1
|
Scott H, Huang W, Andra K, Mamillapalli S, Gonti S, Day A, Zhang K, Mehzabeen N, Battaile KP, Raju A, Lovell S, Bann JG, Taylor DJ. Structure of the anthrax protective antigen D425A dominant negative mutant reveals a stalled intermediate state of pore maturation. J Mol Biol 2022; 434:167548. [PMID: 35304125 DOI: 10.1016/j.jmb.2022.167548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The tripartite protein complex produced by anthrax bacteria (Bacillus anthracis) is a member of the AB family of β-barrel pore-forming toxins. The protective antigen (PA) component forms an oligomeric prepore that assembles on the host cell surface and serves as a scaffold for binding of lethal and edema factors. Following endocytosis, the acidic environment of the late endosome triggers a pH-induced conformational rearrangement to promote maturation of the PA prepore to a functional, membrane spanning pore that facilitates delivery of lethal and edema factors to the cytosol of the infected host. Here, we show that the dominant-negative D425A mutant of PA stalls anthrax pore maturation in an intermediate state at acidic pH. Our 2.7 Å cryo-EM structure of the intermediate state reveals structural rearrangements that involve constriction of the oligomeric pore combined with an intramolecular dissociation of the pore-forming module. In addition to defining the early stages of anthrax pore maturation, the structure identifies asymmetric conformational changes in the oligomeric pore that are influenced by the precise configuration of adjacent protomers.
Collapse
Affiliation(s)
- Harry Scott
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kiran Andra
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | - Srinivas Gonti
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | - Alexander Day
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kaiming Zhang
- Stanford Linear Accelerator Center and the Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Nurjahan Mehzabeen
- Protein Structure Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - Kevin P Battaile
- IMCA-CAT, APS, Argonne National Laboratory, 9700 South Cass Avenue, Building 435A, Argonne, IL 60439, USA
| | - Anjali Raju
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Scott Lovell
- Protein Structure Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - James G Bann
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA.
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
2
|
Hoelzgen F, Zalk R, Alcalay R, Cohen-Schwartz S, Garau G, Shahar A, Mazor O, Frank GA. Neutralization of the anthrax toxin by antibody-mediated stapling of its membrane-penetrating loop. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:1197-1205. [PMID: 34473089 DOI: 10.1107/s2059798321007816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022]
Abstract
Anthrax infection is associated with severe illness and high mortality. Protective antigen (PA) is the central component of the anthrax toxin, which is one of two major virulence factors of Bacillus anthracis, the causative agent of anthrax disease. Upon endocytosis, PA opens a pore in the membranes of endosomes, through which the cytotoxic enzymes of the toxin are extruded. The PA pore is formed by a cooperative conformational change in which the membrane-penetrating loops of PA associate, forming a hydrophobic rim that pierces the membrane. Due to its crucial role in anthrax progression, PA is an important target for monoclonal antibody-based therapy. cAb29 is a highly effective neutralizing antibody against PA. Here, the cryo-EM structure of PA in complex with the Fab portion of cAb29 was determined. It was found that cAb29 neutralizes the toxin by clamping the membrane-penetrating loop of PA to the static surface-exposed loop of the D3 domain of the same subunit, thereby preventing pore formation. These results provide the structural basis for the antibody-based neutralization of PA and bring into focus the membrane-penetrating loop of PA as a target for the development of better anti-anthrax vaccines.
Collapse
Affiliation(s)
- F Hoelzgen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - R Zalk
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - R Alcalay
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - S Cohen-Schwartz
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - G Garau
- Biostructures Lab, IIT@NEST - Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56124 Pisa, Italy
| | - A Shahar
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - O Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - G A Frank
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
3
|
de Oliveira FFM, Mamillapalli S, Gonti S, Brey RN, Li H, Schiffer J, Casadevall A, Bann JG. Binding of the von Willebrand Factor A Domain of Capillary Morphogenesis Protein 2 to Anthrax Protective Antigen Vaccine Reduces Immunogenicity in Mice. mSphere 2020; 5:e00556-19. [PMID: 31941807 PMCID: PMC6968648 DOI: 10.1128/msphere.00556-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/09/2019] [Indexed: 11/24/2022] Open
Abstract
Protective antigen (PA) is a component of anthrax toxin that can elicit toxin-neutralizing antibody responses. PA is also the major antigen in the current vaccine to prevent anthrax, but stability problems with recombinant proteins have complicated the development of new vaccines containing recombinant PA. The relationship between antigen physical stability and immunogenicity is poorly understood, but there are theoretical reasons to think that this parameter can affect immune responses. We investigated the immunogenicity of anthrax PA, in the presence and absence of the soluble von Willebrand factor A domain of the human form of receptor capillary morphogenesis protein 2 (sCMG2), to elicit antibodies to PA in BALB/c mice. Prior studies showed that sCMG2 stabilizes the 83-kDa PA structure to pH, chemical denaturants, temperature, and proteolysis and slows the hydrogen-deuterium exchange rate of histidine residues far from the binding interface. In contrast to a vaccine containing PA without adjuvant, we found that mice immunized with PA in stable complex with sCMG2 showed markedly reduced antibody responses to PA, including toxin-neutralizing antibodies and antibodies to domain 4, which correlated with fewer toxin-neutralizing antibodies. In contrast, mice immunized with PA in concert with a nonbinding mutant of sCMG2 (D50A) showed anti-PA antibody responses similar to those observed with PA alone. Our results suggest that addition of sCMG2 to a PA vaccine formulation is likely to result in a significantly diminished immune response, but we discuss the multitude of factors that could contribute to reduced immunogenicity.IMPORTANCE The anthrax toxin PA is the major immunogen in the current anthrax vaccine (anthrax vaccine adsorbed). Improving the anthrax vaccine for avoidance of a cold chain necessitates improvements in the thermodynamic stability of PA. We address how stabilizing PA using sCMG2 affects PA immunogenicity in BALB/c mice. Although the stability of PA is increased by binding to sCMG2, PA immunogenicity is decreased. This study emphasizes that, while binding of a ligand retains or improves conformational stability without affecting the native sequence, epitope recognition or processing may be affected, abrogating an effective immune response.
Collapse
Affiliation(s)
- Fabiana Freire Mendes de Oliveira
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Srinivas Gonti
- Department of Chemistry, Wichita State University, Wichita, Kansas, USA
| | | | - Han Li
- Division of Bacterial Disease, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jarad Schiffer
- Division of Bacterial Disease, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - James G Bann
- Department of Chemistry, Wichita State University, Wichita, Kansas, USA
| |
Collapse
|
4
|
Scott H, Huang W, Bann JG, Taylor DJ. Advances in structure determination by cryo-EM to unravel membrane-spanning pore formation. Protein Sci 2018; 27:1544-1556. [PMID: 30129169 PMCID: PMC6194281 DOI: 10.1002/pro.3454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 01/03/2023]
Abstract
The beta pore-forming proteins (β-PFPs) are a large class of polypeptides that are produced by all Kingdoms of life to contribute to their species' own survival. Pore assembly is a sophisticated multi-step process that includes receptor/membrane recognition and oligomerization events, and is ensued by large-scale structural rearrangements, which facilitate maturation of a prepore into a functional membrane spanning pore. A full understanding of pore formation, assembly, and maturation has traditionally been hindered by a lack of structural data; particularly for assemblies representing differing conformations of functional pores. However, recent advancements in cryo-electron microscopy (cryo-EM) techniques have provided the opportunity to delineate the structures of such flexible complexes, and in different states, to near-atomic resolution. In this review, we place a particular emphasis on the use of cryo-EM to uncover the mechanistic details including architecture, activation, and maturation for some of the prominent members of this family.
Collapse
Affiliation(s)
- Harry Scott
- Department of PharmacologyCase Western Reserve UniversityClevelandOhio44106
| | - Wei Huang
- Department of PharmacologyCase Western Reserve UniversityClevelandOhio44106
| | - James G. Bann
- Department of ChemistryWichita State UniversityWichitaKansas67260
| | - Derek J. Taylor
- Department of PharmacologyCase Western Reserve UniversityClevelandOhio44106
- Department of BiochemistryCase Western Reserve UniversityClevelandOhio44106
| |
Collapse
|
5
|
Kasireddy C, Ellis JM, Bann JG, Mitchell-Koch KR. The Biophysical Probes 2-fluorohistidine and 4-fluorohistidine: Spectroscopic Signatures and Molecular Properties. Sci Rep 2017; 7:42651. [PMID: 28198426 PMCID: PMC5309746 DOI: 10.1038/srep42651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/11/2017] [Indexed: 11/09/2022] Open
Abstract
Fluorinated amino acids serve as valuable biological probes, by reporting on local protein structure and dynamics through 19F NMR chemical shifts. 2-fluorohistidine and 4-fluorohistidine, studied here with DFT methods, have even more capabilities for biophysical studies, as their altered pKa values, relative to histidine, allow for studies of the role of proton transfer and tautomeric state in enzymatic mechanisms. Considering the two tautomeric forms of histidine, it was found that 2-fluorohistidine primarily forms the common (for histidine) τ-tautomer at neutral pH, while 4-fluorohistidine exclusively forms the less common π-tautomer. This suggests the two isomers of fluorohistidine can also serve as probes of tautomeric form within biomolecules, both by monitoring NMR chemical shifts and by potential perturbation of the tautomeric equilibrium within biomolecules. Fluorine also enables assignment of tautomeric states in crystal structures. The differences in experimental pKa values between the isomers was found to arise from solvation effects, providing insight into the polarization and molecular properties of each isomer. Results also encompass 13C and 19F NMR chemical shifts, from both tautomers of 2-fluorohistidine and 4-fluorohistidine in a number of different environments. This work can serve as a guide for interpretation of spectroscopic results in biophysical studies employing 2-fluorohistidine and 4-fluorohistidine.
Collapse
Affiliation(s)
- Chandana Kasireddy
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| | - Jonathan M Ellis
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| | - James G Bann
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| | - Katie R Mitchell-Koch
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| |
Collapse
|
6
|
Sun J, Jacquez P. Roles of Anthrax Toxin Receptor 2 in Anthrax Toxin Membrane Insertion and Pore Formation. Toxins (Basel) 2016; 8:34. [PMID: 26805886 PMCID: PMC4773787 DOI: 10.3390/toxins8020034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/04/2022] Open
Abstract
Interaction between bacterial toxins and cellular surface receptors is an important component of the host-pathogen interaction. Anthrax toxin protective antigen (PA) binds to the cell surface receptor, enters the cell through receptor-mediated endocytosis, and forms a pore on the endosomal membrane that translocates toxin enzymes into the cytosol of the host cell. As the major receptor for anthrax toxin in vivo, anthrax toxin receptor 2 (ANTXR2) plays an essential role in anthrax toxin action by providing the toxin with a high-affinity binding anchor on the cell membrane and a path of entry into the host cell. ANTXR2 also acts as a molecular clamp by shifting the pH threshold of PA pore formation to a more acidic pH range, which prevents premature pore formation at neutral pH before the toxin reaches the designated intracellular location. Most recent studies have suggested that the disulfide bond in the immunoglobulin (Ig)-like domain of ANTXR2 plays an essential role in anthrax toxin action. Here we will review the roles of ANTXR2 in anthrax toxin action, with an emphasis on newly updated knowledge.
Collapse
Affiliation(s)
- Jianjun Sun
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - Pedro Jacquez
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| |
Collapse
|
7
|
Di Paola L, Platania CBM, Oliva G, Setola R, Pascucci F, Giuliani A. Characterization of Protein-Protein Interfaces through a Protein Contact Network Approach. Front Bioeng Biotechnol 2015; 3:170. [PMID: 26579512 PMCID: PMC4626657 DOI: 10.3389/fbioe.2015.00170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
Anthrax toxin comprises three different proteins, jointly acting to exert toxic activity: a non-toxic protective agent (PA), toxic edema factor (EF), and lethal factor (LF). Binding of PA to anthrax receptors promotes oligomerization of PA, binding of EF and LF, and then endocytosis of the complex. Homomeric forms of PA, complexes of PA bound to LF and to the endogenous receptor capillary morphogenesis gene 2 (CMG2) were analyzed. In this work, we characterized protein–protein interfaces (PPIs) and identified key residues at PPIs of complexes, by means of a protein contact network (PCN) approach. Flexibility and global and local topological properties of each PCN were computed. The vulnerability of each PCN was calculated using different node removal strategies, with reference to specific PCN topological descriptors, such as participation coefficient, contact order, and degree. The participation coefficient P, the topological descriptor of the node’s ability to intervene in protein inter-module communication, was the key descriptor of PCN vulnerability of all structures. High P residues were localized both at PPIs and other regions of complexes, so that we argued an allosteric mechanism in protein–protein interactions. The identification of residues, with key role in the stability of PPIs, has a huge potential in the development of new drugs, which would be designed to target not only PPIs but also residues localized in allosteric regions of supramolecular complexes.
Collapse
Affiliation(s)
- Luisa Di Paola
- Facoltà Dipartimentale di Ingegneria, Università Campus Bio-Medico di Roma , Rome , Italy
| | | | - Gabriele Oliva
- Facoltà Dipartimentale di Ingegneria, Università Campus Bio-Medico di Roma , Rome , Italy
| | - Roberto Setola
- Facoltà Dipartimentale di Ingegneria, Università Campus Bio-Medico di Roma , Rome , Italy
| | - Federica Pascucci
- Dipartimento di Informatica e Automazione, Università degli studi Roma Tre , Rome , Italy
| | - Alessandro Giuliani
- Dipartimento di Ambiente e Connessa Prevenzione Primaria, Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
8
|
Palais C, Chichester JA, Manceva S, Yusibov V, Arvinte T. Influence of Protein Formulation and Carrier Solution on Asymmetrical Flow Field-Flow Fractionation: A Case Study of the Plant-Produced Recombinant Anthrax Protective Antigen pp-PA83. J Pharm Sci 2015; 104:612-7. [DOI: 10.1002/jps.24280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 11/07/2022]
|
9
|
Mullangi V, Mamillapalli S, Anderson DJ, Bann JG, Miyagi M. Long-range stabilization of anthrax protective antigen upon binding to CMG2. Biochemistry 2014; 53:6084-91. [PMID: 25186975 PMCID: PMC4179592 DOI: 10.1021/bi500718g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Protective antigen (PA) mediates
entry of edema factor (EF) and
lethal factor (LF) into the cytoplasmic space of the cells through
the formation of a membrane-spanning pore. To do this, PA must initially
bind to a host cellular receptor. Recent mass spectrometry analysis
of PA using histidine hydrogen–deuterium exchange (His-HDX)
has shown that binding of the von Willebrand factor A (vWA) domain
of the receptor capillary morphogenesis protein-2 (CMG2) lowers the
exchange rates of the imidazole C2 hydrogen of several
histidines, suggesting that receptor binding decreases the structural
flexibility of PA. Here, using His-HDX and fluorescence as a function
of denaturant, and protease susceptibility, we show that binding of
the vWA domain of CMG2 largely increases the stability of PA and the
effect reaches up to 70 Å from the receptor binding interface.
We also show that the pKa values and HDX
rates of histidines located in separate domains change upon receptor
binding. These results indicate that when one end of the protein is
anchored, the structure of PA is tightened, noncovalent interactions
are strengthened, and the global stability of the protein increases.
These findings suggest that CMG2 may be used to stabilize PA in future
anthrax vaccines.
Collapse
Affiliation(s)
- Vennela Mullangi
- Case Center for Proteomics and Bioinformatics, ‡Department of Pharmacology, and §Department of Ophthalmology and Visual Sciences, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | | | | | | | | |
Collapse
|
10
|
Chadegani F, Lovell S, Mullangi V, Miyagi M, Battaile KP, Bann JG. (19)F nuclear magnetic resonance and crystallographic studies of 5-fluorotryptophan-labeled anthrax protective antigen and effects of the receptor on stability. Biochemistry 2014; 53:690-701. [PMID: 24387629 PMCID: PMC3985773 DOI: 10.1021/bi401405s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The anthrax protective antigen (PA)
is an 83 kDa protein that is
one of three protein components of the anthrax toxin, an AB toxin
secreted by Bacillus anthracis. PA is capable of
undergoing several structural changes, including oligomerization to
either a heptameric or octameric structure called the prepore, and
at acidic pH a major conformational change to form a membrane-spanning
pore. To follow these structural changes at a residue-specific level,
we have conducted initial studies in which we have biosynthetically
incorporated 5-fluorotryptophan (5-FTrp) into PA, and we have studied
the influence of 5-FTrp labeling on the structural stability of PA
and on binding to the host receptor capillary morphogenesis protein
2 (CMG2) using 19F nuclear magnetic resonance (NMR). There
are seven tryptophans in PA, but of the four domains in PA, only two
contain tryptophans: domain 1 (Trp65, -90, -136, -206, and -226) and
domain 2 (Trp346 and -477). Trp346 is of particular interest because
of its proximity to the CMG2 binding interface, and because it forms
part of the membrane-spanning pore. We show that the 19F resonance of Trp346 is sensitive to changes in pH, consistent with
crystallographic studies, and that receptor binding significantly
stabilizes Trp346 to both pH and temperature. In addition, we provide
evidence that suggests that resonances from tryptophans distant from
the binding interface are also stabilized by the receptor. Our studies
highlight the positive impact of receptor binding on protein stability
and the use of 19F NMR in gaining insight into structural
changes in a high-molecular weight protein.
Collapse
Affiliation(s)
- Fatemeh Chadegani
- Department of Chemistry, Wichita State University , Wichita, Kansas 67260, United States
| | | | | | | | | | | |
Collapse
|