1
|
Manda V, Pavelka J, Lau E. Proteomics applications in next generation induced pluripotent stem cell models. Expert Rev Proteomics 2024; 21:217-228. [PMID: 38511670 PMCID: PMC11065590 DOI: 10.1080/14789450.2024.2334033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Induced pluripotent stem (iPS) cell technology has transformed biomedical research. New opportunities now exist to create new organoids, microtissues, and body-on-a-chip systems for basic biology investigations and clinical translations. AREAS COVERED We discuss the utility of proteomics for attaining an unbiased view into protein expression changes during iPS cell differentiation, cell maturation, and tissue generation. The ability to discover cell-type specific protein markers during the differentiation and maturation of iPS-derived cells has led to new strategies to improve cell production yield and fidelity. In parallel, proteomic characterization of iPS-derived organoids is helping to realize the goal of bridging in vitro and in vivo systems. EXPERT OPINIONS We discuss some current challenges of proteomics in iPS cell research and future directions, including the integration of proteomic and transcriptomic data for systems-level analysis.
Collapse
Affiliation(s)
- Vyshnavi Manda
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jay Pavelka
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Edward Lau
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
2
|
Nguyen J, Lin YY, Gerecht S. The next generation of endothelial differentiation: Tissue-specific ECs. Cell Stem Cell 2021; 28:1188-1204. [PMID: 34081899 DOI: 10.1016/j.stem.2021.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endothelial cells (ECs) sense and respond to fluid flow and regulate immune cell trafficking in all organs. Despite sharing the same mesodermal origin, ECs exhibit heterogeneous tissue-specific characteristics. Human pluripotent stem cells (hPSCs) can potentially be harnessed to capture this heterogeneity and further elucidate endothelium behavior to satisfy the need for increased accuracy and breadth of disease models and therapeutics. Here, we review current strategies for hPSC differentiation to blood vascular ECs and their maturation into continuous, fenestrated, and sinusoidal tissues. We then discuss the contribution of hPSC-derived ECs to recent advances in organoid development and organ-on-chip approaches.
Collapse
Affiliation(s)
- Jane Nguyen
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ying-Yu Lin
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
iPSCs-laden GDF8-grafted aldehyde hyaluronic acid-polyacrylamide inverted colloidal crystal constructs with controlled release of CHIR99021 and retinoic acid to generate insulin-producing cells. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Loo LSW, Vethe H, Soetedjo AAP, Paulo JA, Jasmen J, Jackson N, Bjørlykke Y, Valdez IA, Vaudel M, Barsnes H, Gygi SP, Raeder H, Teo AKK, Kulkarni RN. Dynamic proteome profiling of human pluripotent stem cell-derived pancreatic progenitors. Stem Cells 2020; 38:542-555. [PMID: 31828876 DOI: 10.1002/stem.3135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/15/2019] [Indexed: 12/25/2022]
Abstract
A comprehensive characterization of the molecular processes controlling cell fate decisions is essential to derive stable progenitors and terminally differentiated cells that are functional from human pluripotent stem cells (hPSCs). Here, we report the use of quantitative proteomics to describe early proteome adaptations during hPSC differentiation toward pancreatic progenitors. We report that the use of unbiased quantitative proteomics allows the simultaneous profiling of numerous proteins at multiple time points, and is a valuable tool to guide the discovery of signaling events and molecular signatures underlying cellular differentiation. We also monitored the activity level of pathways whose roles are pivotal in the early pancreas differentiation, including the Hippo signaling pathway. The quantitative proteomics data set provides insights into the dynamics of the global proteome during the transition of hPSCs from a pluripotent state toward pancreatic differentiation.
Collapse
Affiliation(s)
- Larry Sai Weng Loo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore.,School of Biological Sciences, Nanyang Technological University (NTU), Singapore
| | - Heidrun Vethe
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts.,KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Joanita Jasmen
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore
| | - Nicholas Jackson
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Yngvild Bjørlykke
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ivan A Valdez
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Marc Vaudel
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Harald Barsnes
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Helge Raeder
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore.,School of Biological Sciences, Nanyang Technological University (NTU), Singapore.,Departments of Biochemistry and Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Zhou J, Sun J. A Revolution in Reprogramming: Small Molecules. Curr Mol Med 2019; 19:77-90. [DOI: 10.2174/1566524019666190325113945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/07/2018] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
Abstract
Transplantation of reprogrammed cells from accessible sources and in vivo
reprogramming are potential therapies for regenerative medicine. During the last
decade, genetic approaches, which mostly involved transcription factors and
microRNAs, have been shown to affect cell fates. However, their potential
carcinogenicity and other unexpected effects limit their translation into clinical
applications. Recently, with the power of modern biology-oriented design and synthetic
chemistry, as well as high-throughput screening technology, small molecules have been
shown to enhance reprogramming efficiency, replace genetic factors, and help elucidate
the molecular mechanisms underlying cellular plasticity and degenerative diseases. As a
non-viral and non-integrating approach, small molecules not only show revolutionary
capacities in generating desired exogenous cell types but also have potential as drugs
that can restore tissues through repairing or reprogramming endogenous cells. Here, we
focus on the recent progress made to use small molecules in cell reprogramming along
with some related mechanisms to elucidate these issues.
Collapse
Affiliation(s)
- Jin Zhou
- Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jie Sun
- Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Haller C, Piccand J, De Franceschi F, Ohi Y, Bhoumik A, Boss C, De Marchi U, Jacot G, Metairon S, Descombes P, Wiederkehr A, Palini A, Bouche N, Steiner P, Kelly OG, R-C Kraus M. Macroencapsulated Human iPSC-Derived Pancreatic Progenitors Protect against STZ-Induced Hyperglycemia in Mice. Stem Cell Reports 2019; 12:787-800. [PMID: 30853374 PMCID: PMC6449839 DOI: 10.1016/j.stemcr.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
In type 1 diabetes, a renewable source of human pancreatic β cells, in particular from human induced pluripotent stem cell (hiPSC) origin, would greatly benefit cell therapy. Earlier work showed that pancreatic progenitors differentiated from human embryonic stem cells in vitro can further mature to become glucose responsive following macroencapsulation and transplantation in mice. Here we took a similar approach optimizing the generation of pancreatic progenitors from hiPSCs. This work demonstrates that hiPSCs differentiated to pancreatic endoderm in vitro can be efficiently and robustly generated under large-scale conditions. The hiPSC-derived pancreatic endoderm cells (HiPECs) can further differentiate into glucose-responsive islet-like cells following macroencapsulation and in vivo implantation. The HiPECs can protect mice from streptozotocin-induced hyperglycemia and maintain normal glucose homeostasis and equilibrated plasma glucose concentrations at levels similar to the human set point. These results further validate the potential use of hiPSC-derived islet cells for application in clinical settings.
Collapse
Affiliation(s)
- Corinne Haller
- Nestlé Research, Nestlé Institute of Health Sciences, Stem Cells Unit, EPFL Innovation Park, Building G, 1015 Lausanne, Switzerland
| | - Julie Piccand
- Nestlé Research, Nestlé Institute of Health Sciences, Stem Cells Unit, EPFL Innovation Park, Building G, 1015 Lausanne, Switzerland
| | - Filippo De Franceschi
- Nestlé Research, Nestlé Institute of Health Sciences, Department of Flow Cytometry, Lausanne, Switzerland
| | | | | | - Christophe Boss
- Nestlé Research, Nestlé Institute of Health Sciences, Department of Device Engineering, Lausanne, Switzerland
| | - Umberto De Marchi
- Nestlé Research, Nestlé Institute of Health Sciences, Department of Mitochondrial Function, Lausanne, Switzerland
| | - Guillaume Jacot
- Nestlé Research, Nestlé Institute of Health Sciences, Department of Natural Bioactive and Screening, Lausanne, Switzerland
| | - Sylviane Metairon
- Nestlé Research, Nestlé Institute of Health Sciences, Department of Functional Genomics, Lausanne, Switzerland
| | - Patrick Descombes
- Nestlé Research, Nestlé Institute of Health Sciences, Department of Functional Genomics, Lausanne, Switzerland
| | - Andreas Wiederkehr
- Nestlé Research, Nestlé Institute of Health Sciences, Department of Mitochondrial Function, Lausanne, Switzerland
| | - Alessio Palini
- Nestlé Research, Nestlé Institute of Health Sciences, Department of Flow Cytometry, Lausanne, Switzerland
| | - Nicolas Bouche
- Nestlé Research, Nestlé Institute of Health Sciences, Department of Device Engineering, Lausanne, Switzerland
| | - Pascal Steiner
- Nestlé Research, Nestlé Institute of Health Sciences, Department of Brain Health, Lausanne, Switzerland
| | | | - Marine R-C Kraus
- Nestlé Research, Nestlé Institute of Health Sciences, Stem Cells Unit, EPFL Innovation Park, Building G, 1015 Lausanne, Switzerland.
| |
Collapse
|