1
|
Hall SCL, Hardy DJ, Bragginton ÉC, Johnston H, Onose T, Holyfield R, Sridhar P, Knowles TJ, Clifton LA. Distance tuneable integral membrane protein containing floating bilayers via in situ directed self-assembly. NANOSCALE 2024; 16:13503-13515. [PMID: 38940744 PMCID: PMC11256219 DOI: 10.1039/d3nr04622b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Model membranes allow for structural and biophysical studies on membrane biochemistry at the molecular level, albeit on systems of reduced complexity which can limit biological accuracy. Floating supported bilayers offer a means of producing planar lipid membrane models not adhered to a surface, which allows for improved accuracy compared to other model membranes. Here we communicate the incorporation of an integral membrane protein complex, the multidomain β-barrel assembly machinery (Bam), into our recently developed in situ self-assembled floating supported bilayers. Using neutron reflectometry and quartz crystal microbalance measurements we show this sample system can be fabricated using a two-step self-assembly process. We then demonstrate the complexity of the model membrane and tuneability of the membrane-to-surface distance using changes in the salt concentration of the bulk solution. Results demonstrate an easily fabricated, biologically accurate and tuneable membrane assay system which can be utilized for studies on integral membrane proteins within their native lipid matrix.
Collapse
Affiliation(s)
- Stephen C L Hall
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 OQX, UK.
| | - David J Hardy
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Éilís C Bragginton
- Electron Bio-Imaging Centre (eBIC), Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, OX11 0DE, UK
| | - Hannah Johnston
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Tudor Onose
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rachel Holyfield
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Timothy J Knowles
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 OQX, UK.
| |
Collapse
|
2
|
Mallawarachchi S, Wang H, Mulgaonkar N, Irigoyen S, Padilla C, Mandadi K, Borneman J, Fernando S. Specifically targeting antimicrobial peptides for inhibition of Candidatus Liberibacter asiaticus. J Appl Microbiol 2024; 135:lxae061. [PMID: 38509024 DOI: 10.1093/jambio/lxae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
AIMS Huanglongbing (citrus greening) is a plant disease putatively caused by the unculturable Gram-negative bacterium Candidatus Liberibacter asiaticus (CLas), and it has caused severe damage to citrus plantations worldwide. There are no definitive treatments for this disease, and conventional disease control techniques have shown limited efficacy. This work presents an in silico evaluation of using specifically targeting anti-microbial peptides (STAMPs) consisting of a targeting segment and an antimicrobial segment to inhibit citrus greening by inhibiting the BamA protein of CLas, which is an outer membrane protein crucial for bacterial viability. METHODS AND RESULTS Initially, a set of peptides with a high affinity toward BamA protein were screened and evaluated via molecular docking and molecular dynamics simulations and were verified in vitro via bio-layer interferometry (BLI). In silico studies and BLI experiments indicated that two peptides, HASP2 and HASP3, showed stable binding to BamA. Protein structures for STAMPs were created by fusing known anti-microbial peptides (AMPs) with the selected short peptides. The binding of STAMPs to BamA was assessed using molecular docking and binding energy calculations. The attachment of high-affinity short peptides significantly reduced the free energy of binding for AMPs, suggesting that it would make it easier for the STAMPs to bind to BamA. Efficacy testing in vitro using a closely related CLas surrogate bacterium showed that STAMPs had greater inhibitory activity than AMP alone. CONCLUSIONS In silico and in vitro results indicate that the STAMPs can inhibit CLas surrogate Rhizobium grahamii more effectively compared to AMPs, suggesting that STAMPs can achieve better inhibition of CLas, potentially via enhancing the site specificity of AMPs.
Collapse
Affiliation(s)
- Samavath Mallawarachchi
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Haoqi Wang
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Nirmitee Mulgaonkar
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Sonia Irigoyen
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
| | - Carmen Padilla
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
| | - Kranthi Mandadi
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, United States
- Institute for Advancing Health through Agriculture, Texas A&M AgriLife, College Station, TX 77843, United States
| | - James Borneman
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, United States
| | - Sandun Fernando
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
3
|
Pavlenok M, Nair RR, Hendrickson RC, Niederweis M. The C-terminus is essential for the stability of the mycobacterial channel protein MspA. Protein Sci 2024; 33:e4912. [PMID: 38358254 PMCID: PMC10868439 DOI: 10.1002/pro.4912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Outer membrane proteins perform essential functions in uptake and secretion processes in bacteria. MspA is an octameric channel protein in the outer membrane of Mycobacterium smegmatis and is structurally distinct from any other known outer membrane protein. MspA is the founding member of a family with more than 3000 homologs and is one of the most widely used proteins in nanotechnological applications due to its advantageous pore structure and extraordinary stability. While a conserved C-terminal signal sequence is essential for folding and protein assembly in the outer membrane of Gram-negative bacteria, the molecular determinants of these processes are unknown for MspA. In this study, we show that mutation and deletion of methionine 183 in the highly conserved C-terminus of MspA and mutation of the conserved tryptophan 40 lead to a complete loss of protein in heat extracts of M. smegmatis. Swapping these residues partially restores the heat stability of MspA indicating that methionine 183 and tryptophan 40 form a conserved sulfur-π electron interaction, which stabilizes the MspA monomer. Flow cytometry showed that all MspA mutants are surface-accessible demonstrating that oligomerization and membrane integration in M. smegmatis are not affected. Thus, the conserved C-terminus of MspA is essential for its thermal stability, but it is not required for protein assembly in its native membrane, indicating that this process is mediated by a mechanism distinct from that in Gram-negative bacteria. These findings will benefit the rational design of MspA-like pores to tailor their properties in current and future applications.
Collapse
Affiliation(s)
- Mikhail Pavlenok
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | | | - Michael Niederweis
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
4
|
George A, Patil AG, Mahalakshmi R. ATP-independent assembly machinery of bacterial outer membranes: BAM complex structure and function set the stage for next-generation therapeutics. Protein Sci 2024; 33:e4896. [PMID: 38284489 PMCID: PMC10804688 DOI: 10.1002/pro.4896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024]
Abstract
Diderm bacteria employ β-barrel outer membrane proteins (OMPs) as their first line of communication with their environment. These OMPs are assembled efficiently in the asymmetric outer membrane by the β-Barrel Assembly Machinery (BAM). The multi-subunit BAM complex comprises the transmembrane OMP BamA as its functional subunit, with associated lipoproteins (e.g., BamB/C/D/E/F, RmpM) varying across phyla and performing different regulatory roles. The ability of BAM complex to recognize and fold OM β-barrels of diverse sizes, and reproducibly execute their membrane insertion, is independent of electrochemical energy. Recent atomic structures, which captured BAM-substrate complexes, show the assembly function of BamA can be tailored, with different substrate types exhibiting different folding mechanisms. Here, we highlight common and unique features of its interactome. We discuss how this conserved protein complex has evolved the ability to effectively achieve the directed assembly of diverse OMPs of wide-ranging sizes (8-36 β-stranded monomers). Additionally, we discuss how darobactin-the first natural membrane protein inhibitor of Gram-negative bacteria identified in over five decades-selectively targets and specifically inhibits BamA. We conclude by deliberating how a detailed deduction of BAM complex-associated regulation of OMP biogenesis and OM remodeling will open avenues for the identification and development of effective next-generation therapeutics against Gram-negative pathogens.
Collapse
Affiliation(s)
- Anjana George
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Akanksha Gajanan Patil
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| |
Collapse
|
5
|
Grasekamp KP, Beaud Benyahia B, Taib N, Audrain B, Bardiaux B, Rossez Y, Izadi-Pruneyre N, Lejeune M, Trivelli X, Chouit Z, Guerardel Y, Ghigo JM, Gribaldo S, Beloin C. The Mla system of diderm Firmicute Veillonella parvula reveals an ancestral transenvelope bridge for phospholipid trafficking. Nat Commun 2023; 14:7642. [PMID: 37993432 PMCID: PMC10665443 DOI: 10.1038/s41467-023-43411-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
E. coli and most other diderm bacteria (those with two membranes) have an inner membrane enriched in glycerophospholipids (GPLs) and an asymmetric outer membrane (OM) containing GPLs in its inner leaflet and primarily lipopolysaccharides in its outer leaflet. In E. coli, this lipid asymmetry is maintained by the Mla system which consists of six proteins: the OM lipoprotein MlaA extracts GPLs from the outer leaflet, and the periplasmic chaperone MlaC transfers them across the periplasm to the inner membrane complex MlaBDEF. However, GPL trafficking still remains poorly understood, and has only been studied in a handful of model species. Here, we investigate GPL trafficking in Veillonella parvula, a diderm Firmicute with an Mla system that lacks MlaA and MlaC, but contains an elongated MlaD. V. parvula mla mutants display phenotypes characteristic of disrupted lipid asymmetry which can be suppressed by mutations in tamB, supporting that these two systems have opposite GPL trafficking functions across diverse bacterial lineages. Structural modelling and subcellular localisation assays suggest that V. parvula MlaD forms a transenvelope bridge, comprising a typical inner membrane-localised MCE domain and, in addition, an outer membrane ß-barrel. Phylogenomic analyses indicate that this elongated MlaD type is widely distributed across diderm bacteria and likely forms part of the ancestral functional core of the Mla system, which would be composed of MlaEFD only.
Collapse
Affiliation(s)
- Kyrie P Grasekamp
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, Paris, France
| | - Basile Beaud Benyahia
- Institut Pasteur, Université Paris Cité, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France
| | - Najwa Taib
- Institut Pasteur, Université Paris Cité, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Bianca Audrain
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, Paris, France
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, Structural Bioinformatics Unit, CNRS UMR 3528, Paris, France
- Institut Pasteur, Université Paris Cité, Bacterial Transmembrane Systems Unit, CNRS UMR 3528, Paris, France
| | - Yannick Rossez
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, Structural Bioinformatics Unit, CNRS UMR 3528, Paris, France
- Institut Pasteur, Université Paris Cité, Bacterial Transmembrane Systems Unit, CNRS UMR 3528, Paris, France
| | - Maylis Lejeune
- Institut Pasteur, Université Paris Cité, Structural Bioinformatics Unit, CNRS UMR 3528, Paris, France
- Institut Pasteur, Université Paris Cité, Bacterial Transmembrane Systems Unit, CNRS UMR 3528, Paris, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, Lille, 59000, France
| | - Zina Chouit
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yann Guerardel
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, Paris, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France.
| | - Christophe Beloin
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, Paris, France.
| |
Collapse
|
6
|
Kuo K, Liu J, Pavlova A, Gumbart JC. Drug Binding to BamA Targets Its Lateral Gate. J Phys Chem B 2023; 127:7509-7517. [PMID: 37587651 PMCID: PMC10476194 DOI: 10.1021/acs.jpcb.3c04501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/30/2023] [Indexed: 08/18/2023]
Abstract
BamA, the core component of the β-barrel assembly machinery (BAM) complex, is an outer-membrane protein (OMP) in Gram-negative bacteria. Its function is to insert and fold substrate OMPs into the outer membrane (OM). Evidence suggests that BamA follows the asymmetric hybrid-barrel model where the first and last strands of BamA separate, a process known as lateral gate opening, to allow nascent substrate OMP β-strands to sequentially insert and fold through β-augmentation. Recently, multiple lead compounds that interfere with BamA's function have been identified. We modeled and then docked one of these compounds into either the extracellular loops of BamA or the open lateral gate. With the compound docked in the loops, we found that the lateral gate remains closed during 5 μs molecular dynamics simulations. The same compound when docked in the open lateral gate stays bound to the β16 strand of BamA during the simulation, which would prevent substrate OMP folding. In addition, we simulated mutants of BamA that are resistant to one or more of the identified lead compounds. In these simulations, we observed a differing degree and/or frequency of opening of BamA's lateral gate compared to BamA-apo, suggesting that the mutations grant resistance by altering the dynamics at the gate. We conclude that the compounds act by inhibiting BamA lateral gate opening and/or binding of substrate, thus preventing subsequent OMP folding and insertion.
Collapse
Affiliation(s)
- Katie
M. Kuo
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Jinchan Liu
- Department
of Molecular Biophysics and Biochemistry (MB&B), Yale University, New Haven, Connecticut 06510, United States
| | - Anna Pavlova
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Shingarova LN, Petrovskaya LE, Kryukova EA, Gapizov SS, Dolgikh DA, Kirpichnikov MP. Display of Oligo-α-1,6-Glycosidase from Exiguobacterium sibiricum on the Surface of Escherichia coli Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:716-722. [PMID: 37331717 DOI: 10.1134/s0006297923050140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/20/2023]
Abstract
Cell-surface display using anchor motifs of outer membrane proteins allows exposure of target peptides and proteins on the surface of microbial cells. Previously, we obtained and characterized highly catalytically active recombinant oligo-α-1,6-glycosidase from the psychrotrophic bacterium Exiguobacterium sibiricum (EsOgl). It was also shown that the autotransporter AT877 from Psychrobacter cryohalolentis and its deletion variants efficiently displayed type III fibronectin (10Fn3) domain 10 on the surface of Escherichia coli cells. The aim of the work was to obtain an AT877-based system for displaying EsOgl on the surface of bacterial cells. The genes for the hybrid autotransporter EsOgl877 and its deletion mutants EsOgl877Δ239 and EsOgl877Δ310 were constructed, and the enzymatic activity of EsOgl877 was investigated. Cells expressing this protein retained ~90% of the enzyme maximum activity within a temperature range of 15-35°C. The activity of cells expressing EsOgl877Δ239 and EsOgl877Δ310 was 2.7 and 2.4 times higher, respectively, than of the cells expressing the full-size AT. Treatment of cells expressing EsOgl877 deletion variants with proteinase K showed that the passenger domain localized to the cell surface. These results can be used for further optimization of display systems expressing oligo-α-1,6-glycosidase and other heterologous proteins on the surface of E. coli cells.
Collapse
Affiliation(s)
- Lyudmila N Shingarova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Elena A Kryukova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sultan S Gapizov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitry A Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
8
|
Wang Z, Zeng J, Deng J, Hou X, Zhang J, Yan W, Cai Q. Pathogen-Derived Extracellular Vesicles: Emerging Mediators of Plant-Microbe Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:218-227. [PMID: 36574017 DOI: 10.1094/mpmi-08-22-0162-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanoparticles that deliver bioactive proteins, nucleic acids, lipids, and other small molecules from donor to recipient cells. They have attracted significant interest recently due to their important roles in regulating plant-microbe interaction. During microbial infection, plant EVs play a prominent role in defense by delivering small regulatory RNA into pathogens, resulting in the silencing of pathogen virulence genes. Pathogens also deliver small RNAs into plant cells to silence host immunity genes. Recent evidence indicates that microbial EVs may be involved in pathogenesis and host immunity modulation by transporting RNAs and other biomolecules. However, the biogenesis and function of microbial EVs in plant-microbe interaction remain ill-defined. In this review, we discuss various aspects of microbial EVs, with a particular focus on current methods for EV isolation, composition, biogenesis, and their roles in plant-microbe interaction. We also discussed the potential role of microbial EVs in cross-kingdom RNA trafficking from pathogens to plants, as it is a highly likely possibility to explore in the future. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhangying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Jiayue Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Jiliang Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Xiangjie Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Jiefu Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Wei Yan
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| |
Collapse
|
9
|
Omptin Proteases of Enterobacterales Show Conserved Regulation by the PhoPQ Two-Component System but Exhibit Divergent Protection from Antimicrobial Host Peptides and Complement. Infect Immun 2023; 91:e0051822. [PMID: 36533918 PMCID: PMC9872669 DOI: 10.1128/iai.00518-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacteria that colonize eukaryotic surfaces interact with numerous antimicrobial host-produced molecules, including host defense peptides, complement, and antibodies. Bacteria have evolved numerous strategies to both detect and resist these molecules, and in the Enterobacterales order of bacteria these include alterations of the cell surface lipopolysaccharide structure and/or charge and the production of proteases that can degrade these antimicrobial molecules. Here, we show that omptin family proteases from Escherichia coli and Citrobacter rodentium are regulated by the PhoPQ system. Omptin protease activity is induced by growth in low Mg2+, and deletion of PhoP dramatically reduces omptin protease activity, transcriptional regulation, and protein levels. We identify conserved PhoP-binding sites in the promoters of the E. coli omptin genes ompT, ompP, and arlC as well as in croP of Citrobacter rodentium and show that mutation of the putative PhoP-binding site in the ompT promoter abrogates PhoP-dependent expression. Finally, we show that although regulation by PhoPQ is conserved, each of the omptin proteins has differential activity toward host defense peptides, complement components, and resistance to human serum, suggesting that each omptin confers unique survival advantages against specific host antimicrobial factors.
Collapse
|
10
|
Bowen HG, Kenedy MR, Johnson DK, MacKerell AD, Akins DR. Identification of a novel transport system in Borrelia burgdorferi that links the inner and outer membranes. Pathog Dis 2023; 81:ftad014. [PMID: 37385817 PMCID: PMC10353723 DOI: 10.1093/femspd/ftad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
Borrelia burgdorferi, the spirochete that causes Lyme disease, is a diderm organism that is similar to Gram-negative organisms in that it contains both an inner and outer membrane. Unlike typical Gram-negative organisms, however, B. burgdorferi lacks lipopolysaccharide (LPS). Using computational genome analyses and structural modeling, we identified a transport system containing six proteins in B. burgdorferi that are all orthologs to proteins found in the lipopolysaccharide transport (LPT) system that links the inner and outer membranes of Gram-negative organisms and is responsible for placing LPS on the surface of these organisms. While B. burgdorferi does not contain LPS, it does encode over 100 different surface-exposed lipoproteins and several major glycolipids, which like LPS are also highly amphiphilic molecules, though no system to transport these molecules to the borrelial surface is known. Accordingly, experiments supplemented by molecular modeling were undertaken to determine whether the orthologous LPT system identified in B. burgdorferi could transport lipoproteins and/or glycolipids to the borrelial outer membrane. Our combined observations strongly suggest that the LPT transport system does not transport lipoproteins to the surface. Molecular dynamic modeling, however, suggests that the borrelial LPT system could transport borrelial glycolipids to the outer membrane.
Collapse
Affiliation(s)
- Hannah G Bowen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| | - Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| | - David K Johnson
- Shenkel Structural Biology Center, Molecular Graphics and Modeling Laboratory and the Computational Biology Core, University of Kansas, 2034 Becker Drive Lawrence, Kansas 66047, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore 20 North Pine Street Baltimore, Maryland 21201, United States
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| |
Collapse
|
11
|
Antibacterial Effects of ZnO Nanodisks: Shape Effect of the Nanostructure on the Lethality in Escherichia coli. Appl Biochem Biotechnol 2022; 195:3067-3095. [PMID: 36520354 DOI: 10.1007/s12010-022-04265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The role of the shape of the nanostructure on the antibacterial effects of ZnO nanodisks has been investigated by detailed mass spectrometry-based proteomics along with other spectroscopic and microscopic studies on E. coli. The primary interaction study of the E. coli cells in the presence of ZnO nanodisks showed rigorous cell surface damage disrupting the cell wall/membrane components detected by microscopic and ATR-FTIR studies. Protein profiling of whole-cell extracts in the presence and absence of ZnO nanodisks identified several proteins that are upregulated and downregulated under the stress of the nanodisks. This suggests that the bacterial response to the primary stress leads to a secondary impact of ZnO nanodisk toxicity via regulation of the expression of specific proteins. Results showed that the ZnO nanodisks lead to the over-expression of peptidyl-dipeptidase Dcp, Transketolase-1, etc., which are important to maintaining the osmotic balance in the cell. The abrupt change in osmotic pressure leads to mechanical injury to the membrane, and nutritional starvation conditions, which is revealed from the expression of the key proteins involved in membrane-protein assembly, maintaining membrane integrity, cell division processes, etc. Thus, indicating a deleterious effect of ZnO nanodisk on the protective layer of E. coli. ZnO nanodisks seem to primarily affect the protective membrane layer, inducing cell death via the development of osmotic shock conditions, as one of the possible reasons for cell death. These results unravel a unique behavior of the disk-shaped ZnO nanostructure in executing lethality in E. coli, which has not been reported for other known shapes or morphologies of ZnO nanoforms.
Collapse
|
12
|
Svirina A, Chamachi N, Schlierf M. Single‐molecule approaches reveal outer membrane protein biogenesis dynamics. Bioessays 2022; 44:e2200149. [DOI: 10.1002/bies.202200149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Anna Svirina
- TU Dresden B CUBE – Center for Molecular Bioengineering Dresden Germany
| | - Neharika Chamachi
- TU Dresden B CUBE – Center for Molecular Bioengineering Dresden Germany
| | - Michael Schlierf
- TU Dresden B CUBE – Center for Molecular Bioengineering Dresden Germany
- Cluster of Excellence Physics of Life Technische Universität Dresden Dresden Germany
| |
Collapse
|
13
|
Biological Role of the 3β-Corner Structural Motif in Proteins. Processes (Basel) 2022. [DOI: 10.3390/pr10112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
In this study, we analyze the occurrence of the unique structural motif, the 3β-corner, belonging to the Structural Classification of Proteins (SCOP) folds, in proteins of various origins. We further assess the structural and functional role of this motif as well as the clustering of the biological functions of proteins in which it occurs. It has been shown previously that the 3β-corner occurs with different probabilities in all beta proteins, alpha and beta proteins (α + β and α/β), and alpha classes occur most often in the composition of β-proteins. The 3β-corner is often found as a building block in protein structures, such as β-barrels, -sandwiches, and -sheets/-layers.
Collapse
|
14
|
Kuo KM, Ryoo D, Lundquist K, Gumbart JC. Modeling intermediates of BamA folding an outer membrane protein. Biophys J 2022; 121:3242-3252. [PMID: 35927955 PMCID: PMC9463690 DOI: 10.1016/j.bpj.2022.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
BamA, the core component of the β-barrel assembly machinery complex, is an integral outer-membrane protein (OMP) in Gram-negative bacteria that catalyzes the folding and insertion of OMPs. A key feature of BamA relevant to its function is a lateral gate between its first and last β-strands. Opening of this lateral gate is one of the first steps in the asymmetric-hybrid-barrel model of BamA function. In this study, multiple hybrid-barrel folding intermediates of BamA and a substrate OMP, EspP, were constructed and simulated to better understand the model's physical consequences. The hybrid-barrel intermediates consisted of the BamA β-barrel and its POTRA5 domain and either one, two, three, four, five, or six β-hairpins of EspP. The simulation results support an asymmetric-hybrid-barrel model in which the BamA N-terminal β-strand forms stronger interactions with the substrate OMP than the C-terminal β-strand. A consistent "B"-shaped conformation of the final folding intermediate was observed, and the shape of the substrate β-barrel within the hybrid matched the shape of the fully folded substrate. Upon further investigation, inward-facing glycines were found at sharp bends within the hybrid and fully folded β-barrels. Together, the data suggest an influence of sequence on shape of the substrate barrel throughout the OMP folding process and of the fully folded OMP.
Collapse
Affiliation(s)
- Katie M Kuo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - David Ryoo
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, Georgia
| | - Karl Lundquist
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana
| | - James C Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia; School of Physics, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
15
|
Shingarova LN, Petrovskaya LE, Kryukova EA, Gapizov SS, Boldyreva EF, Dolgikh DA, Kirpichnikov MP. Deletion Variants of Autotransporter from Psychrobacter cryohalolentis Increase Efficiency of 10FN3 Exposure on the Surface of Escherichia coli Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:932-939. [PMID: 36180989 DOI: 10.1134/s0006297922090061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/16/2023]
Abstract
The autotransporter AT877 from Psychrobacter cryohalolentis belongs to the family of outer membrane proteins containing N-terminal passenger and C-terminal translocator domains that form the basis for the design of display systems on the surface of bacterial cells. It was shown in our previous study that the passenger domain of AT877 can be replaced by the cold-active esterase EstPc or the tenth domain of fibronectin type III (10Fn3). In order to increase efficiency of the 10Fn3 surface display in Escherichia coli cells, four deletion variants of the Fn877 hybrid autotransporter were obtained. It was demonstrated that all variants are present in the membrane of bacterial cells and facilitate binding of the antibodies specific against 10Fn3 on the cell surface. The highest level of binding is provided by the variants Δ239 and Δ310, containing four and seven beta-strands out of twelve that comprise the structure of the translocator domain. Using electrophoresis under semi-native conditions, presence of heat modifiability in the full-size Fn877 and its deletion variants was demonstrated, which indicated preservation of beta structure in their molecules. The obtained results could be used to optimize the bacterial display systems of 10Fn3, as well as of other heterologous passenger domains.
Collapse
Affiliation(s)
- Lyudmila N Shingarova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Elena A Kryukova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sultan S Gapizov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Elena F Boldyreva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Dmitriy A Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
16
|
Yamamoto K, Yamamoto N, Ayukawa S, Yasutake Y, Ishiya K, Nakashima N. Scaffold size-dependent effect on the enhanced uptake of antibiotics and other compounds by Escherichia coli and Pseudomonas aeruginosa. Sci Rep 2022; 12:5609. [PMID: 35379875 PMCID: PMC8980104 DOI: 10.1038/s41598-022-09635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
The outer membrane of Gram-negative bacteria functions as an impermeable barrier to foreign compounds. Thus, modulating membrane transport can contribute to improving susceptibility to antibiotics and efficiency of bioproduction reactions. In this study, the cellular uptake of hydrophobic and large-scaffold antibiotics and other compounds in Gram-negative bacteria was investigated by modulating the homolog expression of bamB encoding an outer membrane lipoprotein and tolC encoding an outer membrane efflux protein via gene deletion and gene silencing. The potential of deletion mutants for biotechnological applications, such as drug screening and bioproduction, was also demonstrated. Instead of being subjected to gene deletion, wild-type bacterial cells were treated with cell-penetrating peptide conjugates of a peptide nucleic acid (CPP-PNA) against bamB and tolC homologs as antisense agents. Results revealed that the single deletion of bamB and tolC in Escherichia coli increased the uptake of large- and small-scaffold hydrophobic compounds, respectively. A bamB-and-tolC double deletion mutant had a higher uptake efficiency for certain antibiotics and other compounds with high hydrophobicity than each single deletion mutant. The CPP-PNA treated E. coli and Pseudomonas aeruginosa cells showed high sensitivity to various antibiotics. Therefore, these gene deletion and silencing approaches can be utilized in therapeutic and biotechnological fields.
Collapse
Affiliation(s)
- Kyosuke Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan
| | - Nao Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-M6-5 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Shotaro Ayukawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, 169-8555, Japan
| | - Koji Ishiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan
| | - Nobutaka Nakashima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-M6-5 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
17
|
Extracellular vesicles from phytobacteria: Properties, functions and uses. Biotechnol Adv 2022; 58:107934. [DOI: 10.1016/j.biotechadv.2022.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/20/2022]
|
18
|
Privalsky TM, Soohoo AM, Wang J, Walsh CT, Wright GD, Gordon EM, Gray NS, Khosla C. Prospects for Antibacterial Discovery and Development. J Am Chem Soc 2021; 143:21127-21142. [PMID: 34860516 PMCID: PMC8855840 DOI: 10.1021/jacs.1c10200] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rising prevalence of multidrug-resistant bacteria is an urgent health crisis that can only be countered through renewed investment in the discovery and development of antibiotics. There is no panacea for the antibacterial resistance crisis; instead, a multifaceted approach is called for. In this Perspective we make the case that, in the face of evolving clinical needs and enabling technologies, numerous validated antibacterial targets and associated lead molecules deserve a second look. At the same time, many worthy targets lack good leads despite harboring druggable active sites. Creative and inspired techniques buoy discovery efforts; while soil screening efforts frequently lead to antibiotic rediscovery, researchers have found success searching for new antibiotic leads by studying underexplored ecological niches or by leveraging the abundance of available data from genome mining efforts. The judicious use of "polypharmacology" (i.e., the ability of a drug to alter the activities of multiple targets) can also provide new opportunities, as can the continued search for inhibitors of resistance enzymes with the capacity to breathe new life into old antibiotics. We conclude by highlighting available pharmacoeconomic models for antibacterial discovery and development while making the case for new ones.
Collapse
Affiliation(s)
- Thomas M. Privalsky
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
| | - Alexander M. Soohoo
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 United States
| | - Christopher T. Walsh
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
| | - Gerard D. Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Eric M. Gordon
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Nathanael S. Gray
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, United States
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
19
|
Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM. Nat Commun 2021; 12:7131. [PMID: 34880256 PMCID: PMC8655018 DOI: 10.1038/s41467-021-27449-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
In Gram-negative bacteria, the biogenesis of β-barrel outer membrane proteins is mediated by the β-barrel assembly machinery (BAM). The mechanism employed by BAM is complex and so far- incompletely understood. Here, we report the structures of BAM in nanodiscs, prepared using polar lipids and native membranes, where we observe an outward-open state. Mutations in the barrel domain of BamA reveal that plasticity in BAM is essential, particularly along the lateral seam of the barrel domain, which is further supported by molecular dynamics simulations that show conformational dynamics in BAM are modulated by the accessory proteins. We also report the structure of BAM in complex with EspP, which reveals an early folding intermediate where EspP threads from the underside of BAM and incorporates into the barrel domain of BamA, supporting a hybrid-barrel budding mechanism in which the substrate is folded into the membrane sequentially rather than as a single unit.
Collapse
|
20
|
Petrovskaya LE, Ziganshin RH, Kryukova EA, Zlobinov AV, Gapizov SS, Shingarova LN, Mironov VA, Lomakina GY, Dolgikh DA, Kirpichnikov MP. Increased Synthesis of a Magnesium Transporter MgtA During Recombinant Autotransporter Expression in Escherichia coli. Appl Biochem Biotechnol 2021; 193:3672-3703. [PMID: 34351586 DOI: 10.1007/s12010-021-03634-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/01/2022]
Abstract
Overproduction of the membrane proteins in Escherichia coli cells is a common approach to obtain sufficient material for their functional and structural studies. However, the efficiency of this process can be limited by toxic effects which decrease the viability of the host and lead to low yield of the product. During the expression of the esterase autotransporter AT877 from Psychrobacter cryohalolentis K5T, we observed significant growth inhibition of the C41(DE3) cells in comparison with the same cells producing other recombinant proteins. Induction of AT877 synthesis also resulted in the elevated expression of a magnesium transporter MgtA and decreased ATP content of the cells. To characterize the response to overexpression of the autotransporter in bacterial cells, we performed a comparative analysis of their proteomic profile by mass spectrometry. According to the obtained data, E. coli cells which synthesize AT877 experience complex stress condition presumably associated with secretion apparatus overloading and improper localization of the recombinant protein. Several response pathways were shown to be activated by AT877 overproduction including Cpx, PhoP/PhoQ, Psp, and σE The obtained results open new opportunities for optimization of the recombinant membrane protein expression in E. coli for structural studies and biotechnological applications.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia.
| | - Rustam H Ziganshin
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
| | - Elena A Kryukova
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
- Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow, 119334, Russia
| | - Alexander V Zlobinov
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
| | - Sultan Sh Gapizov
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
- Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow, 119334, Russia
- Department of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, Moscow, 119234, Russia
| | - Lyudmila N Shingarova
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
| | - Vasiliy A Mironov
- Roche Diagnostics Rus LLC, Letnikovskaya str. 2/2, Moscow, 115114, Russia
| | - Galina Yu Lomakina
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow, 119991, Russia
- Bauman Moscow State Technical University, Baumanskaya 2-ya, 5/1, Moscow, 105005, Russia
| | - Dmitriy A Dolgikh
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
- Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow, 119334, Russia
- Department of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, Moscow, 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
- Department of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, Moscow, 119234, Russia
| |
Collapse
|
21
|
Sharma D, Sharma A, Singh B, Verma SK. Pan-proteome profiling of emerging and re-emerging zoonotic pathogen Orientia tsutsugamushi for getting insight into microbial pathogenesis. Microb Pathog 2021; 158:105103. [PMID: 34298125 DOI: 10.1016/j.micpath.2021.105103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/21/2023]
Abstract
With the occurrence and evolution of antibiotic and multidrug resistance in bacteria most of the existing remedies are becoming ineffective. The pan-proteome exploration of the bacterial pathogens helps to identify the wide spectrum therapeutic targets which will be effective against all strains in a species. The current study is focused on the pan-proteome profiling of zoonotic pathogen Orientia tsutsugamushi (Ott) for the identification of potential therapeutic targets. The pan-proteome of Ott is estimated to be extensive in nature that has 1429 protein clusters, out of which 694 were core, 391 were accessory, and 344 were unique. It was revealed that 622 proteins were essential, 222 proteins were virulent factors, and 42 proteins were involved in antibiotic resistance. The potential therapeutic targets were further classified into eleven broad classes among which gene expression and regulation, transport, and metabolism were dominant. The biological interactome analysis of therapeutic targets revealed that an ample amount of interactions were present among the proteins involved in DNA replication, ribosome assembly, cellwall metabolism, cell division, and antimicrobial resistance. The predicted therapeutic targets from the pan-proteome of Ott are involved in various biological processes, virulence, and antibiotic resistance; hence envisioned as potential candidates for drug discovery to combat scrub typhus.
Collapse
Affiliation(s)
- Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India.
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, 176061, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| |
Collapse
|
22
|
Schätzle H, Brouwer EM, Liebhart E, Stevanovic M, Schleiff E. Comparative Phenotypic Analysis of Anabaena sp. PCC 7120 Mutants of Porinlike Genes. J Microbiol Biotechnol 2021; 31:645-658. [PMID: 33879642 PMCID: PMC9705863 DOI: 10.4014/jmb.2103.03009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022]
Abstract
Porins are essential for the viability of Gram-negative bacteria. They ensure the uptake of nutrients, can be involved in the maintenance of outer membrane integrity and define the antibiotic or drug resistance of organisms. The function and structure of porins in proteobacteria is well described, while their function in photoautotrophic cyanobacteria has not been systematically explored. We compared the domain architecture of nine putative porins in the filamentous cyanobacterium Anabaena sp. PCC 7120 and analyzed the seven candidates with predicted OprB-domain. Single recombinant mutants of the seven genes were created and their growth capacity under different conditions was analyzed. Most of the putative porins seem to be involved in the transport of salt and copper, as respective mutants were resistant to elevated concentrations of these substances. In turn, only the mutant of alr2231 was less sensitive to elevated zinc concentrations, while mutants of alr0834, alr4741 and all4499 were resistant to high manganese concentrations. Notably the mutant of alr4550 shows a high sensitivity against harmful compounds, which is indicative for a function related to the maintenance of outer membrane integrity. Moreover, the mutant of all5191 exhibited a phenotype which suggests either a higher nitrate demand or an inefficient nitrogen fixation. The dependency of porin membrane insertion on Omp85 proteins was tested exemplarily for Alr4550, and an enhanced aggregation of Alr4550 was observed in two omp85 mutants. The comparative analysis of porin mutants suggests that the proteins in parts perform distinct functions related to envelope integrity and solute uptake.
Collapse
Affiliation(s)
- Hannah Schätzle
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,FIERCE, Goethe University, Frankfurt am Main, Germany,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Eva-Maria Brouwer
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Elisa Liebhart
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Mara Stevanovic
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,FIERCE, Goethe University, Frankfurt am Main, Germany,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany,Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany,Corresponding author Phone: +49 69 798 29287 Fax: +49 69 798 29286 E-mail:
| |
Collapse
|
23
|
Verma S, Pandey AK. Exploring Nature’s Treasure to Inhibit β-Barrel Assembly Machinery of Antibiotic Resistant Bacteria: An In silico Approach. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180818999201224121342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The development of antibiotic resistance in bacteria is a matter of global
concern due to the exceptionally high morbidity and mortality rates. The outer membrane of most
gram-negative bacteria acts as a highly efficient barrier and blocks the entry of the majority of antibiotics,
making them ineffective. The Bam complex, β-barrel assembly machinery complex, contains
five subunits (BamA, B, C, D, E), which plays a vital role in folding and inserting essential
outer membrane proteins into the membrane, thus maintaining outer membrane integrity. BamA
and BamD are essential subunits to fulfill this purpose. Therefore, targeting this complex to treat
antibiotic resistance can be an incredibly effective approach. Natural bacterial pigments like
violacein, phytochemicals like withanone, semasin, and several polyphenols have often been reported
for their effective antibiotic, antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic
properties.
Objective:
Structural inhibition of the Bam complex by natural compounds can provide safe and
effective treatment for antibiotic resistance by targeting outer membrane integrity.
Methods:
In-silico ADMET and molecular docking analysis was performed with ten natural compounds,
namely violacein, withanone, sesamin, resveratrol, naringenin, quercetin, epicatechin, gallic
acid, ellagic acid, and galangin, to analyse their inhibitory potential against the Bam complex.
Results:
Docking complexes of violacein gave high binding energies of -10.385 and -9.46 Kcal/mol
at C and D subunits interface and at A subunits of the Bam complex, respectively.
Conclusion:
Henceforth, violacein can be an effective antibiotic against to date reported resistant
gram-negative bacteria by inhibiting the Bam complex of their outer membrane. Therefore the urgent
need for exhaustive research in this concern is highly demanded.
Collapse
Affiliation(s)
- Shalja Verma
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi- 284128,India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi- 284128,India
| |
Collapse
|
24
|
Effective Small Molecule Antibacterials from a Novel Anti-Protein Secretion Screen. Microorganisms 2021; 9:microorganisms9030592. [PMID: 33805695 PMCID: PMC8000395 DOI: 10.3390/microorganisms9030592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/03/2022] Open
Abstract
The increasing problem of bacterial resistance to antibiotics underscores the urgent need for new antibacterials. Protein export pathways are attractive potential targets. The Sec pathway is essential for bacterial viability and includes components that are absent from eukaryotes. Here, we used a new high-throughput in vivo screen based on the secretion and activity of alkaline phosphatase (PhoA), a Sec-dependent secreted enzyme that becomes active in the periplasm. The assay was optimized for a luminescence-based substrate and was used to screen a ~240K small molecule compound library. After hit confirmation and analoging, 14 HTS secretion inhibitors (HSI), belonging to eight structural classes, were identified with IC50 < 60 µM. The inhibitors were evaluated as antibacterials against 19 Gram-negative and Gram-positive bacterial species (including those from the WHO’s top pathogens list). Seven of them—HSI#6, 9; HSI#1, 5, 10; and HSI#12, 14—representing three structural families, were bacteriocidal. HSI#6 was the most potent hit against 13 species of both Gram-negative and Gram-positive bacteria with IC50 of 0.4 to 8.7 μM. HSI#1, 5, 9 and 10 inhibited the viability of Gram-positive bacteria with IC50 ~6.9–77.8 μM. HSI#9, 12, and 14 inhibited the viability of E. coli strains with IC50 < 65 μM. Moreover, HSI#1, 5 and 10 inhibited the viability of an E. coli strain missing TolC to improve permeability with IC50 4 to 14 μM, indicating their inability to penetrate the outer membrane. The antimicrobial activity was not related to the inhibition of the SecA component of the translocase in vitro, and hence, HSI molecules may target new unknown components that directly or indirectly affect protein secretion. The results provided proof of the principle that the new broad HTS approach can yield attractive nanomolar inhibitors that have potential as new starting compounds for optimization to derive potential antibiotics.
Collapse
|
25
|
Jung HJ, Sorbara MT, Pamer EG. TAM mediates adaptation of carbapenem-resistant Klebsiella pneumoniae to antimicrobial stress during host colonization and infection. PLoS Pathog 2021; 17:e1009309. [PMID: 33556154 PMCID: PMC7895364 DOI: 10.1371/journal.ppat.1009309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/19/2021] [Accepted: 01/12/2021] [Indexed: 01/12/2023] Open
Abstract
Gram-negative pathogens, such as Klebsiella pneumoniae, remodel their outer membrane (OM) in response to stress to maintain its integrity as an effective barrier and thus to promote their survival in the host. The emergence of carbapenem-resistant K. pneumoniae (CR-Kp) strains that are resistant to virtually all antibiotics is an increasing clinical problem and OM impermeability has limited development of antimicrobial agents because higher molecular weight antibiotics cannot access sites of activity. Here, we demonstrate that TAM (translocation and assembly module) deletion increases CR-Kp OM permeability under stress conditions and enhances sensitivity to high-molecular weight antimicrobials. SILAC-based proteomic analyses revealed mis-localization of membrane proteins in the TAM deficient strain. Stress-induced sensitization enhances clearance of TAM-deficient CR-Kp from the gut lumen following fecal microbiota transplantation and from infection sites following pulmonary or systemic infection. Our study suggests that TAM, as a regulator of OM permeability, represents a potential target for development of agents that enhance the effectiveness of existing antibiotics.
Collapse
Affiliation(s)
- Hea-Jin Jung
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Infectious Diseases and Global Health, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (H-JJ); (EGP)
| | - Matthew T. Sorbara
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Infectious Diseases and Global Health, The University of Chicago, Chicago, Illinois, United States of America
| | - Eric G. Pamer
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Infectious Diseases and Global Health, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (H-JJ); (EGP)
| |
Collapse
|
26
|
Lundquist K, Billings E, Bi M, Wellnitz J, Noinaj N. The assembly of β-barrel membrane proteins by BAM and SAM. Mol Microbiol 2020; 115:425-435. [PMID: 33314350 DOI: 10.1111/mmi.14666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Indexed: 12/31/2022]
Abstract
Gram-negative bacteria, mitochondria, and chloroplasts all possess an outer membrane populated with a host of β-barrel outer-membrane proteins (βOMPs). These βOMPs play crucial roles in maintaining viability of their hosts, and therefore, it is essential to understand the biogenesis of this class of membrane proteins. In recent years, significant structural and functional advancements have been made toward elucidating this process, which is mediated by the β-barrel assembly machinery (BAM) in Gram-negative bacteria, and by the sorting and assembly machinery (SAM) in mitochondria. Structures of both BAM and SAM have now been reported, allowing a comparison and dissection of the two machineries, with other studies reporting on functional aspects of each. Together, these new insights provide compelling support for the proposed budding mechanism, where each nascent βOMP forms a hybrid-barrel intermediate with BAM/SAM in route to its biogenesis into the membrane. Here, we will review these recent studies and highlight their contributions toward understanding βOMP biogenesis in Gram-negative bacteria and in mitochondria. We will also weigh the evidence supporting each of the two leading mechanistic models for how BAM/SAM function, and offer an outlook on future studies within the field.
Collapse
Affiliation(s)
- Karl Lundquist
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Evan Billings
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Maxine Bi
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - James Wellnitz
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
27
|
Evaluation of the β-barrel outer membrane protein VP1243 as a candidate antigen for a cross-protective vaccine against Vibrio infections. Microb Pathog 2020; 147:104419. [PMID: 32768517 DOI: 10.1016/j.micpath.2020.104419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 11/23/2022]
Abstract
Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that causes acute gastroenteritis after the consumption of contaminated food, wound infection, and seizures. Antibiotic therapy is the main method for controlling Vibrio infections, which inevitably leads to drug resistance. Therefore, a vaccine is urgently needed to avoid this problem. Outer membrane proteins (OMPs) play a pivotal role in the interaction between the host immune system and bacteria. VP1243 is an OMP of V. parahaemolyticus, and it possessed immunogenicity in our previous study. The present study found that VP1243 was widely distributed, highly conserved and possessed similar surface epitopes among the major Vibrio species. The protein stimulated a strong antibody response and induced cross-reactive immune responses in V. parahaemolyticus, V. alginolyticus and V. vulnificus. Notably, it provided 100% immune protection against lethal challenges by the three Vibrio species in mice immunized with VP1243. Efficient clearance of cells of the three Vibrio bacterial species was observed in immunized mice. These findings provide solid evidence for VP1243 as a promising candidate for the development of a versatile vaccine to protect against Vibrio infections.
Collapse
|
28
|
Tomasek D, Rawson S, Lee J, Wzorek JS, Harrison SC, Li Z, Kahne D. Structure of a nascent membrane protein as it folds on the BAM complex. Nature 2020; 583:473-478. [PMID: 32528179 PMCID: PMC7367713 DOI: 10.1038/s41586-020-2370-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/25/2020] [Indexed: 11/09/2022]
Abstract
Mitochondria, chloroplasts, and Gram-negative bacteria are encased in a double layer of membranes. The outer membrane contains proteins with a β-barrel structure1,2. β-barrels are sheets of β-strands wrapped into a cylinder with the first strand hydrogen-bonded to the last strand. Conserved multi-subunit molecular machines fold and insert these proteins into the outer membrane3–5. One subunit of the machines is itself a β-barrel protein that plays a central role in folding other β-barrels. In Gram-negative bacteria, the β-barrel assembly machine (Bam) consists of the β-barrel protein BamA and four lipoproteins5–8. To understand how the Bam complex accelerates folding without using exogenous energy (e.g., ATP)9, we trapped folding intermediates on the machine. We report here the structure of the Bam complex folding BamA itself. The BamA catalyst (BamAM, for BamAmachine) forms an asymmetric hybrid β-barrel with the BamA substrate (BamAS). The N-terminal edge of BamAM has an antiparallel hydrogen-bonded interface with the C-terminal edge of BamAS, consistent with previous crosslinking studies10–12; the other edges of BamAM and BamAS are close to each other but curl inward and do not pair. Six hydrogen bonds in a membrane environment make the interface between the two proteins very stable. This stability allows folding but creates a high kinetic barrier to substrate release once folding has finished. Features at each end of the substrate overcome the barrier and promote release by stepwise exchange of hydrogen bonds. This mechanism of substrate-assisted product release explains how the Bam complex can stably associate with the substrate during folding and then turn over rapidly when folding is complete.
Collapse
Affiliation(s)
- David Tomasek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - James Lee
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, NY, USA
| | - Joseph S Wzorek
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| | - Zongli Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| | - Daniel Kahne
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Dong S, Chu H, Wen K, Yu Q, Li H, Wang C, Qin X. Crystallization and X-ray analysis of Borrelia burgdorferi β-barrel assembly machinery A. Acta Crystallogr F Struct Biol Commun 2020; 76:235-240. [PMID: 32510463 PMCID: PMC7278503 DOI: 10.1107/s2053230x20006196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/06/2020] [Indexed: 11/10/2022] Open
Abstract
Mitochondria, chloroplasts and several species of bacteria have outer membrane proteins (OMPs) that perform many essential biological functions. The β-barrel assembly machinery (BAM) complex is one of the OMPs of Borrelia burgdorferi, the pathogenic spirochete that causes Lyme disease, and its BamA component (BbBamA) includes a C-terminal β-barrel domain and five N-terminal periplasmic polypeptide-transport-associated (POTRA) domains, which together perform a central transport function. In the current work, the production, crystallization and X-ray analysis of the three N-terminal POTRA domains of BbBamA (BbBamA-POTRA P1-P3; residues 30-273) were carried out. The crystals of BbBamA-POTRA P1-P3 belonged to space group P21, with unit-cell parameters a = 45.353, b = 111.538, c = 64.376 Å, β = 99.913°. The Matthews coefficient was calculated to be 2.92 Å3 Da-1, assuming the presence of two molecules per asymmetric unit, and the corresponding solvent content was 57.9%. Owing to the absence of an ideal homology model, numerous attempts to solve the BbBamA-POTRA P1-P3 structure using molecular replacement (MR) failed. In order to solve the structure, further trials using selenomethionine derivatization are currently being carried out.
Collapse
Affiliation(s)
- Shishang Dong
- School of Biological Science and Technology, University of Jinan, Jinan, People’s Republic of China
| | - Hongguan Chu
- School of Biological Science and Technology, University of Jinan, Jinan, People’s Republic of China
| | - Kangning Wen
- School of Biological Science and Technology, University of Jinan, Jinan, People’s Republic of China
| | - Qianqian Yu
- School of Biological Science and Technology, University of Jinan, Jinan, People’s Republic of China
| | - Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, People’s Republic of China
| | - Changhui Wang
- School of Biological Science and Technology, University of Jinan, Jinan, People’s Republic of China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, People’s Republic of China
| |
Collapse
|
30
|
Li Z, Wang Y, Li X, Lin Z, Lin Y, Srinivasan R, Lin X. The characteristics of antibiotic resistance and phenotypes in 29 outer‐membrane protein mutant strains inAeromonas hydrophila. Environ Microbiol 2019; 21:4614-4628. [DOI: 10.1111/1462-2920.14761] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Zeqi Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Xiaoyan Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Zhenping Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Yuexu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
- Key Laboratory of Marine Biotechnology of Fujian ProvinceInstitute of Oceanology, Fujian Agriculture and Forestry University Fuzhou 350002 China
| |
Collapse
|
31
|
Liao J, Orsi RH, Carroll LM, Kovac J, Ou H, Zhang H, Wiedmann M. Serotype-specific evolutionary patterns of antimicrobial-resistant Salmonella enterica. BMC Evol Biol 2019; 19:132. [PMID: 31226931 PMCID: PMC6588947 DOI: 10.1186/s12862-019-1457-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/11/2019] [Indexed: 12/28/2022] Open
Abstract
Background The emergence of antimicrobial-resistant (AMR) strains of the important human and animal pathogen Salmonella enterica poses a growing threat to public health. Here, we studied the genome-wide evolution of 90 S. enterica AMR isolates, representing one host adapted serotype (S. Dublin) and two broad host range serotypes (S. Newport and S. Typhimurium). Results AMR S. Typhimurium had a large effective population size, a large and diverse genome, AMR profiles with high diversity, and frequent positive selection and homologous recombination. AMR S. Newport showed a relatively low level of diversity and a relatively clonal population structure. AMR S. Dublin showed evidence for a recent population bottleneck, and the genomes were characterized by a larger number of genes and gene ontology terms specifically absent from this serotype and a significantly higher number of pseudogenes as compared to other two serotypes. Approximately 50% of accessory genes, including specific AMR and putative prophage genes, were significantly over- or under-represented in a given serotype. Approximately 65% of the core genes showed phylogenetic clustering by serotype, including the AMR gene aac (6′)-Iaa. While cell surface proteins were shown to be the main target of positive selection, some proteins with possible functions in AMR and virulence also showed evidence for positive selection. Homologous recombination mainly acted on prophage-associated proteins. Conclusions Our data indicates a strong association between genome content of S. enterica and serotype. Evolutionary patterns observed in S. Typhimurium are consistent with multiple emergence events of AMR strains and/or ecological success of this serotype in different hosts or habitats. Evolutionary patterns of S. Newport suggested that antimicrobial resistance emerged in one single lineage, Lineage IIC. A recent population bottleneck and genome decay observed in AMR S. Dublin are congruent with its narrow host range. Finally, our results suggest the potentially important role of positive selection in the evolution of antimicrobial resistance, host adaptation and serotype diversification in S. enterica. Electronic supplementary material The online version of this article (10.1186/s12862-019-1457-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingqiu Liao
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA.,Graduate Field of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Renato Hohl Orsi
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Laura M Carroll
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hongyu Ou
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hailong Zhang
- Department of Computer Science & Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - Martin Wiedmann
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
32
|
Santos HJ, Imai K, Makiuchi T, Tomii K, Horton P, Nozawa A, Okada K, Tozawa Y, Nozaki T. Novel lineage-specific transmembrane β-barrel proteins in the endoplasmic reticulum of Entamoeba histolytica. FEBS J 2019; 286:3416-3432. [PMID: 31045303 DOI: 10.1111/febs.14870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/06/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
β-barrel outer membrane proteins (BOMPs) are essential components of outer membranes of Gram-negative bacteria and endosymbiotic organelles, usually involved in the transport of proteins and substrates across the membrane. Based on the analysis of our in silico BOMP predictor data for the Entamoeba histolytica genome, we detected a new transmembrane β-barrel domain-containing protein, EHI_192610. Sequence analysis revealed that this protein is unique to Entamoeba species, and it exclusively clusters with a homolog, EHI_099780, which is similarly lineage specific. Both proteins possess an N-terminal signal peptide sequence as well as multiple repeats that contain dyad hydrophobic periodicities. Data from immunofluorescence assay of trophozoites expressing the respective candidates showed the absence of colocalization with mitosomal marker, and interestingly demonstrated partial colocalization with endoplasmic reticulum (ER) proteins instead. Integration to organellar membrane was supported by carbonate fractionation assay and immunoelectron microscopy. CD analysis of reconstituted proteoliposomes containing EHI_192610 showed a spectrum demonstrating a predominant β-sheet structure, suggesting that this protein is β-strand rich. Furthermore, the presence of repeat regions with predicted transmembrane β-strand pairs in both EHI_192610 and EHI_099780, is consistent with the hypothesis that BOMPs originated from the amplification of ββ-hairpin modules, suggesting that the two Entamoeba-specific proteins are novel β-barrels, intriguingly localized partially to the ER membrane.
Collapse
Affiliation(s)
- Herbert J Santos
- Graduate School of Medicine, The University of Tokyo, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kenichiro Imai
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Japan
| | - Kentaro Tomii
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Paul Horton
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Akira Nozawa
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Kenta Okada
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Japan
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
33
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
34
|
Jung HJ, Littmann ER, Seok R, Leiner IM, Taur Y, Peled J, van den Brink M, Ling L, Chen L, Kreiswirth BN, Goodman AL, Pamer EG. Genome-Wide Screening for Enteric Colonization Factors in Carbapenem-Resistant ST258 Klebsiella pneumoniae. mBio 2019; 10:e02663-18. [PMID: 30862751 PMCID: PMC6414703 DOI: 10.1128/mbio.02663-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
A diverse, antibiotic-naive microbiota prevents highly antibiotic-resistant microbes, including carbapenem-resistant Klebsiella pneumoniae (CR-Kp), from achieving dense colonization of the intestinal lumen. Antibiotic-mediated destruction of the microbiota leads to expansion of CR-Kp in the gut, markedly increasing the risk of bacteremia in vulnerable patients. While preventing dense colonization represents a rational approach to reduce intra- and interpatient dissemination of CR-Kp, little is known about pathogen-associated factors that enable dense growth and persistence in the intestinal lumen. To identify genetic factors essential for dense colonization of the gut by CR-Kp, we constructed a highly saturated transposon mutant library with >150,000 unique mutations in an ST258 strain of CR-Kp and screened for in vitro growth and in vivo intestinal colonization in antibiotic-treated mice. Stochastic and partially reversible fluctuations in the representation of different mutations during dense colonization revealed the dynamic nature of intestinal microbial populations. We identified genes that are crucial for early and late stages of dense gut colonization and confirmed their role by testing isogenic mutants in in vivo competition assays with wild-type CR-Kp Screening of the transposon library also identified mutations that enhanced in vivo CR-Kp growth. These newly identified colonization factors may provide novel therapeutic opportunities to reduce intestinal colonization by CR-KpIMPORTANCEKlebsiella pneumoniae is a common cause of bloodstream infections in immunocompromised and hospitalized patients, and over the last 2 decades, some strains have acquired resistance to nearly all available antibiotics, including broad-spectrum carbapenems. The U.S. Centers for Disease Control and Prevention has listed carbapenem-resistant K. pneumoniae (CR-Kp) as an urgent public health threat. Dense colonization of the intestine by CR-Kp and other antibiotic-resistant bacteria is associated with an increased risk of bacteremia. Reducing the density of gut colonization by CR-Kp is likely to reduce their transmission from patient to patient in health care facilities as well as systemic infections. How CR-Kp expands and persists in the gut lumen, however, is poorly understood. Herein, we generated a highly saturated mutant library in a multidrug-resistant K. pneumoniae strain and identified genetic factors that are associated with dense gut colonization by K. pneumoniae This study sheds light on host colonization by K. pneumoniae and identifies potential colonization factors that contribute to high-density persistence of K. pneumoniae in the intestine.
Collapse
Affiliation(s)
- Hea-Jin Jung
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric R Littmann
- Center for Microbes, Inflammation, and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ruth Seok
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ingrid M Leiner
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ying Taur
- Center for Microbes, Inflammation, and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jonathan Peled
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marcel van den Brink
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lilan Ling
- Center for Microbes, Inflammation, and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Liang Chen
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, New Jersey, USA
| | - Barry N Kreiswirth
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, New Jersey, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eric G Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Center for Microbes, Inflammation, and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
35
|
Abstract
The transport of small molecules across membranes is essential for the import of nutrients and other energy sources into the cell and, for the export of waste and other potentially harmful byproducts out of the cell. While hydrophobic molecules are permeable to membranes, ions and other small polar molecules require transport via specialized membrane transport proteins . The two major classes of membrane transport proteins are transporters and channels. With our focus here on porins-major class of non-specific diffusion channel proteins , we will highlight some recent structural biology reports and functional assays that have substantially contributed to our understanding of the mechanism that mediates uptake of small molecules, including antibiotics, across the outer membrane of Enterobacteriaceae . We will also review advances in the regulation of porin expression and porin biogenesis and discuss these pathways as new therapeutic targets.
Collapse
Affiliation(s)
- Muriel Masi
- UMR_MD1, Inserm U1261, IRBA, Membranes et Cibles Thérapeutiques, Facultés de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | | | - Jean-Marie Pagès
- UMR_MD1, Inserm U1261, IRBA, Membranes et Cibles Thérapeutiques, Facultés de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
36
|
Immunotopological Analysis of the Treponema denticola Major Surface Protein (Msp). J Bacteriol 2018; 201:JB.00528-18. [PMID: 30373754 DOI: 10.1128/jb.00528-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
Treponema denticola, one of several recognized periodontal pathogens, is a model organism for studying Treponema physiology and host-microbe interactions. Its major surface protein Msp (or MOSP) comprises an oligomeric outer membrane-associated complex that binds fibronectin, has cytotoxic pore-forming activity, and disrupts several intracellular responses. There are two hypotheses regarding native Msp structure and membrane topology. One hypothesis predicts that the entire Msp protein forms a β-barrel structure similar to that of well-studied outer membrane porins of Gram-negative bacteria. The second hypothesis predicts a bipartite Msp with distinct and separate periplasmic N-terminal and porin-like β-barrel C-terminal domains. The bipartite model, based on bioinformatic analysis of the orthologous Treponema pallidum Tpr proteins, is supported largely by studies of recombinant TprC and Msp polypeptides. The present study reports immunological studies in both T. denticola and Escherichia coli backgrounds to identify a prominent Msp surface epitope (residues 229 to 251 in ATCC 35405) in a domain that differs between strains with otherwise highly conserved Msps. These results were then used to evaluate a series of in silico structural models of representative T. denticola Msps. The data presented here are consistent with a model of Msp as a large-diameter β-barrel porin. This work adds to the knowledge regarding the diverse Msp-like proteins in oral treponemes and may contribute to an understanding of the evolutionary and potential functional relationships between Msps of oral Treponema and the orthologous group of Tpr proteins of T. pallidum. IMPORTANCE Treponema denticola is among a small subset of the oral microbiota contributing to severe periodontal disease. Due to its relative genetic tractability, T. denticola is a model organism for studying Treponema physiology and host-microbe interactions. T. denticola Msp is a highly expressed outer membrane-associated oligomeric protein that binds fibronectin, has cytotoxic pore-forming activity, and disrupts intracellular regulatory pathways. It shares homology with the orthologous group of T. pallidum Tpr proteins, one of which is implicated in T. pallidum in vivo antigenic variation. The outer membrane topologies of both Msp and the Tpr family proteins are unresolved, with conflicting reports on protein domain localization and function. In this study, we combined empirical immunological data derived both from diverse T. denticola strains and from recombinant Msp expression in E. coli with in silico predictive structural modeling of T. denticola Msp membrane topology, to move toward resolution of this important issue in Treponema biology.
Collapse
|
37
|
Comparative Analysis of TM and Cytoplasmic β-barrel Conformations Using Joint Descriptor. Sci Rep 2018; 8:14185. [PMID: 30242187 PMCID: PMC6155101 DOI: 10.1038/s41598-018-32136-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023] Open
Abstract
Macroscopic descriptors have become valuable as coarse-grained features of complex proteins and are complementary to microscopic descriptors. Proteins macroscopic geometric features provide effective clues in the quantification of distant similarity and close dissimilarity searches for structural comparisons. In this study, we performed a systematic comparison of β-barrels, one of the important classes of protein folds in various transmembrane (TM) proteins against cytoplasmic barrels to estimate the conformational features using a joint-based descriptor. The approach uses joint coordinates and dihedral angles (β and γ) based on the β-strand joints and loops to determine the arrangements and propensities at the local and global levels. We then confirmed that there is a clear preference in the overall β and γ distribution, arrangements of β-strands and loops, signature patterns, and the number of strand effects between TM and cytoplasmic β-barrel geometries. As a robust and simple approach, we determine that the joint-based descriptor could provide a reliable static structural comparison aimed at macroscopic level between complex protein conformations.
Collapse
|
38
|
Sanganna Gari RR, Seelheim P, Marsh B, Kiessling V, Creutz CE, Tamm LK. Quaternary structure of the small amino acid transporter OprG from Pseudomonas aeruginosa. J Biol Chem 2018; 293:17267-17277. [PMID: 30237175 DOI: 10.1074/jbc.ra118.004461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/13/2018] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that causes nosocomial infections. The P. aeruginosa outer membrane contains specific porins that enable substrate uptake, with the outer membrane protein OprG facilitating transport of small, uncharged amino acids. However, the pore size of an eight-stranded β-barrel monomer of OprG is too narrow to accommodate even the smallest transported amino acid, glycine, raising the question of how OprG facilitates amino acid uptake. Pro-92 of OprG is critically important for amino acid transport, with a P92A substitution inhibiting transport and the NMR structure of this variant revealing that this substitution produces structural changes in the barrel rim and restricts loop motions. OprG may assemble into oligomers in the outer membrane (OM) whose subunit interfaces could form a transport channel. Here, we explored the contributions of the oligomeric state and the extracellular loops to OprG's function. Using chemical cross-linking to determine the oligomeric structures of both WT and P92A OprG in native outer membranes and atomic force microscopy, and single-molecule fluorescence of the purified proteins reconstituted into lipid bilayers, we found that both protein variants form oligomers, supporting the notion that subunit interfaces in the oligomer could provide a pathway for amino acid transport. Furthermore, performing transport assays with loop-deleted OprG variants, we found that these variants also can transport small amino acids, indicating that the loops are not solely responsible for substrate transport. We propose that OprG functions as an oligomer and that conformational changes in the barrel-loop region might be crucial for its activity.
Collapse
Affiliation(s)
| | - Patrick Seelheim
- From the Department of Molecular Physiology and Biological Physics, Center for Cell and Membrane Physiology and
| | - Brendan Marsh
- the Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 OWA, United Kingdom
| | - Volker Kiessling
- From the Department of Molecular Physiology and Biological Physics, Center for Cell and Membrane Physiology and
| | - Carl E Creutz
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908 and
| | - Lukas K Tamm
- From the Department of Molecular Physiology and Biological Physics, Center for Cell and Membrane Physiology and
| |
Collapse
|
39
|
Abstract
In Gram-negative bacteria, the outer membrane contains primarily β-barrel transmembrane proteins and lipoproteins. The insertion and assembly of β-barrel outer-membrane proteins (OMPs) is mediated by the β-barrel assembly machinery (BAM) complex, the core component of which is the 16-stranded transmembrane β-barrel BamA. Recent studies have indicated a possible role played by the seam between the first and last β-barrel strands of BamA in the OMP insertion process through lateral gating and a destabilized membrane region. In this study, we have determined the stability and dynamics of the lateral gate through over 12.5 μs of equilibrium simulations and 4 μs of free-energy calculations. From the equilibrium simulations, we have identified a persistent kink in the C-terminal strand and observed spontaneous lateral-gate separation in a mimic of the native bacterial outer membrane. Free-energy calculations of lateral gate opening revealed a significantly lower barrier to opening in the C-terminal kinked conformation; mutagenesis experiments confirm the relevance of C-terminal kinking to BamA structure and function.
Collapse
|
40
|
Li G, He C, Bu P, Bi H, Pan S, Sun R, Zhao XS. Single-Molecule Detection Reveals Different Roles of Skp and SurA as Chaperones. ACS Chem Biol 2018. [PMID: 29543429 DOI: 10.1021/acschembio.8b00097] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Skp and SurA are both periplasmic chaperones involved in the biogenesis of Escherichia coli β-barrel outer membrane proteins (OMPs). It is commonly assumed that SurA plays a major role whereas Skp is a minor factor. However, there is no molecular evidence for whether their roles are redundant. Here, by using different dilution methods, we obtained monodisperse and aggregated forms of OmpC and studied their interactions with Skp and SurA by single-molecule fluorescence resonance energy transfer and fluorescence correlation spectroscopy. We found that Skp can dissolve aggregated OmpC while SurA cannot convert aggregated OmpC into the monodisperse form and the conformations of OmpC recognized by the two chaperones as well as their stoichiometries of binding are different. Our study demonstrates the functional distinctions between Skp and SurA. In particular, the role of Skp is not redundant and is probably more significant under stress conditions.
Collapse
Affiliation(s)
- Geng Li
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Chenhui He
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Peixuan Bu
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Huimin Bi
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Sichen Pan
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Ronghua Sun
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xin Sheng Zhao
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Dhandapani G, Sikha T, Rana A, Brahma R, Akhter Y, Gopalakrishnan Madanan M. Comparative proteome analysis reveals pathogen specific outer membrane proteins of Leptospira. Proteins 2018; 86:712-722. [PMID: 29633350 DOI: 10.1002/prot.25505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/12/2018] [Accepted: 04/02/2018] [Indexed: 11/11/2022]
Abstract
Proteomes of pathogenic Leptospira interrogans and L. borgpetersenii and the saprophytic L. biflexa were filtered through computational tools to identify Outer Membrane Proteins (OMPs) that satisfy the required biophysical parameters for their presence on the outer membrane. A total of 133, 130, and 144 OMPs were identified in L. interrogans, L. borgpetersenii, and L. biflexa, respectively, which forms approximately 4% of proteomes. A holistic analysis of transporting and pathogenic characteristics of OMPs together with Clusters of Orthologous Groups (COGs) among the OMPs and their distribution across 3 species was made and put forward a set of 21 candidate OMPs specific to pathogenic leptospires. It is also found that proteins homologous to the candidate OMPs were also present in other pathogenic species of leptospires. Six OMPs from L. interrogans and 2 from L. borgpetersenii observed to have similar COGs while those were not found in any intermediate or saprophytic forms. These OMPs appears to have role in infection and pathogenesis and useful for anti-leptospiral strategies.
Collapse
Affiliation(s)
- Gunasekaran Dhandapani
- Regional Medical Research Centre (ICMR), Port Blair, Andaman and Nicobar Islands, 744101, India.,Department of Chemical Sciences, Ariel University, Ariel, 70400, Israel
| | - Thoduvayil Sikha
- Regional Medical Research Centre (ICMR), Port Blair, Andaman and Nicobar Islands, 744101, India
| | - Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, Temporary Academic Block, Shahpur, District-Kangra, Himachal Pradesh, 176206, India
| | - Rahul Brahma
- Regional Medical Research Centre (ICMR), Port Blair, Andaman and Nicobar Islands, 744101, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Temporary Academic Block, Shahpur, District-Kangra, Himachal Pradesh, 176206, India.,Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | | |
Collapse
|
42
|
Chaturvedi D, Mahalakshmi R. Folding Determinants of Transmembrane β-Barrels Using Engineered OMP Chimeras. Biochemistry 2018. [DOI: 10.1021/acs.biochem.8b00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal − 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal − 462066, India
| |
Collapse
|
43
|
Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol 2017; 15:123. [PMID: 29268734 PMCID: PMC5740924 DOI: 10.1186/s12915-017-0464-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
44
|
Identification and Characterization of the Major Porin of Desulfovibrio vulgaris Hildenborough. J Bacteriol 2017; 199:JB.00286-17. [PMID: 28874410 PMCID: PMC5686591 DOI: 10.1128/jb.00286-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Due in large part to their ability to facilitate the diffusion of a diverse range of solutes across the outer membrane (OM) of Gram-negative bacteria, the porins represent one of the most prominent and important bacterial membrane protein superfamilies. Notably, for the Gram-negative bacterium Desulfovibrio vulgaris Hildenborough, a model organism for studies of sulfate-reducing bacteria, no genes for porins have been identified or proposed in its annotated genome. Results from initial biochemical studies suggested that the product of the DVU0799 gene, which is one of the most abundant proteins of the D. vulgaris Hildenborough OM and purified as a homotrimeric complex, was a strong porin candidate. To investigate this possibility, this protein was further characterized biochemically and biophysically. Structural analyses via electron microscopy of negatively stained protein identified trimeric particles with stain-filled depressions and structural modeling suggested a β-barrel structure for the monomer, motifs common among the known porins. Functional studies were performed in which crude OM preparations or purified DVU0799 was reconstituted into proteoliposomes and the proteoliposomes were examined for permeability against a series of test solutes. The results obtained establish DVU0799 to be a pore-forming protein with permeability properties similar to those observed for classical bacterial porins, such as those of Escherichia coli. Taken together, these findings identify this highly abundant OM protein to be the major porin of D. vulgaris Hildenborough. Classification of DVU0799 in this model organism expands the database of functionally characterized porins and may also extend the range over which sequence analysis strategies can be used to identify porins in other bacterial genomes. IMPORTANCE Porins are membrane proteins that form transmembrane pores for the passive transport of small molecules across the outer membranes of Gram-negative bacteria. The present study identified and characterized the major porin of the model sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, observing its preference for anionic sugars over neutral ones. Its predicted architecture appears to be novel for a classical porin, as its core β-barrel structure is of a type typically found in solute-specific channels. Broader use of the methods employed here, such as assays for channel permeability and electron microscopy of purified samples, is expected to help expand the database of confirmed porin sequences and improve the range over which sequence analysis-based strategies can be used to identify porins in other Gram-negative bacteria. Functional characterization of these critical gatekeeping proteins from divergent Desulfovibrio species should offer an improved understanding of the physiological features that determine their habitat range and supporting activities.
Collapse
|
45
|
Chaturvedi D, Mahalakshmi R. Transmembrane β-barrels: Evolution, folding and energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2467-2482. [PMID: 28943271 DOI: 10.1016/j.bbamem.2017.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
The biogenesis of transmembrane β-barrels (outer membrane proteins, or OMPs) is an elaborate multistep orchestration of the nascent polypeptide with translocases, barrel assembly machinery, and helper chaperone proteins. Several theories exist that describe the mechanism of chaperone-assisted OMP assembly in vivo and unassisted (spontaneous) folding in vitro. Structurally, OMPs of bacterial origin possess even-numbered strands, while mitochondrial β-barrels are even- and odd-stranded. Several underlying similarities between prokaryotic and eukaryotic β-barrels and their folding machinery are known; yet, the link in their evolutionary origin is unclear. While OMPs exhibit diversity in sequence and function, they share similar biophysical attributes and structure. Similarly, it is important to understand the intricate OMP assembly mechanism, particularly in eukaryotic β-barrels that have evolved to perform more complex functions. Here, we deliberate known facets of β-barrel evolution, folding, and stability, and attempt to highlight outstanding questions in β-barrel biogenesis and proteostasis.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
46
|
Michalik M, Orwick-Rydmark M, Habeck M, Alva V, Arnold T, Linke D. An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins. PLoS One 2017; 12:e0182016. [PMID: 28771529 PMCID: PMC5542473 DOI: 10.1371/journal.pone.0182016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/11/2017] [Indexed: 12/02/2022] Open
Abstract
An intimate interaction between a pair of amino acids, a tyrosine and glycine on neighboring β-strands, has been previously reported to be important for the structural stability of autotransporters. Here, we show that the conservation of this interacting pair extends to nearly all major families of outer membrane β-barrel proteins, which are thought to have originated through duplication events involving an ancestral ββ hairpin. We analyzed the function of this motif using the prototypical outer membrane protein OmpX. Stopped-flow fluorescence shows that two folding processes occur in the millisecond time regime, the rates of which are reduced in the tyrosine mutant. Folding assays further demonstrate a reduction in the yield of folded protein for the mutant compared to the wild-type, as well as a reduction in thermal stability. Taken together, our data support the idea of an evolutionarily conserved ‘folding core’ that affects the folding, membrane insertion, and thermal stability of outer membrane protein β-barrels.
Collapse
Affiliation(s)
- Marcin Michalik
- Department of Biosciences, University of Oslo, Oslo, Norway
- Previous affiliation: Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Michael Habeck
- Statistical inverse problems in Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Göttingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Thomas Arnold
- Previous affiliation: Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Boehringer Ingelheim Veterinary Research Center, Hannover, Germany
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
- Previous affiliation: Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| |
Collapse
|
47
|
Meneghini LM, Tripathi S, Woodworth MA, Majumdar S, Poulos TL, Weiss GA. Dissecting binding of a β-barrel membrane protein by phage display. MOLECULAR BIOSYSTEMS 2017; 13:1438-1447. [PMID: 28627567 PMCID: PMC5564213 DOI: 10.1039/c7mb00163k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Membrane proteins (MPs) constitute a third of all proteomes, and contribute to a myriad of cellular functions including intercellular communication, nutrient transport and energy generation. For example, TonB-dependent transporters (TBDTs) in the outer membrane of Gram-negative bacteria play an essential role transporting iron and other nutrients into the bacterial cell. The inherently hydrophobic surfaces of MPs complicates protein expression, purification, and characterization. Thus, dissecting the functional contributions of individual amino acids or structural features through mutagenesis can be a challenging ordeal. Here, we apply a new approach for the expedited protein characterization of the TBDT ShuA from Shigella dysenteriae, and elucidate the protein's initial steps during heme-uptake. ShuA variants were displayed on the surface of an M13 bacteriophage as fusions to the P8 coat protein. Each ShuA variant was analyzed for its ability to display on the bacteriophage surface, and functionally bind to hemoglobin. This technique streamlines isolation of stable MP variants for rapid characterization of binding to various ligands. Site-directed mutagenesis studies targeting each extracellular loop region of ShuA demonstrate no specific extracellular loop is required for hemoglobin binding. Instead two residues, His420 and His86 mediate this interaction. The results identify a loop susceptible to antibody binding, and also a small molecule motif capable of disrupting ShuA from S. dysenteriae. The approach is generalizable to the dissection of other phage-displayed TBDTs and MPs.
Collapse
Affiliation(s)
- Luz M Meneghini
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| | - Sarvind Tripathi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| | - Marcus A Woodworth
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| | - Sudipta Majumdar
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Thomas L Poulos
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA. and Department of Chemistry, University of California, Irvine, CA, USA
| | - Gregory A Weiss
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA. and Department of Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
48
|
Pastor Y, Camacho A, Gil AG, Ramos R, Ceráin ALD, Peñuelas I, Irache JM, Gamazo C. Effective protection of mice against Shigella flexneri with a new self-adjuvant multicomponent vaccine. J Med Microbiol 2017; 66:946-958. [PMID: 28721849 DOI: 10.1099/jmm.0.000527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The aim of this study was to develop an immunogenic protective product against Shigella flexneri by employing a simple and safe heat treatment-based strategy. METHODOLOGY The physicochemical characteristics of naturally produced (OMV) and heat-induced (HT) outer-membrane vesicles from S. flexneri were examined, including a comparison of the protein content of the products. Toxicological and biodistribution studies, and a preliminary experiment to examine the protective effectiveness of HT in a murine model of S. flexneri infection, were also included. RESULTS This method simultaneously achieves complete bacterial inactivation and the production of the HT vaccine product, leading to a safe working process. The obtained HT complex presented a similar morphology (electron microscopy) and chemical composition to the classical OMV, although it was enriched in some immunogens, such as lipoproteins, OmpA or OmpC, among others. The HT formulation was not toxic and biodistribution studies performed in mice demonstrated that the vaccine product remained in the small intestine after nasal administration. Finally, a single dose of HT administered nasally was able to protect mice against S. flexneri 2a. CONCLUSION The convenient and safe manufacturing process, and the preliminary biological evaluation, support the use of the self-adjuvanted HT complex as a new vaccine candidate to face shigellosis. Further development is required, such as additional immune analyses, to evaluate whether this new subunit vaccine can be useful in achieving full protection against Shigella.
Collapse
Affiliation(s)
- Yadira Pastor
- Department of Microbiology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain
| | - Ana Camacho
- Department of Microbiology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain
| | - Ana Gloria Gil
- Department of Toxicology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain
| | - Rocío Ramos
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Institute of Tropical Health, University of Navarra 31008, Pamplona, Spain
| | - Adela López de Ceráin
- Department of Toxicology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain
| | - Iván Peñuelas
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Institute of Tropical Health, University of Navarra 31008, Pamplona, Spain
| | - Juan M Irache
- Department of Pharmaceutical Technology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain
| | - Carlos Gamazo
- Department of Microbiology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
49
|
Hsueh YC, Flinner N, Gross LE, Haarmann R, Mirus O, Sommer MS, Schleiff E. Chloroplast outer envelope protein P39 in Arabidopsis thaliana belongs to the Omp85 protein family. Proteins 2017; 85:1391-1401. [PMID: 25401771 DOI: 10.1002/prot.24725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 01/08/2023]
Abstract
Proteins of the Omp85 family chaperone the membrane insertion of β-barrel-shaped outer membrane proteins in bacteria, mitochondria, and probably chloroplasts and facilitate the transfer of nuclear-encoded cytosolically synthesized preproteins across the outer envelope of chloroplasts. This protein family is characterized by N-terminal polypeptide transport-associated (POTRA) domains and a C-terminal membrane-embedded β-barrel. We have investigated a recently identified Omp85 family member of Arabidopsis thaliana annotated as P39. We show by in vitro and in vivo experiments that P39 is localized in chloroplasts. The electrophysiological properties of P39 are consistent with those of other Omp85 family members confirming the sequence based assignment of P39 to this family. Bioinformatic analysis showed that P39 lacks any POTRA domain, while a complete 16 stranded β-barrel including the highly conserved L6 loop is proposed. The electrophysiological properties are most comparable to Toc75-V, which is consistent with the phylogenetic clustering of P39 in the Toc75-V rather than the Toc75-III branch of the Omp85 family tree. Taken together P39 forms a pore with Omp85 family protein characteristics. The bioinformatic comparison of the pore region of Toc75-III, Toc75-V, and P39 shows distinctions of the barrel region most likely related to function. Proteins 2017; 85:1391-1401. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi-Ching Hsueh
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Nadine Flinner
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany.,Center of Membrane Proteomics, Goethe University, D-60438, Frankfurt, Germany
| | - Lucia E Gross
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Raimund Haarmann
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Oliver Mirus
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Maik S Sommer
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany.,Center of Membrane Proteomics, Goethe University, D-60438, Frankfurt, Germany.,Cluster of Excellence Frankfurt, Goethe University, D-60438, Frankfurt, Germany.,Buchman Institute of Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
| |
Collapse
|
50
|
Abstract
In Gram-negative bacteria, the biogenesis of β-barrel outer membrane proteins (OMPs) is mediated by the β-barrel assembly machinery (BAM) complex. During the past decade, structural and functional studies have collectively contributed to advancing our understanding of the structure and function of the BAM complex; however, the exact mechanism that is involved remains elusive. In this Progress article, we discuss recent structural studies that have revealed that the accessory proteins may regulate essential unprecedented conformational changes in the core component BamA during function. We also detail the mechanistic insights that have been gained from structural data, mutagenesis studies and molecular dynamics simulations, and explore two emerging models for the BAM-mediated biogenesis of OMPs in bacteria.
Collapse
Affiliation(s)
- Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences and the Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| |
Collapse
|