1
|
Benwell CJ, Johnson RT, Taylor JAGE, Lambert J, Robinson SD. A proteomics approach to isolating neuropilin-dependent α5 integrin trafficking pathways: neuropilin 1 and 2 co-traffic α5 integrin through endosomal p120RasGAP to promote polarised fibronectin fibrillogenesis in endothelial cells. Commun Biol 2024; 7:629. [PMID: 38789481 PMCID: PMC11126613 DOI: 10.1038/s42003-024-06320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Integrin trafficking to and from membrane adhesions is a crucial mechanism that dictates many aspects of a cell's behaviour, including motility, polarisation, and invasion. In endothelial cells (ECs), the intracellular traffic of α5 integrin is regulated by both neuropilin 1 (NRP1) and neuropilin 2 (NRP2), yet the redundancies in function between these co-receptors remain unclear. Moreover, the endocytic complexes that participate in NRP-directed traffic remain poorly annotated. Here we identify an important role for the GTPase-activating protein p120RasGAP in ECs, promoting the recycling of α5 integrin from early endosomes. Mechanistically, p120RasGAP enables transit of endocytosed α5 integrin-NRP1-NRP2 complexes to Rab11+ recycling endosomes, promoting cell polarisation and fibronectin (FN) fibrillogenesis. Silencing of both NRP receptors, or p120RasGAP, resulted in the accumulation of α5 integrin in early endosomes, a loss of α5 integrin from surface adhesions, and attenuated EC polarisation. Endothelial-specific deletion of both NRP1 and NRP2 in the postnatal retina recapitulated our in vitro findings, severely impairing FN fibrillogenesis and polarised sprouting. Our data assign an essential role for p120RasGAP during integrin traffic in ECs and support a hypothesis that NRP receptors co-traffic internalised cargoes. Importantly, we utilise comparative proteomics analyses to isolate a comprehensive map of NRP1-dependent and NRP2-dependent α5 integrin interactions in ECs.
Collapse
Affiliation(s)
- Christopher J Benwell
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Robert T Johnson
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - James A G E Taylor
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jordi Lambert
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, UK
| | - Stephen D Robinson
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
2
|
Wang J, Xue M, Hu Y, Li J, Li Z, Wang Y. Proteomic Insights into Osteoporosis: Unraveling Diagnostic Markers of and Therapeutic Targets for the Metabolic Bone Disease. Biomolecules 2024; 14:554. [PMID: 38785961 PMCID: PMC11118602 DOI: 10.3390/biom14050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoporosis (OP), a prevalent skeletal disorder characterized by compromised bone strength and increased susceptibility to fractures, poses a significant public health concern. This review aims to provide a comprehensive analysis of the current state of research in the field, focusing on the application of proteomic techniques to elucidate diagnostic markers and therapeutic targets for OP. The integration of cutting-edge proteomic technologies has enabled the identification and quantification of proteins associated with bone metabolism, leading to a deeper understanding of the molecular mechanisms underlying OP. In this review, we systematically examine recent advancements in proteomic studies related to OP, emphasizing the identification of potential biomarkers for OP diagnosis and the discovery of novel therapeutic targets. Additionally, we discuss the challenges and future directions in the field, highlighting the potential impact of proteomic research in transforming the landscape of OP diagnosis and treatment.
Collapse
Affiliation(s)
- Jihan Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
| | - Mengju Xue
- School of Medicine, Xi’an International University, Xi’an 710077, China
| | - Ya Hu
- Department of Medical College, Hunan Polytechnic of Environment and Biology, Hengyang 421000, China
| | - Jingwen Li
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Zhenzhen Li
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
3
|
He Q, Sze SK, Ng KS, Koh CG. Paxillin interactome identified by SILAC and label-free approaches coupled to TurboID sheds light on the compositions of focal adhesions in mouse embryonic stem cells. Biochem Biophys Res Commun 2023; 680:73-85. [PMID: 37725837 DOI: 10.1016/j.bbrc.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
Self-renewal and differentiation of mouse embryonic stem cells (mESCs) are greatly affected by the extracellular matrix (ECM) environment; the composition and stiffness of which are sensed by the cells via integrin-associated focal adhesions (FAs) which link the cells to the ECM. Although FAs have been studied extensively in differentiated cells, their composition and function in mESCs are not as well elucidated. To gain more detailed knowledge of the molecular compositions of FAs in mESCs, we adopted the proximity-dependent biotinylation (BioID) proteomics approach. Paxillin, a known FA protein (FAP), is fused to the promiscuous biotin ligase TurboID as bait. We employed both SILAC- and label-free (LF)-based quantitative proteomics to strengthen as well as complement individual approach. The mass spectrometry data derived from SILAC and LF identified 38 and 443 proteins, respectively, with 35 overlapping candidates. Fifteen of these shared proteins are known FAPs based on literature-curated adhesome and 7 others are among the reported "meta-adhesome", suggesting the components of FAs are largely conserved between mESCs and differentiated cells. Furthermore, the LF data set contained an additional 18 literature-curated FAPs. Notably, the overlapped proteomics data failed to detect LIM-domain proteins such as zyxin family proteins, which suggests that FAs in mESCs are less mature than differentiated cells. Using the LF approach, we are able to identify PDLIM7, a LIM-domain protein, as a FAP in mESCs. This study illustrates the effectiveness of TurboID in mESCs. Importantly, we found that application of both SILAC and LF methods in combination allowed us to analyze the TurboID proteomics data in an unbiased, stringent and yet comprehensive manner.
Collapse
Affiliation(s)
- Qianqian He
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Kai Soon Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
4
|
Hu D, Dong Z, Li B, Lu F, Li Y. Mechanical Force Directs Proliferation and Differentiation of Stem Cells. TISSUE ENGINEERING PART B: REVIEWS 2022; 29:141-150. [PMID: 35979892 DOI: 10.1089/ten.teb.2022.0052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stem cells have attracted much attention in the field of regeneration due to their unique ability to promote regeneration. Among the many approaches used to regulate directed proliferation and differentiation of stem cells, application of mechanical forces is safe, simple, and easy to implement, all of which are advantageous to practical applications. In this review, the mechanisms of mechanical regulation of stem cell proliferation and differentiation are summarized with emphasis on force transduction pathways from the extracellular matrix to the nucleus. Prospects for future clinical applications are also discussed. In conclusion, through specific signaling pathways, mechanical signals ultimately affect gene expression and thus guide cell fate. Mechanical factors can regulate proliferation and differentiation of stem cells through signaling pathways, a greater understanding of which will contribute to future research and applications of cell regeneration therapy. Impact statement Mechanical mechanics is vital for the regulation of cell fate; especially in the field of regenerative medicine, mechanical control has characteristics that are simple and comparable. Mechanically regulated pathways exist widely in cells and are distributed at various structural levels of cells. In this review, we categorized the mechanical regulatory pathways through the clue of the mechanical transmission. We tried to include some newly researched pathways, such as Piezo-related pathways, to show the recent vigorous development in this field.
Collapse
Affiliation(s)
- Delin Hu
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Ziqing Dong
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Bin Li
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Feng Lu
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Ye Li
- Southern Medical University Nanfang Hospital, Plastic and Cosmetic Surgery, guangzhou, Guangzhou, China, 510515,
| |
Collapse
|
5
|
Liu L, Liu M, Xie D, Liu X, Yan H. Role of the extracellular matrix and YAP/TAZ in cell reprogramming. Differentiation 2021; 122:1-6. [PMID: 34768156 DOI: 10.1016/j.diff.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Stem cells are crucial in the fields of regenerative medicine and cell therapy. Mechanical signals from the cellular microenvironment play an important role in inducing the reprogramming of somatic cells into stem cells in vitro, but the mechanisms of this process have yet to be fully explored. Mechanical signals may activate a physical pathway involving the focal adhesions-cytoskeleton-LINC complex axis, and a chemical pathway involving YAP/TAZ. ENH protein likely plays an important role in connecting and regulating these two pathways. Such mechanisms illustrate one way in which mechanical signals from the cellular microenvironment can induce reprogramming of somatic cells to stem cells, and lays the foundation for a new strategy for inducing and regulating such reprogramming in vitro by means of physical processes related to local mechanical forces.
Collapse
Affiliation(s)
- Lan Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Mengchang Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Defu Xie
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Xingke Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Hong Yan
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
6
|
Benwell CJ, Taylor JAGE, Robinson SD. Endothelial neuropilin-2 influences angiogenesis by regulating actin pattern development and α5-integrin-p-FAK complex recruitment to assembling adhesion sites. FASEB J 2021; 35:e21679. [PMID: 34314542 DOI: 10.1096/fj.202100286r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
The ability to form a variety of cell-matrix connections is crucial for angiogenesis to take place. Without stable anchorage to the extracellular matrix (ECM), endothelial cells (ECs) are unable to sense, integrate and disseminate growth factor stimulated responses that drive growth of a vascular bed. Neuropilin-2 (NRP2) is a widely expressed membrane-bound multifunctional non-tyrosine kinase receptor, which has previously been implicated in influencing cell adhesion and migration by interacting with α5-integrin and regulating adhesion turnover. α5-integrin, and its ECM ligand fibronectin (FN) are both known to be upregulated during the formation of neo-vasculature. Despite being descriptively annotated as a candidate biomarker for aggressive cancer phenotypes, the EC-specific roles for NRP2 during developmental and pathological angiogenesis remain unexplored. The data reported here support a model whereby NRP2 actively promotes EC adhesion and migration by regulating dynamic cytoskeletal remodeling and by stimulating Rab11-dependent recycling of α5-integrin-p-FAK complexes to newly assembling adhesion sites. Furthermore, temporal depletion of EC-NRP2 in vivo impairs primary tumor growth by disrupting vessel formation. We also demonstrate that EC-NRP2 is required for normal postnatal retinal vascular development, specifically by regulating cell-matrix adhesion. Upon loss of endothelial NRP2, vascular outgrowth from the optic nerve during superficial plexus formation is disrupted, likely due to reduced FAK phosphorylation within sprouting tip cells.
Collapse
Affiliation(s)
- Christopher J Benwell
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - James A G E Taylor
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Stephen D Robinson
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
7
|
Huang X, Qu R, Peng Y, Yang Y, Fan T, Sun B, Khan AU, Wu S, Wei K, Xu C, Dai J, Ouyang J, Zhong S. Mechanical Sensing Element PDLIM5 Promotes Osteogenesis of Human Fibroblasts by Affecting the Activity of Microfilaments. Biomolecules 2021; 11:biom11050759. [PMID: 34069539 PMCID: PMC8161207 DOI: 10.3390/biom11050759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
Human skin fibroblasts (HSFs) approximate the multidirectional differentiation potential of mesenchymal stem cells, so they are often used in differentiation, cell cultures, and injury repair. They are an important seed source in the field of bone tissue engineering. However, there are a few studies describing the mechanism of osteogenic differentiation of HSFs. Here, osteogenic induction medium was used to induce fibroblasts to differentiate into osteoblasts, and the role of the mechanical sensitive element PDLIM5 in microfilament-mediated osteogenic differentiation of human fibroblasts was evaluated. The depolymerization of microfilaments inhibited the expression of osteogenesis-related proteins and alkaline phosphatase activity of HSFs, while the polymerization of microfilaments enhanced the osteogenic differentiation of HSFs. The evaluation of potential protein molecules affecting changes in microfilaments showed that during the osteogenic differentiation of HSFs, the expression of PDLIM5 increased with increasing induction time, and decreased under the state of microfilament depolymerization. Lentivirus-mediated PDLIM5 knockdown by shRNA weakened the osteogenic differentiation ability of HSFs and inhibited the expression and morphological changes of microfilament protein. The inhibitory effect of knocking down PDLIM5 on HSF osteogenic differentiation was reversed by a microfilament stabilizer. Taken together, these data suggest that PDLIM5 can mediate the osteogenic differentiation of fibroblasts by affecting the formation and polymerization of microfilaments.
Collapse
Affiliation(s)
- Xiaolan Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Yan Peng
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Shutong Wu
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Kuanhai Wei
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Chujiang Xu
- Department of Orthopedics, TCM-Integrated Hospital, Southern Medical University, Guangzhou 510000, China;
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
- Correspondence: (J.D.); (J.O.); (S.Z.); Tel.: +86-(20)-6164-8842 (J.D.); +86-(20)-6164-8199 (J.O.); +86-(20)-6164-8200 (S.Z.)
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
- Correspondence: (J.D.); (J.O.); (S.Z.); Tel.: +86-(20)-6164-8842 (J.D.); +86-(20)-6164-8199 (J.O.); +86-(20)-6164-8200 (S.Z.)
| | - Shizhen Zhong
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
- Correspondence: (J.D.); (J.O.); (S.Z.); Tel.: +86-(20)-6164-8842 (J.D.); +86-(20)-6164-8199 (J.O.); +86-(20)-6164-8200 (S.Z.)
| |
Collapse
|
8
|
EPB41L5 controls podocyte extracellular matrix assembly by adhesome-dependent force transmission. Cell Rep 2021; 34:108883. [PMID: 33761352 DOI: 10.1016/j.celrep.2021.108883] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/21/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
The integrity of the kidney filtration barrier essentially relies on the balanced interplay of podocytes and the glomerular basement membrane (GBM). Here, we show by analysis of in vitro and in vivo models that a loss of the podocyte-specific FERM-domain protein EPB41L5 results in impaired extracellular matrix (ECM) assembly. By using quantitative proteomics analysis of the secretome and matrisome, we demonstrate a shift in ECM composition characterized by diminished deposition of core GBM components, such as LAMA5. Integrin adhesome proteomics reveals that EPB41L5 recruits PDLIM5 and ACTN4 to integrin adhesion complexes (IACs). Consecutively, EPB41L5 knockout podocytes show insufficient maturation of integrin adhesion sites, which translates into impaired force transmission and ECM assembly. These observations build the framework for a model in which EPB41L5 functions as a cell-type-specific regulator of the podocyte adhesome and controls a localized adaptive module in order to prevent podocyte detachment and thereby ensures GBM integrity.
Collapse
|
9
|
Meißner J, Rezaei M, Siepe I, Ackermann D, König S, Eble JA. Redox proteomics reveals an interdependence of redox modification and location of adhesome proteins in NGF-treated PC12 cells. Free Radic Biol Med 2021; 164:341-353. [PMID: 33465466 DOI: 10.1016/j.freeradbiomed.2021.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/30/2022]
Abstract
Proteomics studies have revealed that adhesomes are assembled from a plethora of proteins at integrin-mediated cellular contact sites with the extracellular matrix. By combining dimedone-trapping of sulfenylated proteins with the purification of the adhesome complex, we extended previous proteomics approaches on adhesomes to a redox proteomic analysis. This added a new aspect of adhesome complexity as individual adhesome proteins change their redox state in response to environmental signals. As model system, rat pheochromocytoma PC12 cells were studied in contact with type IV collagen and in response to nerve growth factor (NGF). NGF stimulates the endogenous production of reactive oxygen species (ROS) and the formation of neurite-like cell protrusions, which are anchored to the substratum via adhesomes. Dimedone detects the reversible oxidation of cysteine thiol groups into sulfenic acid groups which was used in proteomic analysis of adhesome proteins revealing that sulfenylation and location of proteins mutually influence each other. For some proteins, identified by the redox proteomics approach, among them Nck-associated protein-1 (Nap-1), proximity ligation analysis and co-immunoprecipitation assays proved that protein sulfenylation sites colocalize with adhesomes of protrusions. In conclusion, the suprastructural composition and function of adhesomes is redox-regulated by ROS. Of interest in this respect, isoform-selective pharmacological inhibition of NADPH-oxidases (Noxs) reduced the adhesomal location of the collagen-binding α1β1 integrin and the length of the outgrowing neurites, indicative of a role of Nox isoforms in the redox-regulation of adhesomes. Thus, our novel redox proteomics approach not only revealed redox-modifications and the potential redox-regulation of adhesomes and their constituents but it may also provide a tool to analyze the ROS-stimulated neurite repair of peripheral neurons.
Collapse
Affiliation(s)
- Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Maryam Rezaei
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Isabel Siepe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | | | - Simone König
- IZKF Core Unit Proteomics, Röntgenstraße 21, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
10
|
Abstract
Cell-surface adhesion receptors mediate interactions with the extracellular matrix (ECM) to control many fundamental aspects of cell behavior, including cell migration, survival, and proliferation. Integrin adhesion receptors recruit structural and signaling proteins to form multimolecular adhesion complexes that link the plasma membrane to the actomyosin cytoskeleton. The assembly and turnover of adhesion complexes are tightly regulated, governed in part by the networks of physical protein interactions and functional signaling associations between components of the adhesome. Proteomic profiling of adhesion complexes has begun to reveal their molecular complexity and diversity. To interrogate the composition of cell-ECM adhesions, we detail herein an approach for the network analysis of adhesion complex proteomes. Integration of these proteomic data with adhesome databases in the context of predicted protein interactions enables the mapping of experimentally defined adhesion complex networks. Computational analysis of resultant network models can identify subnetworks of putative functionally linked adhesion protein communities. This approach provides a framework to predict functional adhesion protein relationships and generate new mechanistic hypotheses for further experimental testing.
Collapse
Affiliation(s)
- Frederic Li Mow Chee
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
11
|
Abstract
The extracellular matrix (ECM) is the noncellular compartment of living organisms and is formed of a complex network of cross-linked proteins, which is collectively known as the matrisome. Apart from providing the structure for an organism, cells interact and thereby communicate with the ECM. Cells interact with their surrounding ECM using cell-surface receptors, such as integrins. Upon integrin engagement with the ECM, cytoskeletal proteins are recruited to integrins and form a molecular protein complex known as the integrin adhesome. Global descriptions of the matrisome and integrin adhesome have been proposed using in silico bioinformatics approaches, as well as through biochemical enrichment of matrisome and adhesome fractions coupled with mass spectrometry-based proteomic analyses, providing inventories of their compositions in different contexts. Here, methods are described for the computational downstream analyses of matrisome and adhesome mass spectrometry datasets that are accessible to wet lab biologists, which include comparing datasets to in silico descriptions, generating interaction networks and performing functional ontological analyses.
Collapse
|
12
|
Huang X, Qu R, Ouyang J, Zhong S, Dai J. An Overview of the Cytoskeleton-Associated Role of PDLIM5. Front Physiol 2020; 11:975. [PMID: 32848888 PMCID: PMC7426503 DOI: 10.3389/fphys.2020.00975] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Regenerative medicine represented by stem cell technology has become one of the pillar medical technologies for human disease treatment. Cytoskeleton plays important roles in maintaining cell morphology, bearing external forces, and maintaining the effectiveness of cell internal structure, among which cytoskeleton related proteins are involved in and play an indispensable role in the changes of cytoskeleton. PDLIM5 is a cytoskeleton-related protein that, like other cytoskeletal proteins, acts as a binding protein. PDZ and LIM domain 5 (PDLIM5), also known as ENH (Enigma homolog), is a cytoplasmic protein with a molecular mass of about 63 KDa that consists of a PDZ domain at the N-terminus and three LIM domains at the C-terminus. PDLIM5 binds to the cytoskeleton and membrane proteins through its PDZ domain and interacts with various signaling molecules, including protein kinases and transcription factors, through its LIM domain. As a cytoskeleton-related protein, PDLIM5 plays an important role in regulating cell proliferation, differentiation and cell fate decision in multiple tissues and cell types. In this review, we briefly summarize the state of knowledge on the PDLIM5 gene, structural properties, and molecular functional mechanisms of the PDLIM5 protein, and its role in cells, tissues, and organ systems, and describe the possible underlying molecular signaling pathways. In the last part of this review, we will focus on discussing the limitations of existing research and the future prospects of PDLIM5 research in turn.
Collapse
Affiliation(s)
- Xiaolan Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shizhen Zhong
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Béguin EP, Janssen EFJ, Hoogenboezem M, Meijer AB, Hoogendijk AJ, van den Biggelaar M. Flow-induced Reorganization of Laminin-integrin Networks Within the Endothelial Basement Membrane Uncovered by Proteomics. Mol Cell Proteomics 2020; 19:1179-1192. [PMID: 32332107 PMCID: PMC7338090 DOI: 10.1074/mcp.ra120.001964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/15/2020] [Indexed: 01/11/2023] Open
Abstract
The vessel wall is continuously exposed to hemodynamic forces generated by blood flow. Endothelial mechanosensors perceive and translate mechanical signals via cellular signaling pathways into biological processes that control endothelial development, phenotype and function. To assess the hemodynamic effects on the endothelium on a system-wide level, we applied a quantitative mass spectrometry approach combined with cell surface chemical footprinting. SILAC-labeled endothelial cells were subjected to flow-induced shear stress for 0, 24 or 48 h, followed by chemical labeling of surface proteins using a non-membrane permeable biotin label, and analysis of the whole proteome and the cell surface proteome by LC-MS/MS analysis. These studies revealed that of the >5000 quantified proteins 104 were altered, which were highly enriched for extracellular matrix proteins and proteins involved in cell-matrix adhesion. Cell surface proteomics indicated that LAMA4 was proteolytically processed upon flow-exposure, which corresponded to the decreased LAMA4 mass observed on immunoblot. Immunofluorescence microscopy studies highlighted that the endothelial basement membrane was drastically remodeled upon flow exposure. We observed a network-like pattern of LAMA4 and LAMA5, which corresponded to the localization of laminin-adhesion molecules ITGA6 and ITGB4. Furthermore, the adaptation to flow-exposure did not affect the inflammatory response to tumor necrosis factor α, indicating that inflammation and flow trigger fundamentally distinct endothelial signaling pathways with limited reciprocity and synergy. Taken together, this study uncovers the blood flow-induced remodeling of the basement membrane and stresses the importance of the subendothelial basement membrane in vascular homeostasis.
Collapse
Affiliation(s)
- Eelke P Béguin
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Esmée F J Janssen
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Mark Hoogenboezem
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Alexander B Meijer
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Arie J Hoogendijk
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | | |
Collapse
|
14
|
P 0-Related Protein Accelerates Human Mesenchymal Stromal Cell Migration by Modulating VLA-5 Interactions with Fibronectin. Cells 2020; 9:cells9051100. [PMID: 32365526 PMCID: PMC7290418 DOI: 10.3390/cells9051100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
P0-related protein (PZR), a Noonan and LEOPARD syndrome target, is a member of the transmembrane Immunoglobulin superfamily. Its cytoplasmic tail contains two immune-receptor tyrosine-based inhibitory motifs (ITIMs), implicated in adhesion-dependent signaling and regulating cell adhesion and motility. PZR promotes cell migration on the extracellular matrix (ECM) molecule, fibronectin, by interacting with SHP-2 (Src homology-2 domain-containing protein tyrosine phosphatase-2), a molecule essential for skeletal development and often mutated in Noonan and LEOPARD syndrome patients sharing overlapping musculoskeletal abnormalities and cardiac defects. To further explore the role of PZR, we assessed the expression of PZR and its ITIM-less isoform, PZRb, in human bone marrow mesenchymal stromal cells (hBM MSC), and its ability to facilitate adhesion to and spreading and migration on various ECM molecules. Furthermore, using siRNA knockdown, confocal microscopy, and immunoprecipitation assays, we assessed PZR and PZRb interactions with β1 integrins. PZR was the predominant isoform in hBM MSC. Migrating hBM MSCs interacted most effectively with fibronectin and required the association of PZR, but not PZRb, with the integrin, VLA-5(α5β1), leading to modulation of focal adhesion kinase phosphorylation and vinculin levels. This raises the possibility that dysregulation of PZR function may modify hBM MSC migratory behavior, potentially contributing to skeletal abnormalities.
Collapse
|
15
|
Photoresponsive Hydrogels with Photoswitchable Stiffness: Emerging Platforms to Study Temporal Aspects of Mesenchymal Stem Cell Responses to Extracellular Stiffness Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1144:53-69. [PMID: 30456642 DOI: 10.1007/5584_2018_293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An extensive number of cell-matrix interaction studies have identified matrix stiffness as a potent regulator of cellular properties and behaviours. Perhaps most notably, matrix stiffness has been demonstrated to regulate mesenchymal stem cell (MSC) phenotype and lineage commitment. Given the therapeutic potential for MSCs in regenerative medicine, significant efforts have been made to understand the molecular mechanisms involved in stiffness regulation. These efforts have predominantly focused on using stiffness-defined polyacrylamide (PA) hydrogels to culture cells in 2D and have enabled elucidation of a number of mechano-sensitive signalling pathways. However, despite proving to be a valuable tool, these stiffness-defined hydrogels do not reflect the dynamic nature of living tissues, which are subject to continuous remodelling during processes such as development, ageing, disease and regeneration. Therefore, in order to study temporal aspects of stiffness regulation, researchers have developed and exploited novel hydrogel substrates with in situ tuneable stiffness. In particular, photoresponsive hydrogels with photoswitchable stiffness are emerging as exciting platforms to study MSC stiffness regulation. This chapter provides an introduction to the use of PA hydrogel substrates, the molecular mechanisms of mechanotransduction currently under investigation and the development of these emerging photoresponsive hydrogel platforms.
Collapse
|
16
|
Wasik AA, Schiller HB. Functional proteomics of cellular mechanosensing mechanisms. Semin Cell Dev Biol 2017; 71:118-128. [DOI: 10.1016/j.semcdb.2017.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 10/19/2022]
|
17
|
Taleahmad S, Mirzaei M, Samadian A, Hassani SN, Haynes PA, Salekdeh GH, Baharvand H. Low Focal Adhesion Signaling Promotes Ground State Pluripotency of Mouse Embryonic Stem Cells. J Proteome Res 2017; 16:3585-3595. [DOI: 10.1021/acs.jproteome.7b00322] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | | | | | | | - Ghasem Hosseini Salekdeh
- Department
of Systems Biology, Agricultural Biotechnology, Research Institute of Iran, Karaj, Iran
| | - Hossein Baharvand
- Department
of Developmental Biology, University of Science and Culture, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| |
Collapse
|
18
|
Rolandsson Enes S, Åhrman E, Palani A, Hallgren O, Bjermer L, Malmström A, Scheding S, Malmström J, Westergren-Thorsson G. Quantitative proteomic characterization of lung-MSC and bone marrow-MSC using DIA-mass spectrometry. Sci Rep 2017; 7:9316. [PMID: 28839187 PMCID: PMC5570998 DOI: 10.1038/s41598-017-09127-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/19/2017] [Indexed: 01/17/2023] Open
Abstract
Mesenchymal stromal cells (MSC) are ideal candidates for cell therapies, due to their immune-regulatory and regenerative properties. We have previously reported that lung-derived MSC are tissue-resident cells with lung-specific properties compared to bone marrow-derived MSC. Assessing relevant molecular differences between lung-MSC and bone marrow-MSC is important, given that such differences may impact their behavior and potential therapeutic use. Here, we present an in-depth mass spectrometry (MS) based strategy to investigate the proteomes of lung-MSC and bone marrow-MSC. The MS-strategy relies on label free quantitative data-independent acquisition (DIA) analysis and targeted data analysis using a MSC specific spectral library. We identified several significantly differentially expressed proteins between lung-MSC and bone marrow-MSC within the cell layer (352 proteins) and in the conditioned medium (49 proteins). Bioinformatics analysis revealed differences in regulation of cell proliferation, which was functionally confirmed by decreasing proliferation rate through Cytochrome P450 stimulation. Our study reveals important differences within proteome and matrisome profiles between lung- and bone marrow-derived MSC that may influence their behavior and affect the clinical outcome when used for cell-therapy.
Collapse
Affiliation(s)
- Sara Rolandsson Enes
- Department of Experimental Medical Science, Lung Biology Unit, Lund University, 22184, Lund, Sweden.
| | - Emma Åhrman
- Department of Experimental Medical Science, Lung Biology Unit, Lund University, 22184, Lund, Sweden.,Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, 22184, Lund, Sweden
| | - Anitha Palani
- Department of Experimental Medical Science, Matrix Biology, Lund University, 22184, Lund, Sweden
| | - Oskar Hallgren
- Department of Experimental Medical Science, Lung Biology Unit, Lund University, 22184, Lund, Sweden
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lund University and Skåne University Hospital, 22184, Lund, Sweden
| | - Anders Malmström
- Department of Experimental Medical Science, Matrix Biology, Lund University, 22184, Lund, Sweden
| | - Stefan Scheding
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden.,Department of Hematology, Skåne University Hospital, 22184, Lund, Sweden
| | - Johan Malmström
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, 22184, Lund, Sweden
| | | |
Collapse
|
19
|
Nanoscale mechanobiology of cell adhesions. Semin Cell Dev Biol 2017; 71:53-67. [PMID: 28754443 DOI: 10.1016/j.semcdb.2017.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022]
Abstract
Proper physiological functions of cells and tissues depend upon their abilities to sense, transduce, integrate, and generate mechanical and biochemical signals. Although such mechanobiological phenomena are widely observed, the molecular mechanisms driving these outcomes are still not fully understood. Cell adhesions formed by integrins and cadherins receptors are key structures that process diverse sources of signals to elicit complex mechanobiological responses. Since the nanoscale is the length scale at which molecules interact to relay force and information, the understanding of cell adhesions at the nanoscale level is important for grasping the inner logics of cellular decision making. Until recently, the study of the biological nanoscale has been restricted by available molecular and imaging tools. Fortunately, rapid technological advances have increasingly opened up the nanoscale realm to systematic investigations. In this review, we discuss current insights and key open questions regarding the nanoscale structure and function relationship of cell adhesions, focusing on recent progresses in characterizing their composition, spatial organization, and cytomechanical operation.
Collapse
|
20
|
Has C, He Y. Renal-skin syndromes. Cell Tissue Res 2017; 369:63-73. [DOI: 10.1007/s00441-017-2623-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/03/2017] [Indexed: 12/16/2022]
|
21
|
Millon-Frémillon A, Aureille J, Guilluy C. Analyzing Cell Surface Adhesion Remodeling in Response to Mechanical Tension Using Magnetic Beads. J Vis Exp 2017:55330. [PMID: 28362397 PMCID: PMC5408950 DOI: 10.3791/55330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mechanosensitive cell surface adhesion complexes allow cells to sense the mechanical properties of their surroundings. Recent studies have identified both force-sensing molecules at adhesion sites, and force-dependent transcription factors that regulate lineage-specific gene expression and drive phenotypic outputs. However, the signaling networks converting mechanical tension into biochemical pathways have remained elusive. To explore the signaling pathways engaged upon mechanical tension applied to cell surface receptor, superparamagnetic microbeads can be used. Here we present a protocol for using magnetic beads to apply forces to cell surface adhesion proteins. Using this approach, it is possible to investigate not only force-dependent cytoplasmic signaling pathways by various biochemical approaches, but also adhesion remodeling by magnetic isolation of adhesion complexes attached to the ligand-coated beads. This protocol includes the preparation of ligand-coated superparamagnetic beads, and the application of define tensile forces followed by biochemical analyses. Additionally, we provide a representative sample of data demonstrating that tension applied to integrin-based adhesion triggers adhesion remodeling and alters protein tyrosine phosphorylation.
Collapse
Affiliation(s)
| | - Julien Aureille
- Institute for Advanced Biosciences, Centre de recherche UGA - INSERM U1209 - CNRS UMR
| | - Christophe Guilluy
- Institute for Advanced Biosciences, Centre de recherche UGA - INSERM U1209 - CNRS UMR;
| |
Collapse
|
22
|
Robertson J, Humphries JD, Paul NR, Warwood S, Knight D, Byron A, Humphries MJ. Characterization of the Phospho-Adhesome by Mass Spectrometry-Based Proteomics. Methods Mol Biol 2017; 1636:235-251. [PMID: 28730483 DOI: 10.1007/978-1-4939-7154-1_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Integrin adhesion receptors engage with their extracellular matrix (ECM) ligands, initiating intracellular signaling pathways that regulate a range of fundamental cell functions. Protein kinases and phosphatases play an integral role in integrin adhesion-mediated signaling. However, until recently, knowledge of the phosphorylation sites regulated downstream of integrin ligation was limited to candidate-based approaches and did not support a system-level understanding of the molecular mechanisms through which ECM engagement influences cell behavior. Here, we describe a mass spectrometry (MS)-based phosphoproteomic protocol that enables the global characterization of phosphorylation-based signaling networks activated by integrin-mediated adhesion. To analyze specifically integrin-proximal signaling, the phosphoproteomic workflow involves the affinity-based isolation and analysis of integrin-associated complexes (IACs) rather than proteins solubilized from whole-cell lysates , which are typically used for global phosphoproteomic studies. The detection of phosphorylation sites from IAC proteins was optimized at various stages of the workflow, including IAC isolation, proteolytic digestion, and MS-based data acquisition strategies. The protocol permits the identification and quantification of IAC components by both Western blotting and MS. Notably, compared to phosphoproteomic analyses of cell lysates, the workflow described here enables an improved detection of phosphorylation sites from well-defined IAC proteins, including many known components of the signaling pathways activated by adhesion to the ECM.
Collapse
Affiliation(s)
- Joseph Robertson
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
- Department of Molecular Microbiology, Oslo University Hospital, 0027, Oslo, Norway
| | - Jonathan D Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Nikki R Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - Stacey Warwood
- Biological Mass Spectrometry Core Facility, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - David Knight
- Biological Mass Spectrometry Core Facility, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
23
|
Manninen A, Varjosalo M. A proteomics view on integrin-mediated adhesions. Proteomics 2016; 17. [PMID: 27723259 DOI: 10.1002/pmic.201600022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/05/2016] [Accepted: 10/06/2016] [Indexed: 01/15/2023]
Abstract
Individual cells in multicellular organisms constantly explore their microenvironment, or niche, to obtain spatial information that is used to regulate cell behavior to maintain tissue integrity. The extracellular matrix (ECM) is an important source of such spatial information. Binding of the integrin family receptors to the ECM triggers formation of integrin adhesion complexes (IACs) that link the ECM network to cellular cytoskeleton via remarkably large multiprotein complexes collectively referred to as the integrin adhesome. Recent advances in proteomics have enabled researchers to study the IAC composition in detail. Various biochemical IAC isolation methods and culture conditions have been employed to study the composition and dynamics of integrin-mediated adhesions mainly in fibroblasts and lymphoblasts. These studies have led to identification of daunting lists of potential IAC components. This review focuses on the current status of proteomics-driven research seeking to understand integrin functions by comprehensive analysis of IAC components. These systems level approaches have revealed the complexity of biochemical and biomechanical signals that are processed at IACs and provide a novel insight into how these signals are conveyed to regulate cellular behavior.
Collapse
Affiliation(s)
- Aki Manninen
- Biocenter Oulu, Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, Biocenter 3, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Horton ER, Humphries JD, James J, Jones MC, Askari JA, Humphries MJ. The integrin adhesome network at a glance. J Cell Sci 2016; 129:4159-4163. [PMID: 27799358 PMCID: PMC5117201 DOI: 10.1242/jcs.192054] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adhesion nexus is the site at which integrin receptors bridge intracellular cytoskeletal and extracellular matrix networks. The connection between integrins and the cytoskeleton is mediated by a dynamic integrin adhesion complex (IAC), the components of which transduce chemical and mechanical signals to control a multitude of cellular functions. In this Cell Science at a Glance article and the accompanying poster, we integrate the consensus adhesome, a set of 60 proteins that have been most commonly identified in isolated IAC proteomes, with the literature-curated adhesome, a theoretical network that has been assembled through scholarly analysis of proteins that localise to IACs. The resulting IAC network, which comprises four broad signalling and actin-bridging axes, provides a platform for future studies of the regulation and function of the adhesion nexus in health and disease.
Collapse
Affiliation(s)
- Edward R Horton
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan D Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jenny James
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Matthew C Jones
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Janet A Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
25
|
Holle AW, McIntyre AJ, Kehe J, Wijesekara P, Young JL, Vincent LG, Engler AJ. High content image analysis of focal adhesion-dependent mechanosensitive stem cell differentiation. Integr Biol (Camb) 2016; 8:1049-1058. [PMID: 27723854 PMCID: PMC5079280 DOI: 10.1039/c6ib00076b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human mesenchymal stem cells (hMSCs) receive differentiation cues from a number of stimuli, including extracellular matrix (ECM) stiffness. The pathways used to sense stiffness and other physical cues are just now being understood and include proteins within focal adhesions. To rapidly advance the pace of discovery for novel mechanosensitive proteins, we employed a combination of in silico and high throughput in vitro methods to analyze 47 different focal adhesion proteins for cryptic kinase binding sites. High content imaging of hMSCs treated with small interfering RNAs for the top 6 candidate proteins showed novel effects on both osteogenic and myogenic differentiation; Vinculin and SORBS1 were necessary for stiffness-mediated myogenic and osteogenic differentiation, respectively. Both of these proteins bound to MAPK1 (also known as ERK2), suggesting that it plays a context-specific role in mechanosensing for each lineage; validation for these sites was performed. This high throughput system, while specifically built to analyze stiffness-mediated stem cell differentiation, can be expanded to other physical cues to more broadly assess mechanical signaling and increase the pace of sensor discovery.
Collapse
Affiliation(s)
- Andrew W Holle
- Department of Bioengineering, University of California, 9500 Gilman Drive, MC 0695, La Jolla, San Diego, CA, USA.
| | - Alistair J McIntyre
- Department of Bioengineering, University of California, 9500 Gilman Drive, MC 0695, La Jolla, San Diego, CA, USA.
| | - Jared Kehe
- Department of Bioengineering, University of California, 9500 Gilman Drive, MC 0695, La Jolla, San Diego, CA, USA.
| | - Piyumi Wijesekara
- Department of Bioengineering, University of California, 9500 Gilman Drive, MC 0695, La Jolla, San Diego, CA, USA.
| | - Jennifer L Young
- Department of Bioengineering, University of California, 9500 Gilman Drive, MC 0695, La Jolla, San Diego, CA, USA.
| | - Ludovic G Vincent
- Department of Bioengineering, University of California, 9500 Gilman Drive, MC 0695, La Jolla, San Diego, CA, USA.
| | - Adam J Engler
- Department of Bioengineering, University of California, 9500 Gilman Drive, MC 0695, La Jolla, San Diego, CA, USA. and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Harryman WL, Pond E, Singh P, Little AS, Eschbacher JM, Nagle RB, Cress AE. Laminin-binding integrin gene copy number alterations in distinct epithelial-type cancers. Am J Transl Res 2016; 8:940-954. [PMID: 27158381 PMCID: PMC4846938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The laminin-binding integrin (LBI) family are cell adhesion molecules that are essential for invasion and metastasis of human epithelial cancers and cell adhesion mediated drug resistance. We investigated whether copy number alteration (CNA) or mutations of a five-gene signature (ITGB4, ITGA3, LAMB3, PLEC, and SYNE3), representing essential genes for LBI adhesion, would correlate with patient outcomes within human epithelial-type tumor data sets currently available in an open access format. METHODS We investigated the relative alteration frequency of an LBI signature panel (integrin β4 (ITGB4), integrin α3 (ITGA3), laminin β3 chain (LAMB3), plectin (PLEC), and nesprin 3 (SYNE3)), independent of the epithelial cancer type, within publically available and published data using cBioPortal and Oncomine software. We rank ordered the results using a 20% alteration frequency cut-off and limited the analysis to studies containing at least 100 samples. Kaplan-Meier survival curves were analyzed to determine if alterations in the LBI signature correlated with patient survival. The Oncomine data mining tool was used to compare the heat map expression of the LBI signature without SYNE3 (as this was not included in the Oncomine database) to drug resistance patterns. RESULTS Twelve different cancer types, representing 5,647 samples, contained at least a 20% alteration frequency of the five-gene LBI signature. The frequency of alteration ranged from 38.3% to 19.8%. Within the LBI signature, PLEC was the most commonly altered followed by LAMB3, ITGB4, ITGA3, and SYNE3 across all twelve cancer types. Within cancer types, there was little overlap of the individual amplified genes from each sample, suggesting different specific amplicons may alter the LBI adhesion structures. Of the twelve cancer types, overall survival was altered by CNA presence in bladder urothelial carcinoma (p=0.0143*) and cervical squamous cell carcinoma and endocervical adenocarcinoma (p=0.0432*). Querying the in vitro drug resistance profiles with the LBI signature demonstrated a positive correlation with cells resistant to inhibitors of HDAC (Vorinostat, Panobinostat) and topoisomerase II (Irinotecan). No correlation was found with the following agents: Bleomycin, Doxorubicin, Methotrexate, Gemcitabine, Docetaxel, Bortezomib, and Shikonen. CONCLUSIONS Our work has identified epithelial-types of human cancer that have significant CNA in our selected five-gene signature, which was based on the essential and genetically-defined functions of the protein product networks (in this case, the LBI axis). CNA of the gene signature not only predicted overall survival in bladder, cervical, and endocervical adenocarcinoma but also response to chemotherapy. This work suggests that future studies designed to optimize the gene signature are warranted. GENERAL SIGNIFICANCE The copy number alteration of structural components of the LBI axis in epithelial-type tumors may be promising biomarkers and rational targets for personalized therapy in preventing or arresting metastatic spread.
Collapse
Affiliation(s)
- William L Harryman
- The University of Arizona Cancer Center1515 N. Campbell Ave., Tucson, Arizona, United States
| | - Erika Pond
- The University of Arizona Cancer Center1515 N. Campbell Ave., Tucson, Arizona, United States
| | - Parminder Singh
- The University of Arizona Cancer Center1515 N. Campbell Ave., Tucson, Arizona, United States
| | - Andrew S Little
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center350 W. Thomas Rd., Phoenix, Arizona, United States
| | - Jennifer M Eschbacher
- Department of Pathology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center350 W. Thomas Rd., Phoenix, Arizona, United States
| | - Raymond B Nagle
- The University of Arizona Cancer Center1515 N. Campbell Ave., Tucson, Arizona, United States
| | - Anne E Cress
- The University of Arizona Cancer Center1515 N. Campbell Ave., Tucson, Arizona, United States
| |
Collapse
|
27
|
Horton ER, Humphries JD, Stutchbury B, Jacquemet G, Ballestrem C, Barry ST, Humphries MJ. Modulation of FAK and Src adhesion signaling occurs independently of adhesion complex composition. J Cell Biol 2016; 212:349-64. [PMID: 26833789 PMCID: PMC4739608 DOI: 10.1083/jcb.201508080] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/06/2016] [Indexed: 01/15/2023] Open
Abstract
Integrin adhesion complexes (IACs) form mechanochemical connections between the extracellular matrix and actin cytoskeleton and mediate phenotypic responses via posttranslational modifications. Here, we investigate the modularity and robustness of the IAC network to pharmacological perturbation of the key IAC signaling components focal adhesion kinase (FAK) and Src. FAK inhibition using AZ13256675 blocked FAK(Y397) phosphorylation but did not alter IAC composition, as reported by mass spectrometry. IAC composition was also insensitive to Src inhibition using AZD0530 alone or in combination with FAK inhibition. In contrast, kinase inhibition substantially reduced phosphorylation within IACs, cell migration and proliferation. Furthermore using fluorescence recovery after photobleaching, we found that FAK inhibition increased the exchange rate of a phosphotyrosine (pY) reporter (dSH2) at IACs. These data demonstrate that kinase-dependent signal propagation through IACs is independent of gross changes in IAC composition. Together, these findings demonstrate a general separation between the composition of IACs and their ability to relay pY-dependent signals.
Collapse
Affiliation(s)
- Edward R Horton
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Jonathan D Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Ben Stutchbury
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Simon T Barry
- Oncology iMed, AstraZeneca, Cheshire SK10 4TG, England, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| |
Collapse
|