- Columbia University, College of Physicians and Surgeons, Department of Ophthalmology, New York, New York, United States
| | - Lama Al-Aswad
- Columbia University, College of Physicians and Surgeons, Department of Ophthalmology, New York, New York, United States
| | - James D Auran
- Columbia University, College of Physicians and Surgeons, Department of Ophthalmology, New York, New York, United States
| | - Dana M Blumberg
- Columbia University, College of Physicians and Surgeons, Department of Ophthalmology, New York, New York, United States
| | - George A Cioffi
- Columbia University, College of Physicians and Surgeons, Department of Ophthalmology, New York, New York, United States
| | - Jeffrey M Liebmann
- Columbia University, College of Physicians and Surgeons, Department of Ophthalmology, New York, New York, United States
| | - Leejee H Suh
- Columbia University, College of Physicians and Surgeons, Department of Ophthalmology, New York, New York, United States
| | - Danielle Trief
- Columbia University, College of Physicians and Surgeons, Department of Ophthalmology, New York, New York, United States
| | - Gülgün Tezel
- Columbia University, College of Physicians and Surgeons, Department of Ophthalmology, New York, New York, United States
| |
Collapse
|
7
|
Liu Y, Allingham RR. Major review: Molecular genetics of primary open-angle glaucoma. Exp Eye Res 2017; 160:62-84. [PMID: 28499933 DOI: 10.1016/j.exer.2017.05.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/29/2017] [Accepted: 05/07/2017] [Indexed: 12/13/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Primary open-angle glaucoma (POAG), the most common type, is a complex inherited disorder that is characterized by progressive retinal ganglion cell death, optic nerve head excavation, and visual field loss. The discovery of a large, and growing, number of genetic and chromosomal loci has been shown to contribute to POAG risk, which carry implications for disease pathogenesis. Differential gene expression analyses in glaucoma-affected tissues as well as animal models of POAG are enhancing our mechanistic understanding in this common, blinding disorder. In this review we summarize recent developments in POAG genetics and molecular genetics research.
Collapse
Affiliation(s)
- Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James & Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - R Rand Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States; Duke - National University of Singapore (Duke-NUS), Singapore.
| |
Collapse
|
8
|
Impact and influence of “omics” technology on hyper tension studies. Int J Cardiol 2017; 228:1022-1034. [DOI: 10.1016/j.ijcard.2016.11.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/06/2016] [Indexed: 12/14/2022]
|
9
|
Funke S, Markowitsch S, Schmelter C, Perumal N, Mwiiri FK, Gabel-Scheurich S, Pfeiffer N, Grus FH. In-Depth Proteomic Analysis of the Porcine Retina by Use of a four Step Differential Extraction Bottom up LC MS Platform. Mol Neurobiol 2016; 54:7262-7275. [PMID: 27796761 DOI: 10.1007/s12035-016-0172-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/27/2016] [Indexed: 01/09/2023]
Abstract
The eye of the house swine (Sus scrofa domestica Linnaeus, 1758) represents a promising model for the study of human eye diseases encircling neurodegenerative retina disorders that go along with proteomic changes. To provide an in-depth view into the "normal" (untreated & healthy) porcine retina proteome as an important reference, a proteomic strategy has been developed encircling stepwise/differential extraction, LC MS and peptide de novo sequencing. Accordingly, pooled porcine retina homogenates were processed by stepwise DDM, CHAPS, ASB14 and ACN/TFA extraction. Retinal proteins were fractionated by 1D-SDS PAGE and further analyzed by LC ESI MS following database and de novo sequencing related protein identification and functional analyses. In summary, >2000 retinal proteins (FDR < 1 %) could be identified by use of the highly reproducible and selective extraction procedure. Moreover, an identification surplus of 36 % comparing initial one step extraction to the four step method could be documented. Despite most proteins were identified in the DDM and CHAPS fraction, all extraction steps contributed exclusive proteins with nucleus proteins enriched in the final ACN/TFA fraction. Additionally, for the first time new non-annotated de novo peptides could be documented for the porcine retina. The generated porcine retina proteome reference map contributes importantly to the understanding of the pig eye proteome and the developed workflow has strong translational potential considering retina studies of various species.
Collapse
Affiliation(s)
- Sebastian Funke
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Mainz, Germany
| | - Sascha Markowitsch
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Mainz, Germany
| | - Carsten Schmelter
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Mainz, Germany
| | - Natarajan Perumal
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Mainz, Germany
| | - Francis Kamau Mwiiri
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Mainz, Germany
| | - Silke Gabel-Scheurich
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Mainz, Germany
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Mainz, Germany
| | - Franz H Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Mainz, Germany.
- Department of Experimental Ophthalmology, University Medical Center (Universitätsmedizin), Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
10
|
Abstract
In many health-related fields, there is great interest in the identification of biomarkers that distinguish diseased from healthy individuals. In addition to identifying the diseased state, biomarkers have potential use in predicting disease risk, monitoring disease progression, evaluating treatment efficacy, and informing pathogenesis. This review details the genetic and biochemical markers associated with canine primary glaucoma. While there are numerous molecular markers (biochemical and genetic) associated with glaucoma in dogs, there is no ideal biomarker that allows early diagnosis and/or identification of disease progression. Genetic mutations associated with canine glaucoma include those affecting ADAMTS10, ADAMTS17, Myocilin, Nebulin, COL1A2, RAB22A, and SRBD1. With the exception of Myocilin, there is very limited crossover in genetic biomarkers identified between human and canine glaucomas. Mutations associated with canine glaucoma vary between and within canine breeds, and gene discoveries therefore have limited overall effects as a screening tool in the general canine population. Biochemical markers of glaucoma include indicators of inflammation, oxidative stress, serum autoantibodies, matrix metalloproteinases, tumor necrosis factor–α, and transforming growth factor–β. These markers include those that indicate an adaptive or protective response, as well as those that reflect the damage arising from oxidative stress.
Collapse
Affiliation(s)
- K. L. Graham
- Department of Ophthalmology and Eye Health, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - C. McCowan
- Department of Pathology, Faculty of Veterinary Science, University of Melbourne, Parkville, Australia
- Department of Economic Development, Jobs, Transport and Resources, Victoria, Australia
| | - A. White
- Department of Ophthalmology and Eye Health, Sydney Medical School, University of Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Tezel G. Applying proteomics to research for optic nerve regeneration in glaucoma: what's on the horizon? Expert Rev Proteomics 2016; 13:979-981. [PMID: 27624734 DOI: 10.1080/14789450.2016.1236548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gülgün Tezel
- a College of Physicians and Surgeons, Department of Ophthalmology, Edward S. Harkness Eye Institute , Columbia University , New York , NY , USA
| |
Collapse
|
12
|
Cabrerizo J, Urcola JH, Vecino E. Changes in Surface Tension of Aqueous Humor in Anterior Segment Ocular Pathologies. Vision (Basel) 2016; 1:vision1010006. [PMID: 31740631 PMCID: PMC6849022 DOI: 10.3390/vision1010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/22/2016] [Accepted: 09/09/2016] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to identify and determine differences in surface tension (ST) of aqueous humor (AH) in patients with cataract, glaucoma and Fuchs endothelial dystrophy (FED). Two hundred and two samples of AH were analyzed (control n = 22; cataract n = 56; glaucoma n = 81; and n = FED 43). Patients with previous history of anterior segment surgery, anterior segment pathology or intraocular injections were excluded from the study. Different types of glaucoma were identified, cataracts were graded using total phaco time data during surgery and clinical severity of FED was assessed by clinical examination. Around 150 microliters AH were obtained during the first step of a surgical procedure, lensectomy, phacoemulsification, nonpenetrating deep sclerotomy (NPDE) and Descemet membrane endothelial keratoplasty (DMEK). A pendant drop-based optical goniometer OCA-15 (Dataphysics, Filderstadt, Germany) was used to measure surface tension. Mean ST was 65.74 ± 3.76 mN/m, 63.59 ± 5.50 mN/m, 64.35 ± 6.99 mN/m, and 60.89 ± 3.73 mN/m in control, cataract, glaucoma and FED patients respectively. Statistically significant differences between FED and control group were found (p < 0.001). Lens condition, cataract maturity, age, and gender did not show influence in ST. ST of AH is significantly decreased in FED patients independently from age and lens condition. These findings may aid to the understanding of the physiopathology of the disease.
Collapse
Affiliation(s)
- Javier Cabrerizo
- Department of Ophthalmology, Rigshospitalet/Glostrup, University of Copenhagen, Nordre Ringvej 57, 2600 Glostrup, Denmark
- Correspondence: ; Tel.: +45-60-599-717
| | - J. Haritz Urcola
- Department of Ophthalmology, University Hospital of Alava, 01009 Vitoria-Gasteiz, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group (GOBE), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
13
|
Yang X, Hondur G, Li M, Cai J, Klein JB, Kuehn MH, Tezel G. Proteomics Analysis of Molecular Risk Factors in the Ocular Hypertensive Human Retina. Invest Ophthalmol Vis Sci 2015; 56:5816-30. [PMID: 26348630 DOI: 10.1167/iovs.15-17294] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To better understand ocular hypertension-induced early molecular alterations that may determine the initiation of neurodegeneration in human glaucoma, this study analyzed retinal proteomic alterations in the ocular hypertensive human retina. METHODS Retina samples were obtained from six human donors with ocular hypertension (without glaucomatous injury) and six age- and sex-matched normotensive controls. Retinal proteins were analyzed by two-dimensional LC-MS/MS (liquid chromatography and linear ion trap mass spectrometry) using oxygen isotope labeling for relative quantification of protein expression. Proteomics data were validated by Western blot and immunohistochemical analyses of selected proteins. RESULTS Out of over 2000 retinal proteins quantified, hundreds exhibited over 2-fold increased or decreased expression in ocular hypertensive samples relative to normotensive controls. Bioinformatics linked the proteomics datasets to various pathways important for maintenance of cellular homeostasis in the ocular hypertensive retina. Upregulated proteins included various heat shock proteins, ubiquitin proteasome pathway components, antioxidants, and DNA repair enzymes, while many proteins involved in mitochondrial oxidative phosphorylation exhibited downregulation in the ocular hypertensive retina. Despite the altered protein expression reflecting intrinsic adaptive/protective responses against mitochondrial energy failure, oxidative stress, and unfolded proteins, no alterations suggestive of an ongoing cell death process or neuroinflammation were detectable. CONCLUSIONS This study provides information about ocular hypertension-related molecular risk factors for glaucoma development. Molecular alterations detected in the ocular hypertensive human retina as opposed to previously detected alterations in human donor retinas with clinically manifest glaucoma suggest that proteome alterations determine the individual threshold to tolerate the ocular hypertension-induced tissue stress or convert to glaucomatous neurodegeneration when intrinsic adaptive/protective responses are overwhelmed.
Collapse
Affiliation(s)
- Xiangjun Yang
- Department of Ophthalmology Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Gözde Hondur
- Department of Ophthalmology Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Ming Li
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Jian Cai
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Jon B Klein
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States 3Robley Rex Veterans Administration Medical Center, Louisville, Kentucky, United States
| | - Markus H Kuehn
- Department of Ophthalmology & Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Gülgün Tezel
- Department of Ophthalmology Columbia University College of Physicians and Surgeons, New York, New York, United States
| |
Collapse
|
14
|
Nickells RW, Pelzel HR. Tools and resources for analyzing gene expression changes in glaucomatous neurodegeneration. Exp Eye Res 2015; 141:99-110. [PMID: 25999234 DOI: 10.1016/j.exer.2015.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/10/2015] [Accepted: 05/17/2015] [Indexed: 01/12/2023]
Abstract
Evaluating gene expression changes presents one of the most powerful interrogative approaches to study the molecular, biochemical, and cellular pathways associated with glaucomatous disease pathology. Technologies to study gene expression profiles in glaucoma are wide ranging. Qualitative techniques provide the power of localizing expression changes to individual cells, but are not robust to evaluate differences in expression changes. Alternatively, quantitative changes provide a high level of stringency to quantify changes in gene expression. Additionally, advances in high throughput analysis and bioinformatics have dramatically improved the number of individual genes that can be evaluated in a single experiment, while dramatically reducing amounts of input tissue/starting material. Together, gene expression profiling and proteomics have yielded new insights on the roles of neuroinflammation, the complement cascade, and metabolic shutdown as important players in the pathology of the optic nerve head and retina in this disease.
Collapse
Affiliation(s)
- Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI, USA.
| | - Heather R Pelzel
- Department of Biological Sciences, University of Wisconsin - Whitewater, Whitewater, WI, USA
| |
Collapse
|
15
|
|
16
|
Cao L, Wang L, Cull G, Zhou A. Alterations in molecular pathways in the retina of early experimental glaucoma eyes. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2015; 7:44-53. [PMID: 26069528 PMCID: PMC4446388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
Glaucoma is a multifactorial, neurodegenerative disease. The molecular mechanisms that underlie the pathophysiological changes in glaucomatous eyes, especially at the early stage of the disease, are poorly understood. Here, we report the findings from a quantitative proteomic analysis of retinas from experimental glaucoma (EG) eyes. An early stage of EG was modeled on unilateral eyes of five nonhuman primates (NHP) by laser treatment-induced elevation of intraocular pressure (IOP). Retinal proteins were extracted from individual EG eyes and their contralateral control eyes of the same animals, respectively, and analyzed by quantitative mass spectrometry (MS). As a result, a total, 475 retinal proteins were confidently identified and quantified. Results of bioinformatic analysis of proteins that showed an increase in the EG eyes suggested changes in apoptosis, DNA damage, immune response, cytoskeleton rearrangement and cell adhesion processes. Interestingly, hemoglobin subunit alpha (HBA) and Ras related C3 botulinum toxin substrate 1 (Rac1) were among the increased proteins. Results of molecular modeling of HBA- and Rac1-associated signaling network implicated the involvement of Mitogen-Activated Protein Kinase (MAPK) pathway in the EG, through which Rac1 may exert a regulatory role on HBA. This is the first observation of this potentially novel signaling network in the NHP retina and in EG. Results of Western blot analyses for Rac1, HBA and a selected MAPK pathway protein indicated synergistic changes in all three proteins in the EG eyes. Further, results of hierarchical cluster analysis of proteomes of control eyes revealed a clear age-proteome relationship, and such relationship appeared disrupted in the EG eyes. In conclusion, our results suggested an increased presence of a potentially novel signaling network at the early stage of glaucoma, and age might be one of the determinant factors in retinal proteomic characteristics under normal conditions.
Collapse
Affiliation(s)
- Li Cao
- Neuroscience Institute, Morehouse School of MedicineAtlanta, GA, USA
- Current address: Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of HealthGaithersburg, MD, USA
| | - Lin Wang
- Devers Eye Institute, Legacy HealthPortland, OR, USA
| | - Grant Cull
- Devers Eye Institute, Legacy HealthPortland, OR, USA
| | - An Zhou
- Neuroscience Institute, Morehouse School of MedicineAtlanta, GA, USA
| |
Collapse
|
17
|
|