1
|
Schaiter A, Hentschel A, Kleefeld F, Schuld J, Umathum V, Procida-Kowalski T, Nelke C, Roth A, Hahn A, Krämer HH, Ruck T, Horvath R, van der Ven PFM, Bartkuhn M, Roos A, Schänzer A. Molecular composition of skeletal muscle in infants and adults: a comparative proteomic and transcriptomic study. Sci Rep 2024; 14:22965. [PMID: 39362957 PMCID: PMC11450201 DOI: 10.1038/s41598-024-74913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
To gain a deeper understanding of skeletal muscle function in younger age and aging in elderly, identification of molecular signatures regulating these functions under physiological conditions is needed. Although molecular studies of healthy muscle have been conducted on adults and older subjects, there is a lack of research on infant muscle in terms of combined morphological, transcriptomic and proteomic profiles. To address this gap of knowledge, we performed RNA sequencing (RNA-seq), tandem mass spectrometry (LC-MS/MS), morphometric analysis and assays for mitochondrial maintenance in skeletal muscle biopsies from both, infants aged 4-28 months and adults aged 19-65 years. We identified differently expressed genes (DEGs) and differentially expressed proteins (DEPs) in adults compared to infants. The down-regulated genes in adults were associated with functional terms primarily related to sarcomeres, cellular maintenance, and metabolic, immunological and developmental processes. Thus, our study indicates age-related differences in the molecular signatures and associated functions of healthy skeletal muscle. Moreover, the findings assert that processes previously associated solely with aging are indeed part of development and healthy aging. Hence, combined findings of this study also indicate that age-dependent controls are crucial in muscle disease studies, as otherwise the comparative results may not be reliable.
Collapse
Affiliation(s)
| | - Andreas Hentschel
- Leibnitz Institut für Analytische Wissenschaften-ISAS e.V., Dortmund, Germany
| | - Felix Kleefeld
- Department of Clinical Neurosciences, School of Clinical Medicine, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Schuld
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Vincent Umathum
- Institute of Neuropathology, Justus-Liebig University, Giessen, Germany
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | | | - Christopher Nelke
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Angela Roth
- Institute of Neuropathology, Justus-Liebig University, Giessen, Germany
| | - Andreas Hahn
- Department of Pediatric Neurology, Justus-Liebig University Giessen, Giessen, Germany
| | - Heidrun H Krämer
- Department of Neurology, Justus-Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Giessen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Marek Bartkuhn
- Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig University, Giessen, Germany.
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Athamneh M, Daya N, Hentschel A, Gangfuss A, Ruck T, Marina AD, Schara‐Schmidt U, Sickmann A, Güttsches A, Deschauer M, Preusse C, Vorgerd M, Roos A. Proteomic studies in VWA1-related neuromyopathy allowed new pathophysiological insights and the definition of blood biomarkers. J Cell Mol Med 2024; 28:e18122. [PMID: 38652110 PMCID: PMC11037410 DOI: 10.1111/jcmm.18122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 04/25/2024] Open
Abstract
Bi-allelic variants in VWA1, encoding Von Willebrand Factor A domain containing 1 protein localized to the extracellular matrix (ECM), were linked to a neuromuscular disorder with manifestation in child- or adulthood. Clinical findings indicate a neuromyopathy presenting with muscle weakness. Given that pathophysiological processes are still incompletely understood, and biomarkers are still missing, we aimed to identify blood biomarkers of pathophysiological relevance: white blood cells (WBC) and plasma derived from six VWA1-patients were investigated by proteomics. Four proteins, BET1, HNRNPDL, NEFM and PHGDH, known to be involved in neurological diseases and dysregulated in WBC were further validated by muscle-immunostainings unravelling HNRNPDL as a protein showing differences between VWA1-patients, healthy controls and patients suffering from neurogenic muscular atrophy and BICD2-related neuromyopathy. Immunostaining studies of PHGDH indicate its involvement in apoptotic processes via co-localisation with caspase-3. NEFM showed an increase in cells within the ECM in biopsies of all patients studied. Plasma proteomics unravelled dysregulation of 15 proteins serving as biomarker candidates among which a profound proportion of increased ones (6/11) are mostly related to antioxidative processes and have even partially been described as blood biomarkers for other entities of neuromuscular disorders before. CRP elevated in plasma also showed an increase in the extracellular space of VWA1-mutant muscle. Results of our combined studies for the first time describe pathophysiologically relevant biomarkers for VWA1-related neuromyopathy and suggest that VWA1-patient derived blood might hold the potential to study disease processes of clinical relevance, an important aspect for further preclinical studies.
Collapse
Affiliation(s)
- Mohammed Athamneh
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
- Department of Clinical Science, Faculty of MedicineYarmouk UniversityIrbidJordan
| | - Nassam Daya
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Andreas Hentschel
- Leibniz‐Institut für Analytische Wissenschaften‐ISAS‐e.V.DortmundGermany
| | - Andrea Gangfuss
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
| | - Tobias Ruck
- Department of Neurology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
| | - Ulrike Schara‐Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
| | - Albert Sickmann
- Leibniz‐Institut für Analytische Wissenschaften‐ISAS‐e.V.DortmundGermany
| | - Anne‐Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Marcus Deschauer
- Department of NeurologyTechnical University of Munich, School of MedicineMunichGermany
| | - Corinna Preusse
- Institute of Neuropathology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Andreas Roos
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
- Children's Hospital of Eastern Ontario Research InstituteUniversity of OttawaOttawaCanada
| |
Collapse
|
3
|
Pugliese A, Della Marina A, de Paula Estephan E, Zanoteli E, Roos A, Schara-Schmidt U, Hentschel A, Azuma Y, Töpf A, Thompson R, Polavarapu K, Lochmüller H. Mutations in PTPN11 could lead to a congenital myasthenic syndrome phenotype: a Noonan syndrome case series. J Neurol 2024; 271:1331-1341. [PMID: 37923938 DOI: 10.1007/s00415-023-12070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/06/2023]
Abstract
The RASopathies are a group of genetic rare diseases caused by mutations affecting genes involved in the RAS/MAPK (RAS-mitogen activated protein kinase) pathway. Among them, PTPN11 pathogenic variants are responsible for approximately 50% of Noonan syndrome (NS) cases and, albeit to a lesser extent, of Leopard syndrome (LPRD1), which present a few overlapping clinical features, such as facial dysmorphism, developmental delay, cardiac defects, and skeletal deformities. Motor impairment and decreased muscle strength have been recently reported. The etiology of the muscle involvement in these disorders is still not clear but probably multifactorial, considering the role of the RAS/MAPK pathway in skeletal muscle development and Acetylcholine Receptors (AChR) clustering at the neuromuscular junction (NMJ). We report, herein, four unrelated children carrying three different heterozygous mutations in the PTPN11 gene. Intriguingly, their phenotypic features first led to a clinical suspicion of congenital myasthenic syndrome (CMS), due to exercise-induced fatigability with a variable degree of muscle weakness, and serum proteomic profiling compatible with a NMJ defect. Moreover, muscle fatigue improved after treatment with CMS-specific medication. Although the link between PTPN11 gene and neuromuscular transmission is unconfirmed, an increasing number of patients with RASopathies are affected by muscle weakness and fatigability. Hence, NS or LPDR1 should be considered in children with suspected CMS but negative genetic workup for known CMS genes or additional symptoms indicative of NS, such as facial dysmorphism or intellectual disability.
Collapse
Affiliation(s)
- Alessia Pugliese
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON, K1H 8L1, Canada
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147, Essen, Germany
| | - Eduardo de Paula Estephan
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Department of Neurological Sciences, Psychiatry, and Medical Psychology, Sao Jose do Rio Preto State Medical School, Sao Jose do Rio Preto, São Paulo, Brazil
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Andreas Roos
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON, K1H 8L1, Canada
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147, Essen, Germany
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147, Essen, Germany
| | - Andreas Hentschel
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, University of Newcastle, Newcastle Upon Tyne, UK
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON, K1H 8L1, Canada
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON, K1H 8L1, Canada
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON, K1H 8L1, Canada.
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Catalonia, Spain.
| |
Collapse
|
4
|
Brandão-Teles C, Zuccoli GS, de Moraes Vrechi TA, Ramos-da-Silva L, Santos AVS, Crunfli F, Martins-de-Souza D. Induced-pluripotent stem cells and neuroproteomics as tools for studying neurodegeneration. Biochem Soc Trans 2024; 52:163-176. [PMID: 38288874 DOI: 10.1042/bst20230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
The investigation of neurodegenerative diseases advanced significantly with the advent of cell-reprogramming technology, leading to the creation of new models of human illness. These models, derived from induced pluripotent stem cells (iPSCs), facilitate the study of sporadic as well as hereditary diseases and provide a comprehensive understanding of the molecular mechanisms involved with neurodegeneration. Through proteomics, a quantitative tool capable of identifying thousands of proteins from small sample volumes, researchers have attempted to identify disease mechanisms by detecting differentially expressed proteins and proteoforms in disease models, biofluids, and postmortem brain tissue. The integration of these two technologies allows for the identification of novel pathological targets within the realm of neurodegenerative diseases. Here, we highlight studies from the past 5 years on the contributions of iPSCs within neuroproteomic investigations, which uncover the molecular mechanisms behind these illnesses.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Talita Aparecida de Moraes Vrechi
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Lívia Ramos-da-Silva
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Aline Valéria Sousa Santos
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-862, SP, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D)
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| |
Collapse
|
5
|
Gangfuß A, Rating P, Ferreira T, Hentschel A, Marina AD, Kölbel H, Sickmann A, Abicht A, Kraft F, Ruck T, Böhm J, Schänzer A, Schara-Schmidt U, Neuhann TM, Horvath R, Roos A. A Homozygous NDUFS6 Variant Associated with Neuropathy and Optic Atrophy. J Neuromuscul Dis 2024; 11:485-491. [PMID: 38217609 DOI: 10.3233/jnd-230181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Background The NADH dehydrogenase [ubiquinone] iron-sulfur protein 6 (NDUFS6) gene encodes for an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I). Bi-allelic NDUFS6 variants have been linked with a severe disorder mostly reported as a lethal infantile mitochondrial disease (LMID) or Leigh syndrome (LS). Objective Here, we identified a homozygous variant (c.309 + 5 G > A) in NDUFS6 in one male patient with axonal neuropathy accompanied by loss of small fibers in skin biopsy and further complicated by optic atrophy and borderline intellectual disability. Methods To address the pathogenicity of the variant, biochemical studies (mtDNA copy number quantification, ELISA, Proteomic profiling) of patient-derived leukocytes were performed. Results The analyses revealed loss of NDUFS6 protein associated with a decrease of three further mitochondrial NADH dehydrogenase subunit/assembly proteins (NDUFA12, NDUFS4 and NDUFV1). Mitochondrial copy number is not altered in leukocytes and the mitochondrial biomarker GDF15 is not significantly changed in serum. Conclusions Hence, our combined clinical and biochemical data strengthen the concept of NDUFS6 being causative for a very rare form of axonal neuropathy associated with optic atrophy and borderline intellectual disability, and thus expand (i) the molecular genetic landscape of neuropathies and (ii) the clinical spectrum of NDUFS6-associated phenotypes.
Collapse
Affiliation(s)
- Andrea Gangfuß
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Philipp Rating
- Department of Ophthalmology, University Duisburg-Essen, Essen, Germany
| | - Tomas Ferreira
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Dortmund, Germany
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Heike Kölbel
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Dortmund, Germany
| | - Angela Abicht
- Department of Neurology, Friedrich-Baur Institute, Munich, Germany
- MGZ - Medizinisch Genetisches Zentrum, Munich, Germany
| | - Florian Kraft
- Institute of Human Genetics und Genomic Medicine, RWTH-Aachen University, Aachen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johann Böhm
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | | | - Rita Horvath
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
6
|
Smith IC, Chakraborty S, Bourque PR, Sampaio ML, Melkus G, Lochmüller H, Woulfe J, Parks RJ, Brais B, Warman-Chardon J. Emerging and established biomarkers of oculopharyngeal muscular dystrophy. Neuromuscul Disord 2023; 33:824-834. [PMID: 37926637 DOI: 10.1016/j.nmd.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a rare, primarily autosomal dominant, late onset muscular dystrophy commonly presenting with ptosis, dysphagia, and subsequent weakness of proximal muscles. Although OPMD diagnosis can be confirmed with high confidence by genetic testing, the slow progression of OPMD poses a significant challenge to clinical monitoring and a barrier to assessing the efficacy of treatments during clinical trials. Accordingly, there is a pressing need for more sensitive measures of OPMD progression, particularly those which do not require a muscle biopsy. This review provides an overview of progress in OPMD biomarkers from clinical assessment, quantitative imaging, histological assessments, and genomics, as well as hypothesis-generating "omics" approaches. The ongoing search for biomarkers relevant to OPMD progression needs an integrative, longitudinal approach combining validated and experimental approaches which may include clinical, imaging, demographic, and biochemical assessment methods. A multi-omics approach to biochemical biomarker discovery could help provide context for differences found between individuals with varying levels of disease activity and provide insight into pathomechanisms and prognosis of OPMD.
Collapse
Affiliation(s)
- Ian C Smith
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | | | - Pierre R Bourque
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada
| | - Marcos L Sampaio
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Department of Medical Imaging, The Ottawa Hospital, Ottawa, Ontario K1Y 4E9, Canada; Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Gerd Melkus
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Department of Medical Imaging, The Ottawa Hospital, Ottawa, Ontario K1Y 4E9, Canada; Department of Physics, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hanns Lochmüller
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - John Woulfe
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
| | - Robin J Parks
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada
| | - Bernard Brais
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jodi Warman-Chardon
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada; Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
7
|
Rohm M, Volke L, Schlaffke L, Rehmann R, Südkamp N, Roos A, Schänzer A, Hentschel A, Vorgerd M. Dysregulation of Metabolism and Proteostasis in Skeletal Muscle of a Presymptomatic Pompe Mouse Model. Cells 2023; 12:1602. [PMID: 37371072 DOI: 10.3390/cells12121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Pompe disease is a rare genetic metabolic disorder caused by mutations in acid-alpha glucoside (GAA) leading to pathological lysosomal glycogen accumulation associated with skeletal muscle weakness, respiratory difficulties and cardiomyopathy, dependent from the GAA residual enzyme activity. This study aimed to investigate early proteomic changes in a mouse model of Pompe disease and identify potential therapeutic pathways using proteomic analysis of skeletal muscles from pre-symptomatic Pompe mice. For this purpose, quadriceps samples of Gaa6neo/6neo mutant (Pompe) and wildtype mice, at the age of six weeks, were studied with three biological replicates for each group. The data were validated with skeletal muscle morphology, immunofluorescence studies and western blot analysis. Proteomic profiling identified 538 significantly upregulated and 16 significantly downregulated proteins in quadriceps muscles derived from Pompe animals compared to wildtype mice. The majority of significantly upregulated proteins were involved in metabolism, translation, folding, degrading and vesicular transport, with some having crucial roles in the etiopathology of other neurological or neuromuscular diseases. This study highlights the importance of the early diagnosis and treatment of Pompe disease and suggests potential add-on therapeutic strategies targeting protein dysregulations.
Collapse
Affiliation(s)
- Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Leon Volke
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Nicolina Südkamp
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Andreas Roos
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, 45147 Essen, Germany
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, 35390 Giessen, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften, 44139 Dortmund, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| |
Collapse
|
8
|
Hentschel A, Meyer N, Kohlschmidt N, Groß C, Sickmann A, Schara-Schmidt U, Förster F, Töpf A, Christiansen J, Horvath R, Vorgerd M, Thompson R, Polavarapu K, Lochmüller H, Preusse C, Hannappel L, Schänzer A, Grüneboom A, Gangfuß A, Roos A. A Homozygous PPP1R21 Splice Variant Associated with Severe Developmental Delay, Absence of Speech, and Muscle Weakness Leads to Activated Proteasome Function. Mol Neurobiol 2023; 60:2602-2618. [PMID: 36692708 PMCID: PMC10039818 DOI: 10.1007/s12035-023-03219-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
PPP1R21 acts as a co-factor for protein phosphatase 1 (PP1), an important serine/threonine phosphatase known to be essential for cell division, control of glycogen metabolism, protein synthesis, and muscle contractility. Bi-allelic pathogenic variants in PPP1R21 were linked to a neurodevelopmental disorder with hypotonia, facial dysmorphism, and brain abnormalities (NEDHFBA) with pediatric onset. Functional studies unraveled impaired vesicular transport as being part of PPP1R21-related pathomechanism. To decipher further the pathophysiological processes leading to the clinical manifestation of NEDHFBA, we investigated the proteomic signature of fibroblasts derived from the first NEDHFBA patient harboring a splice-site mutation in PPP1R21 and presenting with a milder phenotype. Proteomic findings and further functional studies demonstrate a profound activation of the ubiquitin-proteasome system with presence of protein aggregates and impact on cellular fitness and moreover suggest a cross-link between activation of the proteolytic system and cytoskeletal architecture (including filopodia) as exemplified on paradigmatic proteins including actin, thus extending the pathophysiological spectrum of the disease. In addition, the proteomic signature of PPP1R21-mutant fibroblasts displayed a dysregulation of a variety of proteins of neurological relevance. This includes increase proteins which might act toward antagonization of cellular stress burden in terms of pro-survival, a molecular finding which might accord with the presentation of a milder phenotype of our NEDHFBA patient.
Collapse
Affiliation(s)
- Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Nancy Meyer
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | | | - Claudia Groß
- Institute of Clinical Genetics and Tumor Genetics, Bonn, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Fabian Förster
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Jon Christiansen
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Corinna Preusse
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luis Hannappel
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, Gießen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Andrea Gangfuß
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany.
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
9
|
Koczwara KE, Lake NJ, DeSimone AM, Lek M. Neuromuscular disorders: finding the missing genetic diagnoses. Trends Genet 2022; 38:956-971. [PMID: 35908999 DOI: 10.1016/j.tig.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Neuromuscular disorders (NMDs) are a wide-ranging group of diseases that seriously affect the quality of life of affected individuals. The development of next-generation sequencing revolutionized the diagnosis of NMD, enabling the discovery of hundreds of NMD genes and many more pathogenic variants. However, the diagnostic yield of genetic testing in NMD cohorts remains incomplete, indicating a large number of genetic diagnoses are not identified through current methods. Fortunately, recent advancements in sequencing technologies, analytical tools, and high-throughput functional screening provide an opportunity to circumvent current challenges. Here, we discuss reasons for missing genetic diagnoses in NMD, how emerging technologies and tools can overcome these hurdles, and examine future approaches to improving diagnostic yields in NMD.
Collapse
Affiliation(s)
- Katherine E Koczwara
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Nicole J Lake
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alec M DeSimone
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
10
|
New Insights into the Neuromyogenic Spectrum of a Gain of Function Mutation in SPTLC1. Genes (Basel) 2022; 13:genes13050893. [PMID: 35627278 PMCID: PMC9140917 DOI: 10.3390/genes13050893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Serine palmitoyltransferase long chain base subunit 1 (SPTLC1) encodes a serine palmitoyltransferase (SPT) resident in the endoplasmic reticulum (ER). Pathological SPTLC1 variants cause a form of hereditary sensory and autonomic neuropathy (HSAN1A), and have recently been linked to unrestrained sphingoid base synthesis, causing a monogenic form of amyotrophic lateral sclerosis (ALS). It was postulated that the phenotypes associated with dominant variants in SPTLC1 may represent a continuum between neuropathy and ALS in some cases, complicated by additional symptoms such as cognitive impairment. A biochemical explanation for this clinical observation does not exist. By performing proteomic profiling on immortalized lymphoblastoid cells derived from one patient harbouring an alanine to serine amino acid substitution at position 20, we identified a subset of dysregulated proteins playing significant roles in neuronal homeostasis and might have a potential impact on the manifestation of symptoms. Notably, the identified p.(A20S)-SPTLC1 variant is associated with decrease of transcript and protein level. Moreover, we describe associated muscle pathology findings, including signs of mild inflammation accompanied by dysregulation of respective markers on both the protein and transcript levels. By performing coherent anti-Stokes Raman scattering microscopy, presence of protein and lipid aggregates could be excluded.
Collapse
|
11
|
Methods to Improve Molecular Diagnosis in Genomic Cold Cases in Pediatric Neurology. Genes (Basel) 2022; 13:genes13020333. [PMID: 35205378 PMCID: PMC8871714 DOI: 10.3390/genes13020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
During the last decade, genetic testing has emerged as an important etiological diagnostic tool for Mendelian diseases, including pediatric neurological conditions. A genetic diagnosis has a considerable impact on disease management and treatment; however, many cases remain undiagnosed after applying standard diagnostic sequencing techniques. This review discusses various methods to improve the molecular diagnostic rates in these genomic cold cases. We discuss extended analysis methods to consider, non-Mendelian inheritance models, mosaicism, dual/multiple diagnoses, periodic re-analysis, artificial intelligence tools, and deep phenotyping, in addition to integrating various omics methods to improve variant prioritization. Last, novel genomic technologies, including long-read sequencing, artificial long-read sequencing, and optical genome mapping are discussed. In conclusion, a more comprehensive molecular analysis and a timely re-analysis of unsolved cases are imperative to improve diagnostic rates. In addition, our current understanding of the human genome is still limited due to restrictions in technologies. Novel technologies are now available that improve upon some of these limitations and can capture all human genomic variation more accurately. Last, we recommend a more routine implementation of high molecular weight DNA extraction methods that is coherent with the ability to use and/or optimally benefit from these novel genomic methods.
Collapse
|
12
|
Gangfuß A, Hentschel A, Rademacher N, Sickmann A, Stüve B, Horvath R, Gross C, Kohlschmidt N, Förster F, Abicht A, Schänzer A, Schara-Schmidt U, Roos A, Della Marina A. Identification of a novel homozygous SCO2 variant in siblings with early-onset axonal Charcot-Marie-Tooth disease. Hum Mutat 2022; 43:477-486. [PMID: 35112411 DOI: 10.1002/humu.24338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/23/2022] [Accepted: 01/30/2022] [Indexed: 11/11/2022]
Abstract
The synthesis of cytochrome c oxidase 2 (SCO2) gene encodes for a mitochondrial located metallochaperone essential for the synthesis of the cytochrome c oxidase (COX) subunit 2. Recessive mutations in SCO2 have been reported in several cases with fatal infantile cardioencephalomyopathy with COX deficiency and in only four cases with axonal neuropathy. Here, we identified a homozygous pathogenic variant (c.361G>C; p.(Gly121Arg)) in SCO2 in two brothers with isolated axonal motor neuropathy. To address pathogenicity of the amino acid substitution, biochemical studies were performed and revealed increased level of the mutant SCO2-protein and a dysregulation of COX subunits in leukocytes and moreover unraveled decrease of proteins involved in the manifestation of neuropathies. Hence, our combined data strengthen the concept of SCO2 being causative for a very rare form of axonal neuropathy, expand its molecular genetic spectrum and provide first biochemical insights into the underlying pathophysiology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andrea Gangfuß
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Nina Rademacher
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Burkhard Stüve
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Claudia Gross
- Institute of Clinical Genetics and Tumor Genetics, Bonn, Germany
| | | | - Fabian Förster
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Angela Abicht
- Department of Neurology, Friedrich-Baur Institute, Munich, Germany.,Medical Genetic Center Munich, Munich, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Gangfuß A, Schara-Schmidt U, Roos A. [Genomics and proteomics in the research of neuromuscular diseases]. DER NERVENARZT 2021; 93:114-121. [PMID: 34622318 DOI: 10.1007/s00115-021-01201-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 11/30/2022]
Abstract
Neurological diseases affect 3-5% of children and, apart from cardiovascular diseases and cancer, represent the most prominent cause of morbidity and mortality in adults and particularly in the aged population of western Europe. Neuromuscular disorders are a subgroup of neurological diseases and often have a genetic origin, which leads to familial clustering. Despite the enormous progress in the analysis of the genome, such as by sequence analysis of coding regions of deoxyribonucleic acid or even the entire deoxyribonucleic acid sequence, in approximately 50% of the patients suffering from rare forms of neurological diseases the genetic cause remains unsolved. The reasons for this limited detection rate are presented in this article. If a treatment concept is available, under certain conditions this can have an impact on the adequate and early treatment of these patients. Considering neuromuscular disorders as a paradigm, this article reports on the advantages of the inclusion of next generation sequencing analysis-based DNA investigations as an omics technology (genomics) and the advantage of the integration with protein analyses (proteomics). A special focus is on the combination of genomics and proteomics in the sense of a proteogenomic approach in the diagnostics and research of these diseases. Along this line, this article presents a proteogenomic approach in the context of a multidisciplinary project aiming towards improved diagnostic work-up and future treatment of patients with neuromuscular diseases; "NMD-GPS: gene and protein signatures as a global positioning system in patients suffering from neuromuscular diseases".
Collapse
Affiliation(s)
- Andrea Gangfuß
- Abteilung für Neuropädiatrie, Universitätsmedizin Essen, Hufelandstrasse 55, 45147, Essen, Deutschland
| | - Ulrike Schara-Schmidt
- Abteilung für Neuropädiatrie, Universitätsmedizin Essen, Hufelandstrasse 55, 45147, Essen, Deutschland
| | - Andreas Roos
- Abteilung für Neuropädiatrie, Universitätsmedizin Essen, Hufelandstrasse 55, 45147, Essen, Deutschland. .,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Kanada.
| |
Collapse
|
14
|
Ohlendieck K, Swandulla D. Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch 2021; 473:1813-1839. [PMID: 34553265 PMCID: PMC8599371 DOI: 10.1007/s00424-021-02623-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystrophin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view should be taken for a better overall understanding of the complex aetiology of X-linked muscular dystrophy. This article reviews the molecular and cellular effects of deficiency in dystrophin isoforms in relation to voluntary striated muscles, the cardio-respiratory system, the kidney, the liver, the gastrointestinal tract, the nervous system and the immune system. Based on the establishment of comprehensive biomarker signatures of X-linked muscular dystrophy using large-scale screening of both patient specimens and genetic animal models, this article also discusses the potential usefulness of novel disease markers for more inclusive approaches to differential diagnosis, prognosis and therapy monitoring that also take into account multi-systems aspects of dystrophinopathy. Current therapeutic approaches to combat muscular dystrophy are summarised.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Co. Kildare, Maynooth, W23F2H6, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, W23F2H6, Ireland.
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
15
|
Töpf A, Pyle A, Griffin H, Matalonga L, Schon K, Sickmann A, Schara-Schmidt U, Hentschel A, Chinnery PF, Kölbel H, Roos A, Horvath R. Exome reanalysis and proteomic profiling identified TRIP4 as a novel cause of cerebellar hypoplasia and spinal muscular atrophy (PCH1). Eur J Hum Genet 2021; 29:1348-1353. [PMID: 34075209 PMCID: PMC8440675 DOI: 10.1038/s41431-021-00851-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 01/26/2023] Open
Abstract
TRIP4 is one of the subunits of the transcriptional coregulator ASC-1, a ribonucleoprotein complex that participates in transcriptional coactivation and RNA processing events. Recessive variants in the TRIP4 gene have been associated with spinal muscular atrophy with bone fractures as well as a severe form of congenital muscular dystrophy. Here we present the diagnostic journey of a patient with cerebellar hypoplasia and spinal muscular atrophy (PCH1) and congenital bone fractures. Initial exome sequencing analysis revealed no candidate variants. Reanalysis of the exome data by inclusion in the Solve-RD project resulted in the identification of a homozygous stop-gain variant in the TRIP4 gene, previously reported as disease-causing. This highlights the importance of analysis reiteration and improved and updated bioinformatic pipelines. Proteomic profile of the patient's fibroblasts showed altered RNA-processing and impaired exosome activity supporting the pathogenicity of the detected variant. In addition, we identified a novel genetic form of PCH1, further strengthening the link of this characteristic phenotype with altered RNA metabolism.
Collapse
Affiliation(s)
- Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Griffin
- Primary Immunodeficiency Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Leslie Matalonga
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Katherine Schon
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Albert Sickmann
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
- Medizinische Proteom-Center (MPC), Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Children's Hospital University of Essen, Essen, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Children's Hospital University of Essen, Essen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Children's Hospital University of Essen, Essen, Germany.
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Yubero D, Natera-de Benito D, Pijuan J, Armstrong J, Martorell L, Fernàndez G, Maynou J, Jou C, Roldan M, Ortez C, Nascimento A, Hoenicka J, Palau F. The Increasing Impact of Translational Research in the Molecular Diagnostics of Neuromuscular Diseases. Int J Mol Sci 2021; 22:4274. [PMID: 33924139 PMCID: PMC8074304 DOI: 10.3390/ijms22084274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
The diagnosis of neuromuscular diseases (NMDs) has been progressively evolving from the grouping of clinical symptoms and signs towards the molecular definition. Optimal clinical, biochemical, electrophysiological, electrophysiological, and histopathological characterization is very helpful to achieve molecular diagnosis, which is essential for establishing prognosis, treatment and genetic counselling. Currently, the genetic approach includes both the gene-targeted analysis in specific clinically recognizable diseases, as well as genomic analysis based on next-generation sequencing, analyzing either the clinical exome/genome or the whole exome or genome. However, as of today, there are still many patients in whom the causative genetic variant cannot be definitely established and variants of uncertain significance are often found. In this review, we address these drawbacks by incorporating two additional biological omics approaches into the molecular diagnostic process of NMDs. First, functional genomics by introducing experimental cell and molecular biology to analyze and validate the variant for its biological effect in an in-house translational diagnostic program, and second, incorporating a multi-omics approach including RNA-seq, metabolomics, and proteomics in the molecular diagnosis of neuromuscular disease. Both translational diagnostics programs and omics are being implemented as part of the diagnostic process in academic centers and referral hospitals and, therefore, an increase in the proportion of neuromuscular patients with a molecular diagnosis is expected. This improvement in the process and diagnostic performance of patients will allow solving aspects of their health problems in a precise way and will allow them and their families to take a step forward in their lives.
Collapse
Affiliation(s)
- Dèlia Yubero
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.Y.); (J.A.); (L.M.); (G.F.); (J.M.); (M.R.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain;
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.N.-d.B.); (C.O.)
| | - Jordi Pijuan
- Laboratory of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Judith Armstrong
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.Y.); (J.A.); (L.M.); (G.F.); (J.M.); (M.R.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain;
| | - Loreto Martorell
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.Y.); (J.A.); (L.M.); (G.F.); (J.M.); (M.R.)
- Laboratory of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Guerau Fernàndez
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.Y.); (J.A.); (L.M.); (G.F.); (J.M.); (M.R.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain;
| | - Joan Maynou
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.Y.); (J.A.); (L.M.); (G.F.); (J.M.); (M.R.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain;
| | - Cristina Jou
- Department of Pathology, Hospital Sant Joan de Déu, Pediatric Biobank for Research, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Mònica Roldan
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.Y.); (J.A.); (L.M.); (G.F.); (J.M.); (M.R.)
- Confocal Microscopy and Cellular Imaging Unit, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.N.-d.B.); (C.O.)
- Division of Pediatrics, Clinic Institute of Medicine & Dermatology, Hospital Clínic, University of Barcelona School of Medicine and Health Sciences, 08950 Barcelona, Spain
| | - Andrés Nascimento
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain;
- Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.N.-d.B.); (C.O.)
| | - Janet Hoenicka
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain;
- Laboratory of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Francesc Palau
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.Y.); (J.A.); (L.M.); (G.F.); (J.M.); (M.R.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain;
- Laboratory of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
- Department of Pathology, Hospital Sant Joan de Déu, Pediatric Biobank for Research, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| |
Collapse
|
17
|
Takahashi Y, Mizusawa H. Initiative on Rare and Undiagnosed Disease in Japan. JMA J 2021; 4:112-118. [PMID: 33997444 PMCID: PMC8119020 DOI: 10.31662/jmaj.2021-0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/16/2021] [Indexed: 11/12/2022] Open
Abstract
The Initiative on Rare and Undiagnosed Diseases (IRUD) has established a unified all-Japan diagnostic and research scheme for rare and undiagnosed diseases covering the entire geographic areas and specialty/subspecialty fields. The fundamental IRUD scheme consists of six components: coordinating center (IRUD-CC), clinical center (IRUD-CL), clinical specialty subgroup (IRUD-CSS), analysis center (IRUD-AC), data center (IRUD-DC), and resource center (IRUD-RC). IRUD has registered many pedigrees with undiagnosed diseases, established their diagnoses with high diagnostic rate, identified novel causative genes and new disease entities, and promoted extensive data sharing and international collaboration. IRUD plays an important role in the national medical support network for rare and intractable diseases together with academic societies and national centers. Promotion of IRUD would be essential in elucidating causes and ultimately providing cures for rare and undiagnosed diseases.
Collapse
Affiliation(s)
- Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | |
Collapse
|
18
|
Yahia A, Stevanin G. The History of Gene Hunting in Hereditary Spinocerebellar Degeneration: Lessons From the Past and Future Perspectives. Front Genet 2021; 12:638730. [PMID: 33833777 PMCID: PMC8021710 DOI: 10.3389/fgene.2021.638730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Hereditary spinocerebellar degeneration (SCD) encompasses an expanding list of rare diseases with a broad clinical and genetic heterogeneity, complicating their diagnosis and management in daily clinical practice. Correct diagnosis is a pillar for precision medicine, a branch of medicine that promises to flourish with the progressive improvements in studying the human genome. Discovering the genes causing novel Mendelian phenotypes contributes to precision medicine by diagnosing subsets of patients with previously undiagnosed conditions, guiding the management of these patients and their families, and enabling the discovery of more causes of Mendelian diseases. This new knowledge provides insight into the biological processes involved in health and disease, including the more common complex disorders. This review discusses the evolution of the clinical and genetic approaches used to diagnose hereditary SCD and the potential of new tools for future discoveries.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
19
|
Grande V, Hathazi D, O'Connor E, Marteau T, Schara-Schmidt U, Hentschel A, Gourdon G, Nikolenko N, Lochmüller H, Roos A. Dysregulation of GSK3β-Target Proteins in Skin Fibroblasts of Myotonic Dystrophy Type 1 (DM1) Patients. J Neuromuscul Dis 2021; 8:603-619. [PMID: 33682722 DOI: 10.3233/jnd-200558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common monogenetic muscular disorder of adulthood. This multisystemic disease is caused by CTG repeat expansion in the 3'-untranslated region of the DM1 protein kinase gene called DMPK. DMPK encodes a myosin kinase expressed in skeletal muscle cells and other cellular populations such as smooth muscle cells, neurons and fibroblasts. The resultant expanded (CUG)n RNA transcripts sequester RNA binding factors leading to ubiquitous and persistent splicing deregulation. The accumulation of mutant CUG repeats is linked to increased activity of glycogen synthase kinase 3 beta (GSK3β), a highly conserved and ubiquitous serine/threonine kinase with functions in pathways regulating inflammation, metabolism, oncogenesis, neurogenesis and myogenesis. As GSK3β-inhibition ameliorates defects in myogenesis, muscle strength and myotonia in a DM1 mouse model, this kinase represents a key player of DM1 pathobiochemistry and constitutes a promising therapeutic target. To better characterise DM1 patients, and monitor treatment responses, we aimed to define a set of robust disease and severity markers linked to GSK3βby unbiased proteomic profiling utilizing fibroblasts derived from DM1 patients with low (80- 150) and high (2600- 3600) CTG-repeats. Apart from GSK3β increase, we identified dysregulation of nine proteins (CAPN1, CTNNB1, CTPS1, DNMT1, HDAC2, HNRNPH3, MAP2K2, NR3C1, VDAC2) modulated by GSK3β. In silico-based expression studies confirmed expression in neuronal and skeletal muscle cells and revealed a relatively elevated abundance in fibroblasts. The potential impact of each marker in the myopathology of DM1 is discussed based on respective function to inform potential uses as severity markers or for monitoring GSK3β inhibitor treatment responses.
Collapse
Affiliation(s)
- Valentina Grande
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany
| | - Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Emily O'Connor
- Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Theo Marteau
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany
| | - Ulrike Schara-Schmidt
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Genevieve Gourdon
- Centre de Recherche en Myologie, Association Institut de Myologie, Sorbonne Université, Inserm UMR 974, Paris, France
| | - Nikoletta Nikolenko
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Hanns Lochmüller
- Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Centro Nacional de AnálisisGenómico, Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Andreas Roos
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany.,Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
20
|
Hentschel A, Czech A, Münchberg U, Freier E, Schara-Schmidt U, Sickmann A, Reimann J, Roos A. Protein signature of human skin fibroblasts allows the study of the molecular etiology of rare neurological diseases. Orphanet J Rare Dis 2021; 16:73. [PMID: 33563298 PMCID: PMC7874489 DOI: 10.1186/s13023-020-01669-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The elucidation of pathomechanisms leading to the manifestation of rare (genetically caused) neurological diseases including neuromuscular diseases (NMD) represents an important step toward the understanding of the genesis of the respective disease and might help to define starting points for (new) therapeutic intervention concepts. However, these "discovery studies" are often limited by the availability of human biomaterial. Moreover, given that results of next-generation-sequencing approaches frequently result in the identification of ambiguous variants, testing of their pathogenicity is crucial but also depending on patient-derived material. METHODS Human skin fibroblasts were used to generate a spectral library using pH8-fractionation of followed by nano LC-MS/MS. Afterwards, Allgrove-patient derived fibroblasts were subjected to a data independent acquisition approach. In addition, proteomic signature of an enriched nuclear protein fraction was studied. Proteomic findings were confirmed by immunofluorescence in a muscle biopsy derived from the same patient and cellular lipid homeostasis in the cause of Allgrove syndrome was analysed by fluorescence (BODIPY-staining) and coherent anti-Stokes Raman scattering (CARS) microscopy. RESULTS To systematically address the question if human skin fibroblasts might serve as valuable biomaterial for (molecular) studies of NMD, we generated a protein library cataloguing 8280 proteins including a variety of such linked to genetic forms of motoneuron diseases, congenital myasthenic syndromes, neuropathies and muscle disorders. In silico-based pathway analyses revealed expression of a diversity of proteins involved in muscle contraction and such decisive for neuronal function and maintenance suggesting the suitability of human skin fibroblasts to study the etiology of NMD. Based on these findings, next we aimed to further demonstrate the suitability of this in vitro model to study NMD by a use case: the proteomic signature of fibroblasts derived from an Allgrove-patient was studied. Dysregulation of paradigmatic proteins could be confirmed in muscle biopsy of the patient and protein-functions could be linked to neurological symptoms known for this disease. Moreover, proteomic investigation of nuclear protein composition allowed the identification of protein-dysregulations according with structural perturbations observed in the muscle biopsy. BODIPY-staining on fibroblasts and CARS microscopy on muscle biopsy suggest altered lipid storage as part of the underlying disease etiology. CONCLUSIONS Our combined data reveal that human fibroblasts may serve as an in vitro system to study the molecular etiology of rare neurological diseases exemplified on Allgrove syndrome in an unbiased fashion.
Collapse
Affiliation(s)
- Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Artur Czech
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Ute Münchberg
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Erik Freier
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Faculty of Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Jens Reimann
- Muscle Laboratory, Department of Neurology, University of Bonn, Medical Centre, Bonn, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Faculty of Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
21
|
Gungor S, Oktay Y, Hiz S, Aranguren-Ibáñez Á, Kalafatcilar I, Yaramis A, Karaca E, Yis U, Sonmezler E, Ekinci B, Aslan M, Yilmaz E, Özgör B, Balaraju S, Szabo N, Laurie S, Beltran S, MacArthur DG, Hathazi D, Töpf A, Roos A, Lochmuller H, Vernos I, Horvath R. Autosomal recessive variants in TUBGCP2 alter the γ-tubulin ring complex leading to neurodevelopmental disease. iScience 2021; 24:101948. [PMID: 33458610 PMCID: PMC7797523 DOI: 10.1016/j.isci.2020.101948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/20/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
Microtubules help building the cytoskeleton of neurons and other cells. Several components of the gamma-tubulin (γ-tubulin) complex have been previously reported in human neurodevelopmental diseases. We describe two siblings from a consanguineous Turkish family with dysmorphic features, developmental delay, brain malformation, and epilepsy carrying a homozygous mutation (p.Glu311Lys) in TUBGCP2 encoding the γ-tubulin complex 2 (GCP2) protein. This variant is predicted to disrupt the electrostatic interaction of GCP2 with GCP3. In primary fibroblasts carrying the variant, we observed a faint delocalization of γ-tubulin during the cell cycle but normal GCP2 protein levels. Through mass spectrometry, we observed dysregulation of multiple proteins involved in the assembly and organization of the cytoskeleton and the extracellular matrix, controlling cellular adhesion and of proteins crucial for neuronal homeostasis including axon guidance. In summary, our functional and proteomic studies link TUBGCP2 and the γ-tubulin complex to the development of the central nervous system in humans.
Collapse
Affiliation(s)
- Serdal Gungor
- Inonu University, Faculty of Medicine, Turgut Ozal Research Center, Department of Paediatric Neurology, Malatya, Turkey
| | - Yavuz Oktay
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University and Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Semra Hiz
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Álvaro Aranguren-Ibáñez
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ipek Kalafatcilar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Ahmet Yaramis
- Pediatric Neurology Clinic, Private Office, Diyarbakir, Turkey
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University and Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Uluc Yis
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Ece Sonmezler
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Burcu Ekinci
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Mahmut Aslan
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Elmasnur Yilmaz
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Bilge Özgör
- Inonu University, Faculty of Medicine, Turgut Ozal Research Center, Department of Paediatric Neurology, Malatya, Turkey
| | - Sunitha Balaraju
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
- Department of Clinical Neurosciences, John Van Geest Cambridge Centre for Brain Repair, University of Cambridge School of Clinical Medicine, Robinson Way, Cambridge CB2 0PY, UK
| | - Nora Szabo
- Department of Clinical Neurosciences, John Van Geest Cambridge Centre for Brain Repair, University of Cambridge School of Clinical Medicine, Robinson Way, Cambridge CB2 0PY, UK
- Budai Children Hospital, Észak-Közép-budai Centrum, Új Szent János Kórház és Szakrendelő, Budapest, Hungary
| | - Steven Laurie
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel G. MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Denisa Hathazi
- Department of Clinical Neurosciences, John Van Geest Cambridge Centre for Brain Repair, University of Cambridge School of Clinical Medicine, Robinson Way, Cambridge CB2 0PY, UK
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Roos
- Leibniz Institut für Analytische Wissenschaften, ISAS, Dortmund, Germany & Pediatric Neurology, University Hospital, University of Duisburg-Essen, Faculty of Medicine, Essen, Germany
| | - Hanns Lochmuller
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, the Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Isabelle Vernos
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain
| | - Rita Horvath
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Kölbel H, Roos A, van der Ven PFM, Evangelista T, Nolte K, Johnson K, Töpf A, Wilson M, Kress W, Sickmann A, Straub V, Kollipara L, Weis J, Fürst DO, Schara U. First clinical and myopathological description of a myofibrillar myopathy with congenital onset and homozygous mutation in FLNC. Hum Mutat 2020; 41:1600-1614. [PMID: 32516863 DOI: 10.1002/humu.24062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/17/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Filamin C (encoded by the FLNC gene) is a large actin-cross-linking protein involved in shaping the actin cytoskeleton in response to signaling events both at the sarcolemma and at myofibrillar Z-discs of cross-striated muscle cells. Multiple mutations in FLNC are associated with myofibrillar myopathies of autosomal-dominant inheritance. Here, we describe for the first time a boy with congenital onset of generalized muscular hypotonia and muscular weakness, delayed motor development but no cardiac involvement associated with a homozygous FLNC mutation c.1325C>G (p.Pro442Arg). We performed ultramorphological, proteomic, and functional investigations as well as immunological studies of known marker proteins for dominant filaminopathies. We show that the mutant protein is expressed in similar quantities as the wild-type variant in control skeletal muscle fibers. The proteomic signature of quadriceps muscle is altered and ultrastructural perturbations are evident. Moreover, filaminopathy marker proteins are comparable both in our homozygous and a dominant control case (c.5161delG). Biochemical investigations demonstrate that the recombinant mutant protein is less stable and more prone to degradation by proteolytic enzymes than the wild-type variant. The unusual congenital presentation of the disease clearly demonstrates that homozygosity for mutations in FLNC severely aggravates the phenotype.
Collapse
Affiliation(s)
- Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Children's Hospital University of Essen, Essen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Children's Hospital University of Essen, Essen, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Teresinha Evangelista
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, Paris, France
| | - Kay Nolte
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Katherine Johnson
- The John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Michael Wilson
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Wolfram Kress
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Albert Sickmann
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.,Medizinische Proteom-Center (MPC), Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Laxmikanth Kollipara
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Ulrike Schara
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Children's Hospital University of Essen, Essen, Germany
| |
Collapse
|
23
|
Advances in the diagnosis of inherited neuromuscular diseases and implications for therapy development. Lancet Neurol 2020; 19:522-532. [PMID: 32470424 DOI: 10.1016/s1474-4422(20)30028-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
Advances in DNA sequencing technologies have resulted in a near doubling, in under 10 years, of the number of causal genes identified for inherited neuromuscular disorders. However, around half of patients, whether children or adults, do not receive a molecular diagnosis after initial diagnostic workup. Massively parallel technologies targeting RNA, proteins, and metabolites are being increasingly used to diagnose these unsolved cases. The use of these technologies to delineate pathways, biomarkers, and therapeutic targets has led to new approaches entering the drug development pipeline. However, these technologies might give rise to misleading conclusions if used in isolation, and traditional techniques including comprehensive neurological evaluation, histopathology, and biochemistry continue to have a crucial role in diagnostics. For optimal diagnosis, prognosis, and precision medicine, no single ruling technology exists. Instead, an interdisciplinary approach combining novel and traditional neurological techniques with computer-aided analysis and international data sharing is needed to advance the diagnosis and treatment of neuromuscular disorders.
Collapse
|
24
|
Mingirulli N, Pyle A, Hathazi D, Alston CL, Kohlschmidt N, O'Grady G, Waddell L, Evesson F, Cooper SBT, Turner C, Duff J, Topf A, Yubero D, Jou C, Nascimento A, Ortez C, García‐Cazorla A, Gross C, O'Callaghan M, Santra S, Preece MA, Champion M, Korenev S, Chronopoulou E, Anirban M, Pierre G, McArthur D, Thompson K, Navas P, Ribes A, Tort F, Schlüter A, Pujol A, Montero R, Sarquella G, Lochmüller H, Jiménez‐Mallebrera C, Taylor RW, Artuch R, Kirschner J, Grünert SC, Roos A, Horvath R. Clinical presentation and proteomic signature of patients with TANGO2 mutations. J Inherit Metab Dis 2020; 43:297-308. [PMID: 31339582 PMCID: PMC7078914 DOI: 10.1002/jimd.12156] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
Abstract
Transport And Golgi Organization protein 2 (TANGO2) deficiency has recently been identified as a rare metabolic disorder with a distinct clinical and biochemical phenotype of recurrent metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias, and encephalopathy with cognitive decline. We report nine subjects from seven independent families, and we studied muscle histology, respiratory chain enzyme activities in skeletal muscle and proteomic signature of fibroblasts. All nine subjects carried autosomal recessive TANGO2 mutations. Two carried the reported deletion of exons 3 to 9, one homozygous, one heterozygous with a 22q11.21 microdeletion inherited in trans. The other subjects carried three novel homozygous (c.262C>T/p.Arg88*; c.220A>C/p.Thr74Pro; c.380+1G>A), and two further novel heterozygous (c.6_9del/p.Phe6del); c.11-13delTCT/p.Phe5del mutations. Immunoblot analysis detected a significant decrease of TANGO2 protein. Muscle histology showed mild variation of fiber diameter, no ragged-red/cytochrome c oxidase-negative fibers and a defect of multiple respiratory chain enzymes and coenzyme Q10 (CoQ10 ) in two cases, suggesting a possible secondary defect of oxidative phosphorylation. Proteomic analysis in fibroblasts revealed significant changes in components of the mitochondrial fatty acid oxidation, plasma membrane, endoplasmic reticulum-Golgi network and secretory pathways. Clinical presentation of TANGO2 mutations is homogeneous and clinically recognizable. The hemizygous mutations in two patients suggest that some mutations leading to allele loss are difficult to detect. A combined defect of the respiratory chain enzymes and CoQ10 with altered levels of several membrane proteins provides molecular insights into the underlying pathophysiology and may guide rational new therapeutic interventions.
Collapse
Affiliation(s)
- Nadja Mingirulli
- Department of Neuropediatrics and Muscle DisordersMedical Center – University of Freiburg, Faculty of MedicineBreisgauGermany
- Department of General PediatricsAdolescent Medicine and Neonatology, Medical Center – University of Freiburg, Faculty of MedicineBreisgauGermany
| | - Angela Pyle
- Wellcome Centre for Mitochondrial ResearchInstitute of Genetic Medicine, Newcastle UniversityNewcastle upon TyneUK
| | - Denisa Hathazi
- Biomedical Research DepartmentLeibniz‐Institut für Analytische Wissenschaften – ISAS – e.VDortmundGermany
| | - Charlotte L. Alston
- Wellcome Centre for Mitochondrial ResearchInstitute of Neuroscience, Newcastle UniversityNewcastle upon TyneUK
| | | | - Gina O'Grady
- Kid's Neuroscience Centre, Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Leigh Waddell
- Kid's Neuroscience Centre, Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Frances Evesson
- Kid's Neuroscience Centre, Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Child and Adolescent HealthThe University of SydneySydneyNew South WalesAustralia
| | - Sandra B. T. Cooper
- Kid's Neuroscience Centre, Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Child and Adolescent HealthThe University of SydneySydneyNew South WalesAustralia
| | - Christian Turner
- Discipline of Child and Adolescent HealthThe University of SydneySydneyNew South WalesAustralia
- CardiologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Jennifer Duff
- Wellcome Centre for Mitochondrial ResearchInstitute of Genetic Medicine, Newcastle UniversityNewcastle upon TyneUK
| | - Ana Topf
- John Walton Muscular Dystrophy Research CentreInstitute of Genetic Medicine, Newcastle UniversityNewcastle upon TyneUK
| | - Delia Yubero
- Department of Clinical Biochemistry, Genetics, Pediatric Neurology and Cardiology and BiobankInstitut de Recerca Sant Joan de Déu and CIBERER, Instituto de Salud Carlos III BarcelonaBarcelonaSpain
| | - Cristina Jou
- Department of Clinical Biochemistry, Genetics, Pediatric Neurology and Cardiology and BiobankInstitut de Recerca Sant Joan de Déu and CIBERER, Instituto de Salud Carlos III BarcelonaBarcelonaSpain
| | - Andrés Nascimento
- Department of Clinical Biochemistry, Genetics, Pediatric Neurology and Cardiology and BiobankInstitut de Recerca Sant Joan de Déu and CIBERER, Instituto de Salud Carlos III BarcelonaBarcelonaSpain
| | - Carlos Ortez
- Department of Clinical Biochemistry, Genetics, Pediatric Neurology and Cardiology and BiobankInstitut de Recerca Sant Joan de Déu and CIBERER, Instituto de Salud Carlos III BarcelonaBarcelonaSpain
| | - Angels García‐Cazorla
- Department of Clinical Biochemistry, Genetics, Pediatric Neurology and Cardiology and BiobankInstitut de Recerca Sant Joan de Déu and CIBERER, Instituto de Salud Carlos III BarcelonaBarcelonaSpain
| | - Claudia Gross
- Wellcome Centre for Mitochondrial ResearchInstitute of Neuroscience, Newcastle UniversityNewcastle upon TyneUK
| | - Maria O'Callaghan
- Department of Clinical Biochemistry, Genetics, Pediatric Neurology and Cardiology and BiobankInstitut de Recerca Sant Joan de Déu and CIBERER, Instituto de Salud Carlos III BarcelonaBarcelonaSpain
| | - Saikat Santra
- Birmingham Women's and Children's NHS Foundation TrustBirminghamUK
| | | | | | - Sergei Korenev
- Department of Inherited DiseaseSt Thomas HospitalLondonUK
| | | | - Majumdar Anirban
- South West Regional Metabolic DepartmentBristol Royal Hospital for ChildrenBristolUK
| | - Germaine Pierre
- South West Regional Metabolic DepartmentBristol Royal Hospital for ChildrenBristolUK
| | - Daniel McArthur
- Center for Mendelian Genomics and Program in Medical and Population GeneticsBroad Institute of MIT and HarvardCambridgeMassachusetts
- Analytic and Translational Genetics UnitMassachusetts General HospitalBostonMassachusetts
| | - Kyle Thompson
- Kid's Neuroscience Centre, Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Placido Navas
- Centro Andaluz de Biología del DesarrolloUníversidad Pablo de Olavide‐CSIC‐JA and CIBERER, Instituto de Salud Carlos IIIMadridSpain
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme – IBCServei de Bioquímica I Genètìca Molecular, Hospital Clínìc, IDIBAPS, CIBERERBarcelonaSpain
| | - Frederic Tort
- Secció d'Errors Congènits del Metabolisme – IBCServei de Bioquímica I Genètìca Molecular, Hospital Clínìc, IDIBAPS, CIBERERBarcelonaSpain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Institut d'Investìgacío Biomedíca de Bellvitge (IDIBELL), and Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos IIIMadridSpain
| | - Aurora Pujol
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Raquel Montero
- Department of Clinical Biochemistry, Genetics, Pediatric Neurology and Cardiology and BiobankInstitut de Recerca Sant Joan de Déu and CIBERER, Instituto de Salud Carlos III BarcelonaBarcelonaSpain
| | - Georgia Sarquella
- Department of Clinical Biochemistry, Genetics, Pediatric Neurology and Cardiology and BiobankInstitut de Recerca Sant Joan de Déu and CIBERER, Instituto de Salud Carlos III BarcelonaBarcelonaSpain
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle DisordersMedical Center – University of Freiburg, Faculty of MedicineBreisgauGermany
- Children's Hospital of Eastern Ontario Research Institute, University of OttawaOttawaOntarioCanada
- Division of Neurology, Department of MedicineThe Ottawa HospitalOttawaOntarioCanada
| | - Cecilia Jiménez‐Mallebrera
- Department of Clinical Biochemistry, Genetics, Pediatric Neurology and Cardiology and BiobankInstitut de Recerca Sant Joan de Déu and CIBERER, Instituto de Salud Carlos III BarcelonaBarcelonaSpain
| | - Robert W. Taylor
- Kid's Neuroscience Centre, Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Rafael Artuch
- Department of Clinical Biochemistry, Genetics, Pediatric Neurology and Cardiology and BiobankInstitut de Recerca Sant Joan de Déu and CIBERER, Instituto de Salud Carlos III BarcelonaBarcelonaSpain
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle DisordersMedical Center – University of Freiburg, Faculty of MedicineBreisgauGermany
| | - Sarah C. Grünert
- Department of General PediatricsAdolescent Medicine and Neonatology, Medical Center – University of Freiburg, Faculty of MedicineBreisgauGermany
| | - Andreas Roos
- Biomedical Research DepartmentLeibniz‐Institut für Analytische Wissenschaften – ISAS – e.VDortmundGermany
- Pediatric NeurologyUniversity Children's Hospital, University of Duisburg‐Essen, Faculty of MedicineEssenGermany
| | - Rita Horvath
- Wellcome Centre for Mitochondrial ResearchInstitute of Genetic Medicine, Newcastle UniversityNewcastle upon TyneUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
25
|
Kölbel H, Hathazi D, Jennings M, Horvath R, Roos A, Schara U. Identification of Candidate Protein Markers in Skeletal Muscle of Laminin-211-Deficient CMD Type 1A-Patients. Front Neurol 2019; 10:470. [PMID: 31133972 PMCID: PMC6514157 DOI: 10.3389/fneur.2019.00470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Laminin-211 deficiency leads to the most common form of congenital muscular dystrophy in childhood, MDC1A. The clinical picture is characterized by severe muscle weakness, brain abnormalities and delayed motor milestones defining MDC1A as one of the most severe forms of congenital muscular diseases. Although the molecular genetic basis of this neurological disease is well-known and molecular studies of mouse muscle and human cultured muscle cells allowed first insights into the underlying pathophysiology, the definition of marker proteins in human vulnerable tissue such as skeletal muscle is still lacking. To systematically address this need, we analyzed the proteomic signature of laminin-211-deficient vastus muscle derived from four patients and identified 86 proteins (35 were increased and 51 decreased) as skeletal muscle markers and verified paradigmatic findings in a total of two further MDC1A muscle biopsies. Functions of proteins suggests fibrosis but also hints at altered synaptic transmission and accords with central nervous system alterations as part of the clinical spectrum of MDC1A. In addition, a profound mitochondrial vulnerability of the laminin-211-deficient muscle is indicated and also altered abundances of other proteins support the concept that metabolic alterations could be novel mechanisms that underline MDC1A and might constitute therapeutic targets. Intersection of our data with the proteomic signature of murine laminin-211-deficient gastrocnemius and diaphragm allowed the definition of nine common vulnerable proteins representing potential tissue markers.
Collapse
Affiliation(s)
- Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Duisburg-Essen, Essen, Germany
| | - Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany.,Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Jennings
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Rita Horvath
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Roos
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Duisburg-Essen, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Ulrike Schara
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Pogoryelova O, Urtizberea JA, Argov Z, Nishino I, Lochmüller H. 237th ENMC International Workshop: GNE myopathy - current and future research Hoofddorp, The Netherlands, 14-16 September 2018. Neuromuscul Disord 2019; 29:401-410. [PMID: 30956020 DOI: 10.1016/j.nmd.2019.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Oksana Pogoryelova
- Institute of Medical Genetics, Newcastle University, Newcastle upon Tyne, Central Parkway, NE1 3BZ, UK.
| | | | - Zohar Argov
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany; Centro Nacional de Análisis Genómico, Center for Genomic Regulation, Barcelona Institute of Science and Technology, Baldri I reixac 4, 08028 Barcelona, Spain; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, K1Y 4E9, Canada
| | | |
Collapse
|
27
|
Cipriani S, Phan V, Médard JJ, Horvath R, Lochmüller H, Chrast R, Roos A, Spendiff S. Neuromuscular Junction Changes in a Mouse Model of Charcot-Marie-Tooth Disease Type 4C. Int J Mol Sci 2018; 19:ijms19124072. [PMID: 30562927 PMCID: PMC6320960 DOI: 10.3390/ijms19124072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/06/2018] [Accepted: 12/14/2018] [Indexed: 01/08/2023] Open
Abstract
The neuromuscular junction (NMJ) appears to be a site of pathology in a number of peripheral nerve diseases. Charcot-Marie-Tooth (CMT) 4C is an autosomal recessive, early onset, demyelinating neuropathy. Numerous mutations in the SH3TC2 gene have been shown to underlie the condition often associated with scoliosis, foot deformities, and reduced nerve conduction velocities. Mice with exon 1 of the Sh3tc2 gene knocked out demonstrate many of the features seen in patients. To determine if NMJ pathology is contributory to the pathomechanisms of CMT4C we examined NMJs in the gastrocnemius muscle of SH3TC2-deficient mice. In addition, we performed proteomic assessment of the sciatic nerve to identify protein factors contributing to the NMJ alterations and the survival of demyelinated axons. Morphological and gene expression analysis of NMJs revealed a lack of continuity between the pre- and post-synaptic apparatus, increases in post-synaptic fragmentation and dispersal, and an increase in expression of the gamma subunit of the acetylcholine receptor. There were no changes in axonal width or the number of axonal inputs to the NMJ. Proteome investigations of the sciatic nerve revealed altered expression of extracellular matrix proteins important for NMJ integrity. Together these observations suggest that CMT4C pathology includes a compromised NMJ even in the absence of changes to the innervating axon.
Collapse
Affiliation(s)
- Silvia Cipriani
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK.
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy.
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Vietxuan Phan
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V.; Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.
| | - Jean-Jacques Médard
- Department of Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden.
- Department of Clinical Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, John Van Geest Cambridge Centre for Brain Repair, Forvie, Robinson way, Cambridge Biomedical Campus, Cambridge CB2 0PY, UK.
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany.
- Centro Nacional de Análisis Genómico, Center for Genomic Regulation, Barcelona Institute of Science and Technology, Baldri I reixac 4, 08028 Barcelona, Spain.
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada.
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Riverside Drive, Ottawa, ON K1H 7X5, Canada.
| | - Roman Chrast
- Department of Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden.
- Department of Clinical Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V.; Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany.
| | - Sally Spendiff
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK.
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada.
| |
Collapse
|
28
|
Phan V, Cox D, Cipriani S, Spendiff S, Buchkremer S, O'Connor E, Horvath R, Goebel HH, Hathazi D, Lochmüller H, Straka T, Rudolf R, Weis J, Roos A. SIL1 deficiency causes degenerative changes of peripheral nerves and neuromuscular junctions in fish, mice and human. Neurobiol Dis 2018; 124:218-229. [PMID: 30468864 DOI: 10.1016/j.nbd.2018.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/21/2018] [Accepted: 11/19/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Marinesco-Sjögren Syndrome (MSS) is a rare neuromuscular condition caused by recessive mutations in the SIL1 gene resulting in the absence of functional SIL1 protein, a co-chaperone for the major ER chaperone, BiP. As BiP is decisive for proper protein processing, loss of SIL1 results in the accumulation of misshaped proteins. This accumulation likely damages and destroys cells in vulnerable tissues, leading to congenital cataracts, cerebellar ataxia, vacuolar myopathy and other MSS phenotypes. Whether the peripheral nervous system (PNS) is affected in MSS has not been conclusively shown. METHODS To study PNS vulnerability in MSS, intramuscular nerves fibres from MSS patients and from SIL1-deficient mice (woozy) as well as sciatic nerves and neuromuscular junctions (NMJ) from these mice have been investigated via transmission electron microscopic and immunofluorescence studies accompanied by transcript studies and unbiased proteomic profiling. In addition, PNS and NMJ integrity were analyzed via immunofluorescence studies in an MSS-zebrafish model which has been generated for that purpose. RESULTS Electron microscopy revealed morphological changes indicative of impaired autophagy and mitochondrial maintenance in distal axons and in Schwann cells. Moreover, changes of the morphology of NMJs as well as of transcripts encoding proteins important for NMJ function were detected in woozy mice. These findings were in line with a grossly abnormal structure of NMJs in SIL1-deficient zebrafish embryos. Proteome profiling of sciatic nerve specimens from woozy mice revealed altered levels of proteins implicated in neuronal maintenance suggesting the activation of compensatory mechanisms. CONCLUSION Taken together, our combined data expand the spectrum of tissues affected by SIL1-loss and suggest that impaired neuromuscular transmission might be part of MSS pathophysiology.
Collapse
Affiliation(s)
- Vietxuan Phan
- Leibniz-Institut für Analytische Wissenschaften, ISAS, e.V. Dortmund, 44227, Dortmund, Germany.
| | - Dan Cox
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | - Silvia Cipriani
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK; Department of Neuromotor and Biomedical Sciences, Pathology Unit, University of Bologna, Bologna, Italy.
| | - Sally Spendiff
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada.
| | - Stephan Buchkremer
- Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, 52074, Germany.
| | - Emily O'Connor
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK. emily.o'
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.
| | | | - Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften, ISAS, e.V. Dortmund, 44227, Dortmund, Germany.
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada; Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Tatjana Straka
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| | - Joachim Weis
- Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, 52074, Germany.
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften, ISAS, e.V. Dortmund, 44227, Dortmund, Germany; Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, 52074, Germany; Pediatric Neurology, University Childrens Hospital, University of Duisburg-Essen, Faculty of Medicine, Essen, Germany.
| |
Collapse
|
29
|
Jabbarli R, Pierscianek D, Darkwah Oppong M, Sato T, Dammann P, Wrede KH, Kaier K, Köhrmann M, Forsting M, Kleinschnitz C, Roos A, Sure U. Laboratory biomarkers of delayed cerebral ischemia after subarachnoid hemorrhage: a systematic review. Neurosurg Rev 2018; 43:825-833. [PMID: 30306357 DOI: 10.1007/s10143-018-1037-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 01/25/2023]
Abstract
Delayed cerebral ischemia (DCI) is a severe complication of subarachnoid hemorrhage (SAH). Clinical and radiographic features of SAH may be helpful in identification of individuals prone to DCI. The aim of this systematic review was to analyze the present evidence on predictive value of blood and cerebrospinal fluid (CSF) biomarkers of DCI after SAH. We systematically searched in PubMed, Scopus, Web of Science, and Cochrane Library databases for publications before July 15, 2018, reporting correlations between blood/CSF biomarkers and occurrence of DCI and/or vasospasm in SAH patients. Included studies underwent quality assessment according to QUIPS and STARD guidelines. Level of evidence (I-IV) for each of tested biomarkers was assessed according to GRADE guidelines. Of 2181 unique records identified in four databases, 270 original articles and 5 meta-analyses were included to this review. Of 257 blood and CSF parameters analyzed in 16.914 SAH patients, there was no biomarker with positive association with DCI/vasospasm showing level I evidence. Twenty-one biomarkers achieved level II evidence and could be confirmed as predictive biomarkers. In this review, six single nucleotide polymorphisms (for EET metabolic pathways, COMT, HMGB1, ACE, PAI-1 promoter, and Hp genes) and 15 non-genetic biomarkers (pNF-H, ADAMTS13, NPY, Copeptin, HMGB1, GFAP, periostin, Tau, BNP, NT pro-BNP, hs-TnT, PA-TEGMA, MPV:PLT, NLR, and PLR) were selected as predictive DCI biomarkers. We propose that a panel analysis of the selected genetic and protein biomarker candidates would be needed for further validation in a large SAH cohort.
Collapse
Affiliation(s)
- Ramazan Jabbarli
- Department of Neurosurgery, University Hospital of Essen, D-45147, Essen, Germany.
| | - Daniela Pierscianek
- Department of Neurosurgery, University Hospital of Essen, D-45147, Essen, Germany
| | | | - Tako Sato
- Department of Neurosurgery, University Hospital of Essen, D-45147, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery, University Hospital of Essen, D-45147, Essen, Germany
| | - Karsten H Wrede
- Department of Neurosurgery, University Hospital of Essen, D-45147, Essen, Germany
| | - Klaus Kaier
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Köhrmann
- Clinic for Neurology, University Hospital of Essen, Essen, Germany
| | - Michael Forsting
- Institute for Diagnostic and Interventional Radiology, University Hospital of Essen, Essen, Germany
| | | | - Andreas Roos
- Leibniz Institute for Analytical Sciences - ISAS - e.V., Dortmund, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital of Essen, D-45147, Essen, Germany
| |
Collapse
|
30
|
González Coraspe JA, Weis J, Anderson ME, Münchberg U, Lorenz K, Buchkremer S, Carr S, Zahedi RP, Brauers E, Michels H, Sunada Y, Lochmüller H, Campbell KP, Freier E, Hathazi D, Roos A. Biochemical and pathological changes result from mutated Caveolin-3 in muscle. Skelet Muscle 2018; 8:28. [PMID: 30153853 PMCID: PMC6114045 DOI: 10.1186/s13395-018-0173-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Background Caveolin-3 (CAV3) is a muscle-specific protein localized to the sarcolemma. It was suggested that CAV3 is involved in the connection between the extracellular matrix (ECM) and the cytoskeleton. Caveolinopathies often go along with increased CK levels indicative of sarcolemmal damage. So far, more than 40 dominant pathogenic mutations have been described leading to several phenotypes many of which are associated with a mis-localization of the mutant protein to the Golgi. Golgi retention and endoplasmic reticulum (ER) stress has been demonstrated for the CAV3 p.P104L mutation, but further downstream pathophysiological consequences remained elusive so far. Methods We utilized a transgenic (p.P104L mutant) mouse model and performed proteomic profiling along with immunoprecipitation, immunofluorescence and immunoblot examinations (including examination of α-dystroglycan glycosylation), and morphological studies (electron and coherent anti-Stokes Raman scattering (CARS) microscopy) in a systematic investigation of molecular and subcellular events in p.P104L caveolinopathy. Results Our electron and CARS microscopic as well as immunological studies revealed Golgi and ER proliferations along with a build-up of protein aggregates further characterized by immunoprecipitation and subsequent mass spectrometry. Molecular characterization these aggregates showed affection of mitochondrial and cytoskeletal proteins which accords with our ultra-structural findings. Additional global proteomic profiling revealed vulnerability of 120 proteins in diseased quadriceps muscle supporting our previous findings and providing more general insights into the underlying pathophysiology. Moreover, our data suggested that further DGC components are altered by the perturbed protein processing machinery but are not prone to form aggregates whereas other sarcolemmal proteins are ubiquitinated or bind to p62. Although the architecture of the ER and Golgi as organelles of protein glycosylation are altered, the glycosylation of α-dystroglycan presented unchanged. Conclusions Our combined data classify the p.P104 caveolinopathy as an ER-Golgi disorder impairing proper protein processing and leading to aggregate formation pertaining proteins important for mitochondrial function, cytoskeleton, ECM remodeling and sarcolemmal integrity. Glycosylation of sarcolemmal proteins seems to be normal. The new pathophysiological insights might be of relevance for the development of therapeutic strategies for caveolinopathy patients targeting improved protein folding capacity. Electronic supplementary material The online version of this article (10.1186/s13395-018-0173-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Mary E Anderson
- Howard Hughes Medical Institute, Departments of Molecular Physiology and Biophysics, of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ute Münchberg
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Kristina Lorenz
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Stephan Buchkremer
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Stephanie Carr
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, England, UK
| | - René Peiman Zahedi
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, H4A 3T2, Canada.,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, H3T 1E2, Canada
| | - Eva Brauers
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Hannah Michels
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, England, UK
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Hanns Lochmüller
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, England, UK.,Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Departments of Molecular Physiology and Biophysics, of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Erik Freier
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Denisa Hathazi
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Andreas Roos
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.
| |
Collapse
|
31
|
Cagnone M, Bardoni A, Iadarola P, Viglio S. Could Proteomics Become a Future Useful Tool to Shed Light on the Mechanisms of Rare Neurodegenerative Disorders? High Throughput 2018; 7:ht7010002. [PMID: 29485613 PMCID: PMC5876528 DOI: 10.3390/ht7010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022] Open
Abstract
Very often the clinical features of rare neurodegenerative disorders overlap with those of other, more common clinical disturbances. As a consequence, not only the true incidence of these disorders is underestimated, but many patients also experience a significant delay before a definitive diagnosis. Under this scenario, it appears clear that any accurate tool producing information about the pathological mechanisms of these disorders would offer a novel context for their precise identification by strongly enhancing the interpretation of symptoms. With the advent of proteomics, detection and identification of proteins in different organs/tissues, aimed at understanding whether they represent an attractive tool for monitoring alterations in these districts, has become an area of increasing interest. The aim of this report is to provide an overview of the most recent applications of proteomics as a new strategy for identifying biomarkers with a clinical utility for the investigation of rare neurodegenerative disorders.
Collapse
Affiliation(s)
- Maddalena Cagnone
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| | - Anna Bardoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| | - Paolo Iadarola
- Department of Biology and Biotechnologies "L. Spallanzani", Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| | - Simona Viglio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|