1
|
Pizzoni A, Zhang X, Naim N, Altschuler DL. Soluble cyclase-mediated nuclear cAMP synthesis is sufficient for cell proliferation. Proc Natl Acad Sci U S A 2023; 120:e2208749120. [PMID: 36656863 PMCID: PMC9942871 DOI: 10.1073/pnas.2208749120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
cAMP, a key player in many physiological processes, was classically considered to originate solely from the plasma membrane (PM). This view was recently challenged by observations showing that upon internalization GsPCRs can sustain signaling from endosomes and/or the trans-Golgi network (TGN). In this new view, after the first PM-generated cAMP wave, the internalization of GsPCRs and ACs generates a second wave that was strictly associated with nuclear transcriptional events responsible for triggering specific biological responses. Here, we report that the endogenously expressed TSHR, a canonical GsPCR, triggers an internalization-dependent, calcium-mediated nuclear sAC activation that drives PKA activation and CREB phosphorylation. Both pharmacological and genetic sAC inhibition, which did not affect the cytosolic cAMP levels, blunted nuclear cAMP accumulation, PKA activation, and cell proliferation, while an increase in nuclear sAC expression significantly enhanced cell proliferation. Furthermore, using novel nuclear-targeted optogenetic actuators, we show that light-stimulated nuclear cAMP synthesis can mimic the proliferative action of TSH by activating PKA and CREB. Therefore, based on our results, we propose a novel three-wave model in which the "third" wave of cAMP is generated by nuclear sAC. Despite being downstream of events occurring at the PM (first wave) and endosomes/TGN (second wave), the nuclear sAC-generated cAMP (third wave) is sufficient and rate-limiting for thyroid cell proliferation.
Collapse
Affiliation(s)
- Alejandro Pizzoni
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Nyla Naim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Daniel L. Altschuler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| |
Collapse
|
2
|
Nolan JK, Nguyen TNH, Le KVH, DeLong LE, Lee H. Simple Fabrication of Flexible Biosensor Arrays Using Direct Writing for Multianalyte Measurement from Human Astrocytes. SLAS Technol 2020; 25:33-46. [PMID: 31766939 PMCID: PMC7263197 DOI: 10.1177/2472630319888442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Simultaneous measurements of glucose, lactate, and neurotransmitters (e.g., glutamate) in cell culture over hours and days can provide a more dynamic and longitudinal perspective on ways neural cells respond to various drugs and environmental cues. Compared with conventional microfabrication techniques, direct writing of conductive ink is cheaper, faster, and customizable, which allows rapid iteration for different applications. Using a simple direct writing technique, we printed biosensor arrays onto cell culture dishes, flexible laminate, and glass to enable multianalyte monitoring. The ink was a composite of PEDOT:PSS conductive polymer, silicone, activated carbon, and Pt microparticles. We applied 0.5% Nafion to the biosensors for selectivity and functionalized them with oxidase enzymes. We characterized biosensors in phosphate-buffered saline and in cell culture medium supplemented with fetal bovine serum. The biosensor arrays measured glucose, lactate, and glutamate simultaneously and continued to function after incubation in cell culture at 37 °C for up to 2 days. We cultured primary human astrocytes on top of the biosensor arrays and placed arrays into astrocyte cultures. The biosensors simultaneously measured glucose, glutamate, and lactate from astrocyte cultures. Direct writing can be integrated with microfluidic organ-on-a-chip platforms or as part of a smart culture dish system. Because we print extrudable and flexible components, sensing elements can be printed on any 3D or flexible substrate.
Collapse
Affiliation(s)
- James K. Nolan
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Tran N. H. Nguyen
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Khanh Vy H. Le
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Luke E. DeLong
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
François P, Zilman A. Physical approaches to receptor sensing and ligand discrimination. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2019.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
5
|
Thoke HS, Thorsteinsson S, Stock RP, Bagatolli LA, Olsen LF. The dynamics of intracellular water constrains glycolytic oscillations in Saccharomyces cerevisiae. Sci Rep 2017; 7:16250. [PMID: 29176686 PMCID: PMC5701229 DOI: 10.1038/s41598-017-16442-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022] Open
Abstract
We explored the dynamic coupling of intracellular water with metabolism in yeast cells. Using the polarity-sensitive probe 6-acetyl-2-dimethylaminonaphthalene (ACDAN), we show that glycolytic oscillations in the yeast S. cerevisiae BY4743 wild-type strain are coupled to the generalized polarization (GP) function of ACDAN, which measures the physical state of intracellular water. We analysed the oscillatory dynamics in wild type and 24 mutant strains with mutations in many different enzymes and proteins. Using fluorescence spectroscopy, we measured the amplitude and frequency of the metabolic oscillations and ACDAN GP in the resting state of all 25 strains. The results showed that there is a lower and an upper threshold of ACDAN GP, beyond which oscillations do not occur. This critical GP range is also phenomenologically linked to the occurrence of oscillations when cells are grown at different temperatures. Furthermore, the link between glycolytic oscillations and the ACDAN GP value also holds when ATP synthesis or the integrity of the cell cytoskeleton is perturbed. Our results represent the first demonstration that the dynamic behaviour of a metabolic process can be regulated by a cell-wide physical property: the dynamic state of intracellular water, which represents an emergent property.
Collapse
Affiliation(s)
- Henrik S Thoke
- Center for Biomembrane Physics (MEMPHYS), Odense M, Denmark.,Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark
| | - Sigmundur Thorsteinsson
- Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark
| | - Roberto P Stock
- Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark
| | - Luis A Bagatolli
- Center for Biomembrane Physics (MEMPHYS), Odense M, Denmark.,Yachay EP and Yachay Tech, Yachay City of Knowledge, 100650, Urcuquí-Imbabura, Ecuador
| | - Lars F Olsen
- Center for Biomembrane Physics (MEMPHYS), Odense M, Denmark. .,Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark.
| |
Collapse
|
6
|
Yoon MN, Kim MJ, Koong HS, Kim DK, Kim SH, Park HS. Ethanol suppresses carbamylcholine-induced intracellular calcium oscillation in mouse pancreatic acinar cells. Alcohol 2017; 63:53-59. [PMID: 28847382 DOI: 10.1016/j.alcohol.2017.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
Abstract
Oscillation of intracellular calcium levels is closely linked to initiating secretion of digestive enzymes from pancreatic acinar cells. Excessive alcohol consumption is known to relate to a variety of disorders in the digestive system, including the exocrine pancreas. In this study, we have investigated the role and mechanism of ethanol on carbamylcholine (CCh)-induced intracellular calcium oscillation in murine pancreatic acinar cells. Ethanol at concentrations of 30 and 100 mM reversibly suppressed CCh-induced Ca2+ oscillation in a dose-dependent manner. Pretreatment of ethanol has no effect on the store-operated calcium entry induced by 10 μM of CCh. Ethanol significantly reduced the initial calcium peak induced by low concentrations of CCh and therefore, the CCh-induced dose-response curve of the initial calcium peak was shifted to the right by ethanol pretreatment. Furthermore, ethanol significantly dose-dependently reduced inositol 1,4,5-trisphosphate-induced calcium release from the internal stores in permeabilized acinar cells. These results provide evidence that excessive alcohol intake could impair cytosolic calcium oscillation through inhibiting calcium release from intracellular stores in mouse pancreatic acinar cells.
Collapse
Affiliation(s)
- Mi Na Yoon
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Min Jae Kim
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Hwa Soo Koong
- Department of Dental Hygiene, College of Medical Science, Konyang University, Daejeon 35365, Republic of Korea
| | - Dong Kwan Kim
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Se Hoon Kim
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Hyung Seo Park
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; Myunggok Medical Research Institute, Konyang University, Daejeon 35365, Republic of Korea.
| |
Collapse
|
7
|
Mo GCH, Ross B, Hertel F, Manna P, Yang X, Greenwald E, Booth C, Plummer AM, Tenner B, Chen Z, Wang Y, Kennedy EJ, Cole PA, Fleming KG, Palmer A, Jimenez R, Xiao J, Dedecker P, Zhang J. Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. Nat Methods 2017; 14:427-434. [PMID: 28288122 PMCID: PMC5388356 DOI: 10.1038/nmeth.4221] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/06/2017] [Indexed: 12/17/2022]
Abstract
Compartmentalized biochemical activities are essential to all cellular processes, but there is no generalizable method to visualize dynamic protein activities in living cells at a resolution commensurate with their compartmentalization. Here we introduce a new class of fluorescent biosensors that detect biochemical activities in living cells at a resolution up to three-fold better than the diffraction limit. Utilizing specific, binding-induced changes in protein fluorescence dynamics, these biosensors translate kinase activities or protein-protein interactions into changes in fluorescence fluctuations, which are quantifiable through stochastic optical fluctuation imaging. A Protein Kinase A (PKA) biosensor allowed us to resolve minute PKA activity microdomains on the plasma membrane of living cells and uncover the role of clustered anchoring proteins in organizing these activity microdomains. Together, these findings suggest that biochemical activities of the cell are spatially organized into an activity architecture, whose structural and functional characteristics can be revealed by these new biosensors.
Collapse
Affiliation(s)
- Gary C H Mo
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Brian Ross
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fabian Hertel
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Premashis Manna
- JILA, University of Colorado and NIST, Boulder, Colorado, USA.,Department of Chemistry and Biochemistry, University of Colorado, Boulder, Boulder, Colorado, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Greenwald
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Chris Booth
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Ashlee M Plummer
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brian Tenner
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zan Chen
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuxiao Wang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Philip A Cole
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen G Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amy Palmer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Boulder, Colorado, USA.,BioFrontiers Institute, University of Colorado, Boulder, Boulder, Colorado, USA
| | - Ralph Jimenez
- JILA, University of Colorado and NIST, Boulder, Colorado, USA.,Department of Chemistry and Biochemistry, University of Colorado, Boulder, Boulder, Colorado, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Newman RH, Zhang J. Integrated Strategies to Gain a Systems-Level View of Dynamic Signaling Networks. Methods Enzymol 2017; 589:133-170. [PMID: 28336062 DOI: 10.1016/bs.mie.2017.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to survive and function properly in the face of an ever changing environment, cells must be able to sense changes in their surroundings and respond accordingly. Cells process information about their environment through complex signaling networks composed of many discrete signaling molecules. Individual pathways within these networks are often tightly integrated and highly dynamic, allowing cells to respond to a given stimulus (or, as is typically the case under physiological conditions, a combination of stimuli) in a specific and appropriate manner. However, due to the size and complexity of many cellular signaling networks, it is often difficult to predict how cellular signaling networks will respond under a particular set of conditions. Indeed, crosstalk between individual signaling pathways may lead to responses that are nonintuitive (or even counterintuitive) based on examination of the individual pathways in isolation. Therefore, to gain a more comprehensive view of cell signaling processes, it is important to understand how signaling networks behave at the systems level. This requires integrated strategies that combine quantitative experimental data with computational models. In this chapter, we first examine some of the progress that has recently been made toward understanding the systems-level regulation of cellular signaling networks, with a particular emphasis on phosphorylation-dependent signaling networks. We then discuss how genetically targetable fluorescent biosensors are being used together with computational models to gain unique insights into the spatiotemporal regulation of signaling networks within single, living cells.
Collapse
Affiliation(s)
- Robert H Newman
- North Carolina Agricultural and Technical State University, Greensboro, NC, United States.
| | - Jin Zhang
- University of California, San Diego, San Diego, CA, United States.
| |
Collapse
|
9
|
Chua CY, Liu Y, Granberg KJ, Hu L, Haapasalo H, Annala MJ, Cogdell DE, Verploegen M, Moore LM, Fuller GN, Nykter M, Cavenee WK, Zhang W. IGFBP2 potentiates nuclear EGFR-STAT3 signaling. Oncogene 2015; 35:738-47. [PMID: 25893308 PMCID: PMC4615268 DOI: 10.1038/onc.2015.131] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 02/04/2023]
Abstract
Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular functions. Despite a clear causal role in cancer development, the tumor-promoting mechanisms of IGFBP2 are poorly understood. The contributions of intracellular IGFBP2 to tumor development and progression are also unclear. Here we present evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of EGFR, which subsequently activates STAT3 signaling. Furthermore, we demonstrate that IGFBP2 augments the nuclear accumulation of EGFR to potentiate STAT3 transactivation activities, via activation of the nuclear EGFR signaling pathway. Nuclear IGFBP2 directly influences the invasive and migratory capacities of human glioblastoma cells, providing a direct link between intracellular (and particularly nuclear) IGFBP2 and cancer hallmarks. These activities are also consistent with the strong association between IGFBP2 and STAT3-activated genes derived from the TCGA database for human glioma. A high level of all 3 proteins (IGFBP2, EGFR and STAT3) was strongly correlated with poorer survival in an independent patient dataset. These results identify a novel tumor-promoting function for IGFBP2 of activating EGFR/STAT3 signaling and facilitating EGFR accumulation in the nucleus, thereby deregulating EGFR signaling by 2 distinct mechanisms. As targeting EGFR in glioma has been relatively unsuccessful, this study suggests that IGFBP2 may be a novel therapeutic target.
Collapse
Affiliation(s)
- C Y Chua
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Y Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,ISB-MDA Genome Data Analysis Center, The Cancer Genome Atlas, Seattle, WA/Houston, TX, USA
| | - K J Granberg
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Signal Processing, Tampere University of Technology, Tampere, Finland.,Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - L Hu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Haapasalo
- Department of Pathology, Fimlab Laboratories and University of Tampere, Tampere, Finland
| | - M J Annala
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Signal Processing, Tampere University of Technology, Tampere, Finland.,Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - D E Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Verploegen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L M Moore
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.,ISB-MDA Genome Data Analysis Center, The Cancer Genome Atlas, Seattle, WA/Houston, TX, USA
| | - M Nykter
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - W K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - W Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.,ISB-MDA Genome Data Analysis Center, The Cancer Genome Atlas, Seattle, WA/Houston, TX, USA
| |
Collapse
|
10
|
Li S, Bhave D, Chow JM, Riera TV, Schlee S, Rauch S, Atanasova M, Cate RL, Whitty A. Quantitative analysis of receptor tyrosine kinase-effector coupling at functionally relevant stimulus levels. J Biol Chem 2015; 290:10018-36. [PMID: 25635057 DOI: 10.1074/jbc.m114.602268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Indexed: 01/16/2023] Open
Abstract
A major goal of current signaling research is to develop a quantitative understanding of how receptor activation is coupled to downstream signaling events and to functional cellular responses. Here, we measure how activation of the RET receptor tyrosine kinase on mouse neuroblastoma cells by the neurotrophin artemin (ART) is quantitatively coupled to key downstream effectors. We show that the efficiency of RET coupling to ERK and Akt depends strongly on ART concentration, and it is highest at the low (∼100 pM) ART levels required for neurite outgrowth. Quantitative discrimination between ERK and Akt pathway signaling similarly is highest at this low ART concentration. Stimulation of the cells with 100 pM ART activated RET at the rate of ∼10 molecules/cell/min, leading at 5-10 min to a transient peak of ∼150 phospho-ERK (pERK) molecules and ∼50 pAkt molecules per pRET, after which time the levels of these two signaling effectors fell by 25-50% while the pRET levels continued to slowly rise. Kinetic experiments showed that signaling effectors in different pathways respond to RET activation with different lag times, such that the balance of signal flux among the different pathways evolves over time. Our results illustrate that measurements using high, super-physiological growth factor levels can be misleading about quantitative features of receptor signaling. We propose a quantitative model describing how receptor-effector coupling efficiency links signal amplification to signal sensitization between receptor and effector, thereby providing insight into design principles underlying how receptors and their associated signaling machinery decode an extracellular signal to trigger a functional cellular outcome.
Collapse
Affiliation(s)
- Simin Li
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Devayani Bhave
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Jennifer M Chow
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Thomas V Riera
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Sandra Schlee
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Simone Rauch
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Mariya Atanasova
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Richard L Cate
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Adrian Whitty
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
11
|
Mehta S, Aye-Han NN, Ganesan A, Oldach L, Gorshkov K, Zhang J. Calmodulin-controlled spatial decoding of oscillatory Ca2+ signals by calcineurin. eLife 2014; 3:e03765. [PMID: 25056880 PMCID: PMC4141273 DOI: 10.7554/elife.03765] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Calcineurin is responsible for mediating a wide variety of cellular processes in response to dynamic calcium (Ca(2+)) signals, yet the precise mechanisms involved in the spatiotemporal control of calcineurin signaling are poorly understood. Here, we use genetically encoded fluorescent biosensors to directly probe the role of cytosolic Ca(2+) oscillations in modulating calcineurin activity dynamics in insulin-secreting MIN6 β-cells. We show that Ca(2+) oscillations induce distinct temporal patterns of calcineurin activity in the cytosol and plasma membrane vs at the ER and mitochondria in these cells. Furthermore, we found that these differential calcineurin activity patterns are determined by variations in the subcellular distribution of calmodulin (CaM), indicating that CaM plays an active role in shaping both the spatial and temporal aspects of calcineurin signaling. Together, our findings provide new insights into the mechanisms by which oscillatory signals are decoded to generate specific functional outputs within different cellular compartments.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Nwe-Nwe Aye-Han
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ambhighainath Ganesan
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, United States
| | - Laurel Oldach
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kirill Gorshkov
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
12
|
Zhang K, Duan L, Ong Q, Lin Z, Varman PM, Sung K, Cui B. Light-mediated kinetic control reveals the temporal effect of the Raf/MEK/ERK pathway in PC12 cell neurite outgrowth. PLoS One 2014; 9:e92917. [PMID: 24667437 PMCID: PMC3965503 DOI: 10.1371/journal.pone.0092917] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 02/26/2014] [Indexed: 11/29/2022] Open
Abstract
It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative linkage between the temporal profile of Raf/MEK/ERK activation and the cellular outputs has not been established due to a lack of means to precisely perturb its signaling kinetics. Here, we construct a light-gated protein-protein interaction system to regulate the activation pattern of the Raf/MEK/ERK signaling pathway. Light-induced activation of the Raf/MEK/ERK cascade leads to significant neurite outgrowth in rat PC12 pheochromocytoma cell lines in the absence of growth factors. Compared with NGF stimulation, light stimulation induces longer but fewer neurites. Intermittent on/off illumination reveals that cells achieve maximum neurite outgrowth if the off-time duration per cycle is shorter than 45 min. Overall, light-mediated kinetic control enables precise dissection of the temporal dimension within the intracellular signal transduction network.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Liting Duan
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Qunxiang Ong
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Ziliang Lin
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Pooja Mahendra Varman
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Kijung Sung
- Biophysics Program, Stanford University, Stanford, California, United States of America
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Blind RD. Disentangling biological signaling networks by dynamic coupling of signaling lipids to modifying enzymes. Adv Biol Regul 2014; 54:25-38. [PMID: 24176936 PMCID: PMC3946453 DOI: 10.1016/j.jbior.2013.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 09/08/2013] [Accepted: 09/09/2013] [Indexed: 06/02/2023]
Abstract
An unresolved problem in biological signal transduction is how particular branches of highly interconnected signaling networks can be decoupled, allowing activation of specific circuits within complex signaling architectures. Although signaling dynamics and spatiotemporal mechanisms serve critical roles, it remains unclear if these are the only ways cells achieve specificity within networks. The transcription factor Steroidogenic Factor-1 (SF-1) is an excellent model to address this question, as it forms dynamic complexes with several chemically distinct lipid species (phosphatidylinositols, phosphatidylcholines and sphingolipids). This property is important since lipids bound to SF-1 are modified by lipid signaling enzymes (IPMK & PTEN), regulating SF-1 biological activity in gene expression. Thus, a particular SF-1/lipid complex can interface with a lipid signaling enzyme only if SF-1 has been loaded with a chemically compatible lipid substrate. This mechanism permits dynamic downstream responsiveness to constant upstream input, disentangling specific pathways from the full network. The potential of this paradigm to apply generally to nuclear lipid signaling is discussed, with particular attention given to the nuclear receptor superfamily of transcription factors and their phospholipid ligands.
Collapse
Affiliation(s)
- Raymond D Blind
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|