1
|
Tanaka J, Abe S, Hayakawa T, Kojima M, Yamashita K, Hirata K, Ueno T. Crystal structure of the in-cell Cry1Aa purified from Bacillus thuringiensis. Biochem Biophys Res Commun 2023; 685:149144. [PMID: 37922785 DOI: 10.1016/j.bbrc.2023.149144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
In-cell protein crystals which spontaneously crystallize in living cells, have recently been analyzed in investigations of their structures and biological functions. The crystals have been challenging to analyze structurally because of their small size. Therefore, the number of in-cell protein crystals in which the native structure has been determined is limited because most of the structures of in-cell crystals have been determined by recrystallization after dissolution. Some proteins have been reported to form intermolecular disulfide bonds in natural protein crystals that stabilize the crystals. Here, we focus on Cry1Aa, a cysteine-rich protein that crystallizes in Bacillus thuringiensis (Bt) and forms disulfide bonds. Previously, the full-length structure of 135 kDa Cry1Ac, which is the same size as Cry1Aa, was determined by recrystallization of dissolved protein from crystals purified from Bt cells. However, the formation of disulfide bonds has not been investigated because it was necessary to replace cysteine residues to prevent aggregation of the soluble protein. In this work, we succeeded in direct X-ray crystallographic analysis using crystals purified from Bt cells and characterized the cross-linked network of disulfide bonds within Cry1Aa crystals.
Collapse
Affiliation(s)
- Junko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan.
| | - Tohru Hayakawa
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Mariko Kojima
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Keitaro Yamashita
- SR Life Science Instrumentation Unit, RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Kunio Hirata
- SR Life Science Instrumentation Unit, RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan; Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
2
|
Torres J, Surya W, Boonserm P. Channel Formation in Cry Toxins: An Alphafold-2 Perspective. Int J Mol Sci 2023; 24:16809. [PMID: 38069132 PMCID: PMC10705909 DOI: 10.3390/ijms242316809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Bacillus thuringiensis (Bt) strains produce pore-forming toxins (PFTs) that attack insect pests. Information for pre-pore and pore structures of some of these Bt toxins is available. However, for the three-domain (I-III) crystal (Cry) toxins, the most used Bt toxins in pest control, this crucial information is still missing. In these Cry toxins, biochemical data have shown that 7-helix domain I is involved in insertion in membranes, oligomerization and formation of a channel lined mainly by helix α4, whereas helices α1 to α3 seem to have a dynamic role during insertion. In the case of Cry1Aa, toxic against Manduca sexta larvae, a tetrameric oligomer seems to precede membrane insertion. Given the experimental difficulty in the elucidation of the membrane insertion steps, we used Alphafold-2 (AF2) to shed light on possible oligomeric structural intermediates in the membrane insertion of this toxin. AF2 very accurately (<1 Å RMSD) predicted the crystal monomeric and trimeric structures of Cry1Aa and Cry4Ba. The prediction of a tetramer of Cry1Aa, but not Cry4Ba, produced an 'extended model' where domain I helices α3 and α2b form a continuous helix and where hydrophobic helices α1 and α2 cluster at the tip of the bundle. We hypothesize that this represents an intermediate that binds the membrane and precedes α4/α5 hairpin insertion, together with helices α6 and α7. Another Cry1Aa tetrameric model was predicted after deleting helices α1 to α3, where domain I produced a central cavity consistent with an ion channel, lined by polar and charged residues in helix α4. We propose that this second model corresponds to the 'membrane-inserted' structure. AF2 also predicted larger α4/α5 hairpin n-mers (14 ≤n ≤ 17) with high confidence, which formed even larger (~5 nm) pores. The plausibility of these models is discussed in the context of available experimental data and current paradigms.
Collapse
Affiliation(s)
- Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand;
| |
Collapse
|
3
|
Chen Z, Shi Y, Wang D, Liu X, Jiao X, Gao X, Jiang K. Structural insight into Bacillus thuringiensis Sip1Ab reveals its similarity to ETX_MTX2 family beta-pore-forming toxin. PEST MANAGEMENT SCIENCE 2023; 79:4264-4273. [PMID: 37341620 DOI: 10.1002/ps.7622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Microbially derived, protein-based biopesticides are an important approach for sustainable pest management. The secreted insecticidal proteins (Sips) produced by the bacterium Bacillus thuringiensis exhibit potent insecticidal activity against coleopteran pests and are, therefore, attractive as candidate biopesticides. However, the modes-of-action of Sips are unclear as comprehensive structural information for these proteins is lacking. RESULTS Using X-ray crystallography, we elucidated the structure of monomeric Sip1Ab at 2.28 Å resolution. Structural analyses revealed that Sip1Ab has the three domains and conserved fold characteristic of other aerolysin-like beta-pore-forming toxins (β-PFTs). Based on the sequence and structural similarities between Sip1Ab and other ETX_MTX2 subfamily toxins, we suggested the mechanism of these proteins and proposed that it is common to them all. CONCLUSION The atomic-level structural data for Sip1Ab generated by the present study could facilitate future structural and mechanistic research on Sips as well as their application in sustainable insect pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yiting Shi
- Taishan College, Shandong University, Jinan, China
| | - Dongdong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaoyu Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xuyao Jiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kun Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Wei JZ, Lum A, Schepers E, Liu L, Weston RT, McGinness BS, Heckert MJ, Xie W, Kassa A, Bruck D, Rauscher G, Kapka-Kitzman D, Mathis JP, Zhao JZ, Sethi A, Barry J, Lu AL, Brugliera F, Lee EL, van derWeerden NL, Eswar N, Maher MJ, Anderson MA. Novel insecticidal proteins from ferns resemble insecticidal proteins from Bacillus thuringiensis. Proc Natl Acad Sci U S A 2023; 120:e2306177120. [PMID: 37871210 PMCID: PMC10622923 DOI: 10.1073/pnas.2306177120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/18/2023] [Indexed: 10/25/2023] Open
Abstract
Lepidopterans affect crop production worldwide. The use of transgenes encoding insecticidal proteins from Bacillus thuringiensis (Bt) in crop plants is a well-established technology that enhances protection against lepidopteran larvae. Concern about widespread field-evolved resistance to Bt proteins has highlighted an urgent need for new insecticidal proteins with different modes or sites of action. We discovered a new family of insecticidal proteins from ferns. The prototype protein from Pteris species (Order Polypodiales) and variants from two other orders of ferns, Schizaeales and Ophioglossales, were effective against important lepidopteran pests of maize and soybean in diet-based assays. Transgenic maize and soybean plants producing these proteins were more resistant to insect damage than controls. We report here the crystal structure of a variant of the prototype protein to 1.98 Å resolution. Remarkably, despite being derived from plants, the structure resembles the 3-domain Cry proteins from Bt but has only two out of three of their characteristic domains, lacking the C-terminal domain which is typically required for their activities. Two of the fern proteins were effective against strains of fall armyworm that were resistant to Bt 3-domain Cry proteins Cry1Fa or Cry2A.127. This therefore represents a novel family of insecticidal proteins that have the potential to provide future tools for pest control.
Collapse
Affiliation(s)
| | - Amy Lum
- Corteva Agriscience, Johnston, IA50131
| | | | - Lu Liu
- Corteva Agriscience, Johnston, IA50131
| | - Ross T. Weston
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Bruce S. McGinness
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | | | | | | | | | | | | | | | | | | | | | | | - Filippa Brugliera
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Eunice L. Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Nicole L. van derWeerden
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | | | - Megan J. Maher
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC3052, Australia
| | - Marilyn A. Anderson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| |
Collapse
|
5
|
Pacheco S, Gómez I, Peláez-Aguilar AE, Verduzco-Rosas LA, García-Suárez R, do Nascimento NA, Rivera-Nájera LY, Cantón PE, Soberón M, Bravo A. Structural changes upon membrane insertion of the insecticidal pore-forming toxins produced by Bacillus thuringiensis. FRONTIERS IN INSECT SCIENCE 2023; 3:1188891. [PMID: 38469496 PMCID: PMC10926538 DOI: 10.3389/finsc.2023.1188891] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/04/2023] [Indexed: 03/13/2024]
Abstract
Different Bacillus thuringiensis (Bt) strains produce a broad variety of pore-forming toxins (PFTs) that show toxicity against insects and other invertebrates. Some of these insecticidal PFT proteins have been used successfully worldwide to control diverse insect crop pests. There are several studies focused on describing the mechanism of action of these toxins that have helped to improve their performance and to cope with the resistance evolved by different insects against some of these proteins. However, crucial information that is still missing is the structure of pores formed by some of these PFTs, such as the three-domain crystal (Cry) proteins, which are the most commercially used Bt toxins in the biological control of insect pests. In recent years, progress has been made on the identification of the structural changes that certain Bt insecticidal PFT proteins undergo upon membrane insertion. In this review, we describe the models that have been proposed for the membrane insertion of Cry toxins. We also review the recently published structures of the vegetative insecticidal proteins (Vips; e.g. Vip3) and the insecticidal toxin complex (Tc) in the membrane-inserted state. Although different Bt PFTs show different primary sequences, there are some similarities in the three-dimensional structures of Vips and Cry proteins. In addition, all PFTs described here must undergo major structural rearrangements to pass from a soluble form to a membrane-inserted state. It is proposed that, despite their structural differences, all PFTs undergo major structural rearrangements producing an extended α-helix, which plays a fundamental role in perforating their target membrane, resulting in the formation of the membrane pore required for their insecticidal activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
6
|
García-Gomez BI, Sánchez TA, Cano SN, do Nascimento NA, Bravo A, Soberón M. Insect chaperones Hsp70 and Hsp90 cooperatively enhance toxicity of Bacillus thuringiensis Cry1A toxins and counteract insect resistance. Front Immunol 2023; 14:1151943. [PMID: 37153577 PMCID: PMC10157212 DOI: 10.3389/fimmu.2023.1151943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Bacillus thuringiensis (Bt) produces different insecticidal proteins effective for pest control. Among them, Cry insecticidal proteins have been used in transgenic plants for the control of insect pests. However, evolution of resistance by insects endangers this technology. Previous work showed that the lepidopteran insect Plutella xylostella PxHsp90 chaperone enhanced the toxicity of Bt Cry1A protoxins by protecting them from degradation by the larval gut proteases and by enhancing binding of the protoxin to its receptors present in larval midgut cells. In this work, we show that PxHsp70 chaperone also protects Cry1Ab protoxin from gut proteases degradation, enhancing Cry1Ab toxicity. We also show that both PxHsp70 and PxHsp90 chaperones act cooperatively, increasing toxicity and the binding of Cry1Ab439D mutant, affected in binding to midgut receptors, to cadherin receptor. Also, insect chaperones recovered toxicity of Cry1Ac protein to a Cry1Ac-highly resistant P. xylostella population, NO-QAGE, that has a disruptive mutation in an ABCC2 transporter linked to Cry1Ac resistance. These data show that Bt hijacked an important cellular function for enhancing its infection capability, making use of insect cellular chaperones for enhancing Cry toxicity and for lowering the evolution of insect resistance to these toxins.
Collapse
|
7
|
eCry1Gb.1Ig, A Novel Chimeric Cry Protein with High Efficacy against Multiple Fall Armyworm ( Spodoptera frugiperda) Strains Resistant to Different GM Traits. Toxins (Basel) 2022; 14:toxins14120852. [PMID: 36548749 PMCID: PMC9785401 DOI: 10.3390/toxins14120852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Spodoptera frugiperda (fall armyworm, FAW) is one of the most devastating insect pests to corn and soybean production in the Americas and is rapidly expanding its range worldwide. It is known to be hard to control either by chemical insecticide applications or by GM. Although the use of GM traits can be an effective way to control this pest, it is very rare to find native insecticidal proteins that provide the necessary level of FAW control in crop fields where FAW pressure and damage are high. Insecticidal Cry proteins sourced from Bacillus thuringiensis have been heavily utilized in the development of crops with GM traits; however, it is increasingly difficult to identify Cry proteins with unique modes of action. Protein engineering via a phylogenetically guided Cry protein domain swapping approach enabled us to discover novel chimeric Cry proteins engineered from inactive parent sequences. Some of these chimeras show excellent efficacy against key biotypes of FAW from Brazil and North America. In this study, we characterized a Cry-based chimera eCry1Gb.1Ig that is a very potent FAW toxin. eCry1Gb.1Ig showed high efficacy against multiple FAW strains that are resistant to various traits, including Cry1Fa, Vip3Aa and Cry1A.105/Cry2Ab. These results clearly indicate that the FAW strains resistant to Cry1Fa, Vip3Aa or Cry1A.105/Cry2Ab demonstrate no cross-resistance to eCry1Gb.1Ig and strongly suggest that eCry1Gb.1Ig acts through a novel mode of action compared to the existing traits. In addition to its FAW activity, eCry1Gb.1Ig has also been shown to control Chrysodeixis includens (soybean looper, SBL) and Anticarsia gemmatalis (velvetbean caterpillar, VBC), which are significant pests of soybean. When eCry1Gb.1Ig was introduced into corn and soybean crops, transgenic events showed strong efficacy against FAW, SBL and VBC, but no adverse plant phenotypes. This suggests that the in planta expression of the eCry1Gb.1Ig protein does not compromise plant growth or reproduction and can protect plants from FAW-related damage. Therefore, this valuable discovery will provide a differentiating FAW control trait that will give growers another tool to help them reduce yield loss due to FAW.
Collapse
|
8
|
Bacteria-derived pesticidal proteins active against hemipteran pests. J Invertebr Pathol 2022; 195:107834. [DOI: 10.1016/j.jip.2022.107834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 02/05/2023]
|
9
|
Wang L, Liang YS, Wu ZB, Liu YS, Xiao YH, Hu T, Gao R, Fang J, Liu J, Wu AP. Exploring the interaction between Cry1Ac protein and Zn 2+, Cd 2+ metal ions by fluorescence quenching and molecular docking approaches. CHEMOSPHERE 2022; 297:134105. [PMID: 35245590 DOI: 10.1016/j.chemosphere.2022.134105] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Bacillus Thuringiensis (Bt) protein has a strong ability to complex with metal ions, which may increase the transport of metal ions in the soil multi-media system. In this study, the interactions between Cry1Ac protein and metal ions (Zn2+ and Cd2+) were investigated through spectroscopies and molecular docking methods. The spectra results showed that both Zn2+ and Cd2+ quenched the fluorescence intensity of Cry1Ac protein through the static quenching. The binding constants with 4-5 orders of magnitude also indicated the interactions between the ions and the Cry1Ac protein. The thermodynamic analysis showed that hydrogen bonds and van der Waals forces were predominant during the processes. In terms of the Förster non-radiation energy transfer theory, the binding distances between metal ions and Cry1Ac protein were approximately 0.21-0.24 nm, indicating the existence of a non-radiative energy transfer between them. Furthermore, molecular docking revealed that the metal ions participated in ligand binding with the Cry1Ac at the locations Asp569, Thr560, Asn564 and Gln566. The present work provided reasonable models helping us further understand the transport effect of heavy metals in the presence of Cry1Ac. The results could provide mechanistic insights into the nature of metal ions-Cry1Ac interactions and offer important information on the toxicity risk of metal ions-Cry1Ac binding interactions.
Collapse
Affiliation(s)
- Li Wang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, PR China
| | - Yun-Shan Liang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, PR China.
| | - Zhi-Bin Wu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, PR China
| | - Yi-Song Liu
- College of Veterinary Medicine, Hunan Agricultural University and National and Local Union Engineering Research Center of Veterinary Herbal Medicine Resource and Initiative, Changsha, 410128, PR China
| | - Yun-Hua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, PR China
| | - Teng Hu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, PR China
| | - Rong Gao
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, PR China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, PR China
| | - Jiao Liu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, PR China
| | - Ai Ping Wu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, PR China
| |
Collapse
|
10
|
Hernández-Martínez P, Bretsnyder EC, Baum JA, Haas JA, Head GP, Jerga A, Ferré J. Comparison of in vitro and in vivo binding site competition of Bacillus thuringiensis Cry1 proteins in two important maize pests. PEST MANAGEMENT SCIENCE 2022; 78:1457-1466. [PMID: 34951106 DOI: 10.1002/ps.6763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Binding site models, derived from in vitro competition binding studies, have been widely used for predicting potential cross-resistance among insecticidal proteins from Bacillus thuringiensis. However, because discrepancies have been found between binding data and observed cross-resistance patterns in some insect species, new tools are required to study the functional relevance of the shared binding sites. RESULTS Here, an in vivo approach has been applied to the competition studies to establish the functional relevance of shared binding sites as determined by in vitro competition assays. Using Cry disabled proteins as competitors in mixed protein overlay assays, we assessed the preference of Cry1Ab, Cry1Fa, and Cry1A.105 proteins for shared binding sites in vivo in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. CONCLUSION This study shows that in vivo and in vitro binding site competition assays can provide useful information to better ascertain whether different Cry proteins share binding sites and, consequently, whether cross-resistance due to binding site alteration can occur. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Patricia Hernández-Martínez
- Department of Genetics, University Institute of Biotechnology and Biomedicine, University of Valencia, Burjassot, Spain
| | - Eric C Bretsnyder
- Plant Biotechnology Program, Bayer Crop Science, Chesterfield, MO, USA
| | - James A Baum
- Plant Biotechnology Program, Bayer Crop Science, Chesterfield, MO, USA
| | - Jeff A Haas
- Plant Biotechnology Program, Bayer Crop Science, Chesterfield, MO, USA
| | - Graham P Head
- Plant Biotechnology Program, Bayer Crop Science, Chesterfield, MO, USA
| | - Agoston Jerga
- Plant Biotechnology Program, Bayer Crop Science, Chesterfield, MO, USA
| | - Juan Ferré
- Department of Genetics, University Institute of Biotechnology and Biomedicine, University of Valencia, Burjassot, Spain
| |
Collapse
|
11
|
M N, G S S, J S, K H, C S, P M, R N, C P S, N C, Ram B, C A, B S. Whole genome analysis and functional characterization of a novel Bacillus thuringiensis (Bt 62) isolate against sugarcane white grub Holotrichia serrata (F). Genomics 2021; 114:185-195. [PMID: 34933070 DOI: 10.1016/j.ygeno.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/18/2021] [Accepted: 12/15/2021] [Indexed: 11/19/2022]
Abstract
In this study, we report the whole genome assembly of Bt 62, a novel isolate harbouring cry8 holotype gene identified by us earlier. Sequencing was carried out using a combination of Illumina NextSeq 500 and Oxford Nanopore sequencing Technologies (ONT). The final assembled genome was 6.13 Mb comprising a circular chromosome and four plasmids. The bioassay studies against Holotrichia serrata (F.) (Coleoptera: Scarabaeidae), a polyphagous pest infesting sugarcane and other crops, indicated significant toxicity to first instar grubs over untreated larvae achieving a highest mean mortality of 91.11% for various doses tested. In vitro proteolytic assay and histopathological studies of the midgut of infected white grubs revealed proteolytic processing of the protoxin and extensive degeneration of larval midgut epithelial cells. The results demonstrate that this novel isolate could be used as a biopesticide or its crystal toxin genes could be expressed in sugarcane and other crops for resistance against H. serrata.
Collapse
Affiliation(s)
- Naveenarani M
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Suresha G S
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Srikanth J
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Hari K
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Sankaranarayanan C
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Mahesh P
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Nirmala R
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Swathik C P
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Crickmore N
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Bakshi Ram
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Appunu C
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Singaravelu B
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India.
| |
Collapse
|
12
|
Liu J, Liang YS, Hu T, Zeng H, Gao R, Wang L, Xiao YH. Environmental fate of Bt proteins in soil: Transport, adsorption/desorption and degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112805. [PMID: 34592526 DOI: 10.1016/j.ecoenv.2021.112805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 05/26/2023]
Abstract
During the production and application of Bacillus thuringiensis (Bt) transgenic crops, large doses of insecticidal Bt toxic proteins are expressed continuously. The multi-interfacial behaviors of Bt proteins entering the environment in multi-media affects their states of existence transformation, transport and fate as well as biological and ecological impacts. Because both soil matrix and organisms will be exposed to Bt proteins to a certain extent, knowledge of the multi-interfacial behaviors and affecting factors of Bt proteins are vital not only for understanding the source-sink distribution mechanisms, predicting their bio-availability, but also for exploring the soil safety and environmental problems caused by the interaction between Bt proteins and soil matrix. This review summarized and analyzed various internal and external factors that affect the adsorption/ desorption and degradation of Bt proteins in the environment, so as to understand the multi-interfacial behaviors of Bt proteins. In addition, the reasons of concentration changes of Bt proteins in soil are discussed. This review will also discuss the existing knowledge of the combined effects of Bt proteins and other pollutants in environment. Finally, discussing the factors that should be considered when assessing the environmental risk of Bt proteins, thus to further improve the understanding of the environmental fate of Bt proteins.
Collapse
Affiliation(s)
- Jiao Liu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Yun-Shan Liang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China.
| | - Teng Hu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Hong Zeng
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Rong Gao
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Li Wang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Yun-Hua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| |
Collapse
|
13
|
Wang M, Geng L, Xue B, Wang Z, Xu W, Shu C, Zhang J. Structure characteristics and function of a novel extracellular polysaccharide from Bacillus thuringiensis strain 4D19. Int J Biol Macromol 2021; 189:956-964. [PMID: 34478795 DOI: 10.1016/j.ijbiomac.2021.08.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023]
Abstract
Bacillus thuringiensis (Bt) are entomopathogenic bacteria that produce different kinds of insecticidal proteins. However, studies on Bt exopolysaccharides are lacking. Here, we aimed to explore the characteristics and insecticidal synergism of EPS, an exopolysaccharide from Bt strain 4D19. The molecular weight of EPS-2 was 58.0 kDa, which consisted of mannose (44.2%), GlcN (35.5%), D-GalN (8.0%), glucose (5.5%), arabinose (5.1%), galactose (0.9%), Man-UA (0.3%) and Glc-UA (0.2%). The toxicity of insecticidal proteins against Plutella xylostella was increased by adding EPS. EPS-2 bound to Cry1Ac protoxin and promoted the binding of Cry1Ac protoxin to the gut membrane of P. xylostella, but did not bind to activated toxins. These results suggested that EPS-2 may bind to the protoxin C-terminal region to enhance insecticidal activity. Our findings indicated that Bt strains produce exopolysaccharide to enhance the toxicity of insecticidal crystal proteins, which could be applied in biopesticide research and product development.
Collapse
Affiliation(s)
- Meiling Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bai Xue
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyue Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
14
|
Gonzalez-Vazquez MC, Vela-Sanchez RA, Rojas-Ruiz NE, Carabarin-Lima A. Importance of Cry Proteins in Biotechnology: Initially a Bioinsecticide, Now a Vaccine Adjuvant. Life (Basel) 2021; 11:999. [PMID: 34685371 PMCID: PMC8541582 DOI: 10.3390/life11100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 11/21/2022] Open
Abstract
A hallmark of Bacillus thuringiensis bacteria is the formation of one or more parasporal crystal (Cry) proteins during sporulation. The toxicity of these proteins is highly specific to insect larvae, exerting lethal effects in different insect species but not in humans or other mammals. The aim of this review is to summarize previous findings on Bacillus thuringiensis, including the characteristics of the bacterium, its subsequent contribution to biotechnology as a bioinsecticide due to the presence of Cry proteins, and its potential application as an adjuvant. In several studies, Cry proteins have been administered together with specific antigens to immunize experimental animal models. The results have shown that these proteins can enhance immunogenicity by generating an adequate immune response capable of protecting the model against an experimental infectious challenge, whereas protection is decreased when the specific antigen is administered without the Cry protein. Therefore, based on previous results and the structural homology between Cry proteins, these molecules have arisen as potential adjuvants in the development of vaccines for both animals and humans. Finally, a model of the interaction of Cry proteins with different components of the immune response is proposed.
Collapse
Affiliation(s)
- Maria Cristina Gonzalez-Vazquez
- Centro de Investigaciones en Ciencias Microbiologicas, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico; (M.C.G.-V.); (N.E.R.-R.)
| | - Ruth Abril Vela-Sanchez
- Licenciatura en Biotecnología, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico;
| | - Norma Elena Rojas-Ruiz
- Centro de Investigaciones en Ciencias Microbiologicas, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico; (M.C.G.-V.); (N.E.R.-R.)
- Licenciatura en Biotecnología, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico;
| | - Alejandro Carabarin-Lima
- Centro de Investigaciones en Ciencias Microbiologicas, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico; (M.C.G.-V.); (N.E.R.-R.)
- Licenciatura en Biotecnología, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico;
| |
Collapse
|
15
|
Identification and characterization of a new cry-like gene found in a Bacillus cereus strain. Antonie van Leeuwenhoek 2021; 114:1759-1770. [PMID: 34491485 DOI: 10.1007/s10482-021-01635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Bacillus thuringiensis is the most successful microbial insecticide against different pests in agriculture and vectors of diseases. Its activity is mostly attributed to the Cry proteins expressed during its sporulation phase. However, these proteins are not exclusive to B. thuringiensis. Some cry genes have been found in other Bacillus species, or even in other genera. In this work, cry genes were searched in 223 acrystalliferous bacillaceous strains. From these strains 13 amplicons were obtained, cloned, and sequenced; however, only 6 amplicons tested positive for cry-like genes, and the 6 isolates showed to be the same strain. We report the characterization of an unusual strain of B. cereus (LBIC-004) which is unable to form protein inclusions during the sporulation phase. LBIC-004 showed a high identity to B. cereus using the sequences of 16S rRNA, gyrB and hag genes; in addition, a unique plasmid pattern of the strain was obtained. A 1953-bp cry gene was identified, coding for a 651 amino acid protein with a molecular weight of 74.9 kDa. This protein showed a predicted three-domain structure, similar to all Cry proteins. However, the amino acid sequence of the protein showed only 41% identity its highest hit: the Cry8Ca1 protein, indicating the uniqueness of this cry-like gene. It was cloned and transferred into a mutant acrystalliferous B. thuringiensis strain which was used in bioassays against Caenorhabditis elegans, Aedes aegypti, Manduca sexta and Phyllophaga sp. The recombinant strain showed no crystal formation and no toxicity to the tested species.
Collapse
|
16
|
How Does Bacillus thuringiensis Crystallize Such a Large Diversity of Toxins? Toxins (Basel) 2021; 13:toxins13070443. [PMID: 34206796 PMCID: PMC8309854 DOI: 10.3390/toxins13070443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/31/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a natural crystal-making bacterium. Bt diversified into many subspecies that have evolved to produce crystals of hundreds of pesticidal proteins with radically different structures. Their crystalline form ensures stability and controlled release of these major virulence factors. They are responsible for the toxicity and host specificity of Bt, explaining its worldwide use as a biological insecticide. Most research has been devoted to understanding the mechanisms of toxicity of these toxins while the features driving their crystallization have long remained elusive, essentially due to technical limitations. The evolution of methods in structural biology, pushing back the limits in size of amenable protein crystals now allows access to be gained to structural information hidden within natural crystals of such toxins. In this review, we present the main parameters that have been identified as key drivers of toxin crystallization in Bt, notably in the light of recent discoveries driven by structural biology studies. Then, we develop how the future evolution of structural biology will hopefully unveil new mechanisms of Bt toxin crystallization, opening the door to their hijacking with the aim of developing a versatile in vivo crystallization platform of high academic and industrial interest.
Collapse
|
17
|
Liu L, Li Z, Luo X, Zhang X, Chou SH, Wang J, He J. Which Is Stronger? A Continuing Battle Between Cry Toxins and Insects. Front Microbiol 2021; 12:665101. [PMID: 34140940 PMCID: PMC8203666 DOI: 10.3389/fmicb.2021.665101] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
In this article, we review the latest works on the insecticidal mechanisms of Bacillus thuringiensis Cry toxins and the resistance mechanisms of insects against Cry toxins. Currently, there are two models of insecticidal mechanisms for Cry toxins, namely, the sequential binding model and the signaling pathway model. In the sequential binding model, Cry toxins are activated to bind to their cognate receptors in the mid-intestinal epithelial cell membrane, such as the glycophosphatidylinositol (GPI)-anchored aminopeptidases-N (APNs), alkaline phosphatases (ALPs), cadherins, and ABC transporters, to form pores that elicit cell lysis, while in the signaling pathway model, the activated Cry toxins first bind to the cadherin receptor, triggering an extensive cell signaling cascade to induce cell apoptosis. However, these two models cannot seem to fully describe the complexity of the insecticidal process of Cry toxins, and new models are required. Regarding the resistance mechanism against Cry toxins, the main method insects employed is to reduce the effective binding of Cry toxins to their cognate cell membrane receptors by gene mutations, or to reduce the expression levels of the corresponding receptors by trans-regulation. Moreover, the epigenetic mechanisms, host intestinal microbiota, and detoxification enzymes also play significant roles in the insects' resistance against Cry toxins. Today, high-throughput sequencing technologies like transcriptomics, proteomics, and metagenomics are powerful weapons for studying the insecticidal mechanisms of Cry toxins and the resistance mechanisms of insects. We believe that this review shall shed some light on the interactions between Cry toxins and insects, which can further facilitate the development and utilization of Cry toxins.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xing Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xia Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Department of Molecular Biology, Qingdao Vland Biotech Inc., Qingdao, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jieping Wang
- Agricultural Bioresources Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
The Essential and Enigmatic Role of ABC Transporters in Bt Resistance of Noctuids and Other Insect Pests of Agriculture. INSECTS 2021; 12:insects12050389. [PMID: 33924857 PMCID: PMC8145640 DOI: 10.3390/insects12050389] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary The insect family, Noctuidae, contains some of the most damaging pests of agriculture, including bollworms, budworms, and armyworms. Transgenic cotton and maize expressing Cry-type insecticidal proteins from Bacillus thuringiensis (Bt) are protected from such pests and greatly reduce the need for chemical insecticides. However, evolution of Bt resistance in the insects threatens the sustainability of this environmentally beneficial pest control strategy. Understanding the interaction between Bt toxins and their targets in the insect midgut is necessary to evaluate the risk of resistance evolution. ABC transporters, which in eukaryotes typically expel small molecules from cells, have recently been proposed as a target for the pore-forming Cry toxins. Here we review the literature surrounding this hypothesis in noctuids and other insects. Appreciation of the critical role of ABC transporters will be useful in discovering counterstrategies to resistance, which is already evolving in some field populations of noctuids and other insects. Abstract In the last ten years, ABC transporters have emerged as unexpected yet significant contributors to pest resistance to insecticidal pore-forming proteins from Bacillus thuringiensis (Bt). Evidence includes the presence of mutations in resistant insects, heterologous expression to probe interactions with the three-domain Cry toxins, and CRISPR/Cas9 knockouts. Yet the mechanisms by which ABC transporters facilitate pore formation remain obscure. The three major classes of Cry toxins used in agriculture have been found to target the three major classes of ABC transporters, which requires a mechanistic explanation. Many other families of bacterial pore-forming toxins exhibit conformational changes in their mode of action, which are not yet described for the Cry toxins. Three-dimensional structures of the relevant ABC transporters, the multimeric pore in the membrane, and other proteins that assist in the process are required to test the hypothesis that the ATP-switch mechanism provides a motive force that drives Cry toxins into the membrane. Knowledge of the mechanism of pore insertion will be required to combat the resistance that is now evolving in field populations of insects, including noctuids.
Collapse
|
19
|
Vílchez S. Making 3D-Cry Toxin Mutants: Much More Than a Tool of Understanding Toxins Mechanism of Action. Toxins (Basel) 2020; 12:toxins12090600. [PMID: 32948025 PMCID: PMC7551160 DOI: 10.3390/toxins12090600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
3D-Cry toxins, produced by the entomopathogenic bacterium Bacillus thuringiensis, have been extensively mutated in order to elucidate their elegant and complex mechanism of action necessary to kill susceptible insects. Together with the study of the resistant insects, 3D-Cry toxin mutants represent one of the pillars to understanding how these toxins exert their activity on their host. The principle is simple, if an amino acid is involved and essential in the mechanism of action, when substituted, the activity of the toxin will be diminished. However, some of the constructed 3D-Cry toxin mutants have shown an enhanced activity against their target insects compared to the parental toxins, suggesting that it is possible to produce novel versions of the natural toxins with an improved performance in the laboratory. In this report, all mutants with an enhanced activity obtained by accident in mutagenesis studies, together with all the variants obtained by rational design or by directed mutagenesis, were compiled. A description of the improved mutants was made considering their historical context and the parallel development of the protein engineering techniques that have been used to obtain them. This report demonstrates that artificial 3D-Cry toxins made in laboratories are a real alternative to natural toxins.
Collapse
Affiliation(s)
- Susana Vílchez
- Institute of Biotechnology, Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
20
|
Qi L, Qiu X, Yang S, Li R, Wu B, Cao X, He T, Ding X, Xia L, Sun Y. Cry1Ac Protoxin and Its Activated Toxin from Bacillus thuringiensis Act Differentially during the Pathogenic Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5816-5824. [PMID: 32379448 DOI: 10.1021/acs.jafc.0c01172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Although the new dual model of the Bacillus thuringiensis insecticidal mechamism indicated that both Cry1A protoxin and activated toxin have the potency to kill insects, the difference in the toxic pathways elicited by the protoxin and activated toxin was less understood at the molecular level. Through utilizing the CF-203 cell line derived from the midgut of Choristoneura fumiferana, we found that there existed obvious differences in the binding sites and endocytosis pathways for the two forms of Cry1Ac. In addition, it was revealed that Cry1Ac protoxin existed predominantly in the midgut of Plutella xylostella at the early stage after ingesting Cry1Ac crystals, which brought about obvious damage to the midgut epithelium and exhibited different binding sites on the brush border membrane vesicle compared to the toxin. These findings supported the dual mode of action of B. thuringiensis Cry1A proteins and improved our understanding of the molecular features that contribute to the protoxin toxicity.
Collapse
Affiliation(s)
- Lingling Qi
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xianfeng Qiu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Sisi Yang
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Ran Li
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Binbin Wu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xiaomei Cao
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Ting He
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xuezhi Ding
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Liqiu Xia
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Yunjun Sun
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| |
Collapse
|
21
|
Insect Hsp90 Chaperone Assists Bacillus thuringiensis Cry Toxicity by Enhancing Protoxin Binding to the Receptor and by Protecting Protoxin from Gut Protease Degradation. mBio 2019; 10:mBio.02775-19. [PMID: 31772047 PMCID: PMC6879724 DOI: 10.1128/mbio.02775-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bacillus thuringiensis took advantage of important insect cellular proteins, such as chaperones, involved in maintaining protein homeostasis, to enhance its insecticidal activity. This constitutes a positive loop where the concentrations of Hsp90 and Hsp70 in the gut lumen are likely to increase as midgut cells burst due to Cry1A pore formation action. Hsp90 protects Cry1A protoxin from degradation and enhances receptor binding, resulting in increased toxicity. The effect of insect chaperones on Cry toxicity could have important biotechnological applications to enhance the toxicity of Cry proteins to insect pests, especially those that show low susceptibility to these toxins. Bacillus thuringiensis Cry proteins are pore-forming insecticidal toxins with specificity against different crop pests and insect vectors of human diseases. Previous work suggested that the insect host Hsp90 chaperone could be involved in Cry toxin action. Here, we show that the interaction of Cry toxins with insect Hsp90 constitutes a positive loop to enhance the performance of these toxins. Plutella xylostella Hsp90 (PxHsp90) greatly enhanced Cry1Ab or Cry1Ac toxicity when fed together to P. xylostella larvae and also in the less susceptible Spodoptera frugiperda larvae. PxHsp90 bound Cry1Ab and Cry1Ac protoxins in an ATP- and chaperone activity-dependent interaction. The chaperone Hsp90 participates in the correct folding of proteins and may suppress mutations of some client proteins, and we show here that PxHsp90 recovered the toxicity of the Cry1AbG439D protoxin affected in receptor binding, in contrast to the Cry1AbR99E or Cry1AbE129K mutant, affected in oligomerization or membrane insertion, respectively, which showed a slight toxicity improvement. Specifically, PxHsp90 enhanced the binding of Cry1AbG439D protoxin to the cadherin receptor. Furthermore, PxHsp90 protected Cry1A protoxins from degradation by insect midgut proteases. Our data show that PxHsp90 assists Cry1A proteins by enhancing their binding to the receptor and by protecting Cry protoxin from gut protease degradation. Finally, we show that the insect cochaperone protein PxHsp70 also increases the toxicity of Cry1Ac in P. xylostella larvae, in contrast to a bacterial GroEL chaperone, which had a marginal effect, indicating that the use of insect chaperones along with Cry toxins could have important biotechnological applications for the improvement of Cry insecticidal activity, resulting in effective control of insect pests.
Collapse
|
22
|
Li R, Yang S, Qiu X, Lu X, Hu Q, Ren X, Wu B, Qi L, Ding X, Xia L, Sun Y. The conserved cysteine residues in Bacillus thuringiensis Cry1Ac protoxin are not essential for the bipyramidal crystal formation. J Invertebr Pathol 2019; 163:82-85. [PMID: 30928458 DOI: 10.1016/j.jip.2019.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 11/19/2022]
Abstract
To evaluate the function of conserved cysteine residues in Cry1Ac protoxin, we constructed a series of Cry1Ac mutants in which single or multiple cysteine residues were replaced with serine. It was found that cysteine substitution had little effect on the protoxin expression and bipyramidal crystal formation. Bioassays using Plutella xylostella larvae showed that two mutants with fourteen cysteine residues in the C-terminal half and all sixteen residues replaced had similar toxicity as wildtype Cry1Ac protoxin. Our study suggests that the conserved cysteine resudues in the Cry1Ac protoxin are not essential for deposition into a bipyramidal crystal even though the C-terminal half was directly involved in crystal formation.
Collapse
Affiliation(s)
- Ran Li
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Sisi Yang
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xianfeng Qiu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xiuqing Lu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Quanfang Hu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xiaomeng Ren
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Binbin Wu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Lingling Qi
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xuezhi Ding
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Liqiu Xia
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Yunjun Sun
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
23
|
Schönherr R, Rudolph JM, Redecke L. Protein crystallization in living cells. Biol Chem 2019; 399:751-772. [PMID: 29894295 DOI: 10.1515/hsz-2018-0158] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022]
Abstract
Protein crystallization in living cells has been observed surprisingly often as a native assembly process during the past decades, and emerging evidence indicates that this phenomenon is also accessible for recombinant proteins. But only recently the advent of high-brilliance synchrotron sources, X-ray free-electron lasers, and improved serial data collection strategies has allowed the use of these micrometer-sized crystals for structural biology. Thus, in cellulo crystallization could offer exciting new possibilities for proteins that do not crystallize applying conventional approaches. In this review, we comprehensively summarize the current knowledge of intracellular protein crystallization. This includes an overview of the cellular functions, the physical properties, and, if known, the mode of regulation of native in cellulo crystal formation, complemented with a discussion of the reported crystallization events of recombinant proteins and the current method developments to successfully collect X-ray diffraction data from in cellulo crystals. Although the intracellular protein self-assembly mechanisms are still poorly understood, regulatory differences between native in cellulo crystallization linked to a specific function and accidently crystallizing proteins, either disease associated or recombinantly introduced, become evident. These insights are important to systematically exploit living cells as protein crystallization chambers in the future.
Collapse
Affiliation(s)
- Robert Schönherr
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Janine Mia Rudolph
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.,Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Lars Redecke
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| |
Collapse
|
24
|
Juárez-Hernández EO, Casados-Vázquez LE, Brieba LG, Torres-Larios A, Jimenez-Sandoval P, Barboza-Corona JE. The crystal structure of the chitinase ChiA74 of Bacillus thuringiensis has a multidomain assembly. Sci Rep 2019; 9:2591. [PMID: 30796308 PMCID: PMC6385353 DOI: 10.1038/s41598-019-39464-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/24/2019] [Indexed: 01/04/2023] Open
Abstract
There is no structural information about any chitinase synthesized by Bacillus thuringiensis, the most successful microbial insect larvicide used worldwide. In this study, we solved the 3D structure of the chitinase ChiA74 at 2.26 Å. The crystal structure shows that ChiA74 is composed of a modular arrangement formed by (i) a catalytic region (CD), (ii) a chitinase insertion domain (CID), (iii) a fibronectin type III domain (FnIII), and (iv) a chitin binding domain (CBD). The location of the CBD with respect to the CD has no structural similarity to other chitinases with known structures. The activity of a ChiA74 lacking its secretion signal peptide (ChiA74Δsp) and a truncated version lacking its CBD/FnIII domains (ChiA74Δsp-50) did not have statistical differences in activity against colloidal chitin. However, ChiA74Δsp exhibits 4.5 and 2.0 higher activity than versions lacking the CBD (ChiA74Δsp-60) and CBD/FnIII domains (ChiA74Δsp-50), respectively, when crystalline chitin was used as substrate. Our data suggest that the CBD might plays a significant role in crystalline chitin hydrolysis. We also demonstrated the importance of the catalytic E211 in the CD, as mutants ChiA74ΔspE211N and ChiA74ΔspD207N, E211N were inactive against colloidal and crystalline chitins, chitosan and 4-MU-GlcNAc3. ChiA74 has a processive activity producing oligosaccharides with degree of polymerization (DP) of 1 (GlcNAc) and 2 (GlcNAc2).
Collapse
Affiliation(s)
- Estefania O Juárez-Hernández
- Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Posgrado en Biociencias, Irapuato, Guanajuato, 36500, Mexico
| | - Luz E Casados-Vázquez
- Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Posgrado en Biociencias, Irapuato, Guanajuato, 36500, Mexico.,Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Departamento de Alimentos, Irapuato, Guanajuato, 36500, Mexico
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (LANGEBIO-CINVESTAV), Apartado Postal 629, Irapuato, Guanajuato, 36824, Mexico
| | - Alfredo Torres-Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-243, Ciudad de México, 04510, Mexico
| | - Pedro Jimenez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (LANGEBIO-CINVESTAV), Apartado Postal 629, Irapuato, Guanajuato, 36824, Mexico.
| | - José E Barboza-Corona
- Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Posgrado en Biociencias, Irapuato, Guanajuato, 36500, Mexico. .,Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Departamento de Alimentos, Irapuato, Guanajuato, 36500, Mexico.
| |
Collapse
|
25
|
Jerga A, Evdokimov AG, Moshiri F, Haas JA, Chen M, Clinton W, Fu X, Halls C, Jimenez-Juarez N, Kretzler CN, Panosian TD, Pleau M, Roberts JK, Rydel TJ, Salvador S, Sequeira R, Wang Y, Zheng M, Baum JA. Disabled insecticidal proteins: A novel tool to understand differences in insect receptor utilization. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 105:79-88. [PMID: 30605769 DOI: 10.1016/j.ibmb.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
The development of insect resistance to pesticides via natural selection is an acknowledged agricultural issue. Likewise, resistance development in target insect populations is a significant challenge to the durability of crop traits conferring insect protection and has driven the need for novel insecticidal proteins (IPs) with alternative mechanism of action (MOA) mediated by different insect receptors. The combination or "stacking" of transgenes encoding different insecticidal proteins in a single crop plant can greatly delay the development of insect resistance, but requires sufficient knowledge of MOA to identify proteins with different receptor preferences. Accordingly, a rapid technique for differentiating the receptor binding preferences of insecticidal proteins is a critical need. This article introduces the Disabled Insecticidal Protein (DIP) method as applied to the well-known family of three-domain insecticidal proteins from Bacillus thuringiensis and related bacteria. These DIP's contain amino acid substitutions in domain 1 that render the proteins non-toxic but still capable of competing with active proteins in insect feeding assays, resulting in a suppression of the expected insecticidal activity. A set of insecticidal proteins with known differences in receptor binding (Cry1Ab3, Cry1Ac.107, Cry2Ab2, Cry1Ca, Cry1A.105, and Cry1A.1088) has been studied using the DIP method, yielding results that are consistent with previous MOA studies. When a native IP and an excess of DIP are co-administered to insects in a feeding assay, the outcome depends on the overlap between their MOAs: if receptors are shared, then the DIP saturates the receptors to which the native protein would ordinarily bind, and acts as an antidote whereas, if there is no shared receptor, the toxicity of the native insecticidal protein is not inhibited. These results suggest that the DIP methodology, employing standard insect feeding assays, is a robust and effective method for rapid MOA differentiation among insecticidal proteins.
Collapse
Affiliation(s)
- Agoston Jerga
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA.
| | - Artem G Evdokimov
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Farhad Moshiri
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Jeffrey A Haas
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Mao Chen
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - William Clinton
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Xiaoran Fu
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Coralie Halls
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | | | | | | | - Michael Pleau
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - James K Roberts
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Timothy J Rydel
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Sara Salvador
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Reuben Sequeira
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Yanfei Wang
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Meiying Zheng
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - James A Baum
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| |
Collapse
|
26
|
Peña-Cardeña A, Grande R, Sánchez J, Tabashnik BE, Bravo A, Soberón M, Gómez I. The C-terminal protoxin region of Bacillus thuringiensis Cry1Ab toxin has a functional role in binding to GPI-anchored receptors in the insect midgut. J Biol Chem 2018; 293:20263-20272. [PMID: 30385510 PMCID: PMC6311509 DOI: 10.1074/jbc.ra118.005101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Bacillus thuringiensis Cry toxins are used worldwide for controlling insects. Cry1Ab is produced as a 130-kDa protoxin that is activated by proteolytic removal of an inert 500 amino-acid-long C-terminal region, enabling the activated toxin to bind to insect midgut receptor proteins, leading to its membrane insertion and pore formation. It has been proposed that the C-terminal region is only involved in toxin crystallization, but its role in receptor binding is undefined. Here we show that the C-terminal region of Cry1Ab protoxin provides additional binding sites for alkaline phosphatase (ALP) and aminopeptidase N (APN) insect receptors. ELISA, ligand blot, surface plasmon resonance, and pulldown assays revealed that the Cry1Ab C-terminal region binds to both ALP and APN but not to cadherin. Thus, the C-terminal region provided a higher binding affinity of the protoxin to the gut membrane that correlated with higher toxicity of protoxin than activated toxin. Moreover, Cry1Ab domain II loop 2 or 3 mutations reduced binding of the protoxin to cadherin but not to ALP or APN, supporting the idea that protoxins have additional binding sites. These results imply that two different regions mediate the binding of Cry1Ab protoxin to membrane receptors, one located in domain II-III of the toxin and another in its C-terminal region, suggesting an active role of the C-terminal protoxin fragment in the mode of action of Cry toxins. These results suggest that future manipulations of the C-terminal protoxin region could alter the specificity and increase the toxicity of B. thuringiensis proteins.
Collapse
Affiliation(s)
| | - Ricardo Grande
- Unidad de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México and
| | - Jorge Sánchez
- From the Departamento de Microbiología Molecular and
| | - Bruce E Tabashnik
- the Department of Entomology, University of Arizona, Tucson, Arizona 85721
| | | | - Mario Soberón
- From the Departamento de Microbiología Molecular and
| | - Isabel Gómez
- From the Departamento de Microbiología Molecular and.
| |
Collapse
|
27
|
Sellami S, Jemli S, Abdelmalek N, Cherif M, Abdelkefi-Mesrati L, Tounsi S, Jamoussi K. A novel Vip3Aa16-Cry1Ac chimera toxin: Enhancement of toxicity against Ephestia kuehniella, structural study and molecular docking. Int J Biol Macromol 2018; 117:752-761. [PMID: 29800666 DOI: 10.1016/j.ijbiomac.2018.05.161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 10/16/2022]
Abstract
Bacillus thuringiensis Vip3A protein has been widely used for crop protection and for delay resistance to existing insecticidal Cry toxins. During current study, a fusion between vip3Aa16 and the toxic core sequence of cry1Ac was constructed in pHT Blue plasmid. Vip3Aa16-Cry1Ac protein was expressed in the supernatant of B. thuringiensis with a size of about 150 kDa. Bioassays tested on Ephestia kuehniella showed that the use of the chimera toxin as biopesticide improved the toxicity to reach 90% ± 2 with an enhancement of 20% compared to the single Vip3Aa16 protein. The findings indicated that the fusion protein design opens new ways to enhance Vip3A toxicity against lepidopteran species and could avoiding insect tolerance of B. thuringiensis delta-endotoxins. Through computational study, we have predicted for the first time the whole 3D structure of a Vip3A toxin. We showed that Vip3Aa16 structure is composed by three domains like Cry toxins: an N-terminal domain containing hemolysin like fold as well as two others Carbohydrate Binding Module (CBM)-like domains. Molecular docking analysis of the chimera toxin and the single Vip3Aa16 protein against specific insect receptors revealed that residues of CBM like domains are clearly involved in the binding of the toxin to receptors.
Collapse
Affiliation(s)
- Sameh Sellami
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia.
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Nouha Abdelmalek
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Marwa Cherif
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Lobna Abdelkefi-Mesrati
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Slim Tounsi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Kais Jamoussi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| |
Collapse
|
28
|
Xu L, Pan ZZ, Zhang J, Niu LY, Li J, Chen Z, Liu B, Zhu YJ, Chen QX. Exposure of helices α4 and α5 is required for insecticidal activity of Cry2Ab by promoting assembly of a prepore oligomeric structure. Cell Microbiol 2018; 20:e12827. [PMID: 29380507 DOI: 10.1111/cmi.12827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022]
Abstract
Cry2Ab, a pore-forming toxin derived from Bacillus thuringiensis, is widely used as a bio-insecticide to control lepidopteran pests around the world. A previous study revealed that proteolytic activation of Cry2Ab by Plutella xylostella midgut juice was essential for its insecticidal activity against P. xylostella, although the exact molecular mechanism remained unknown. Here, we demonstrated for the first time that proteolysis of Cry2Ab uncovered an active region (the helices α4 and α5 in Domain I), which was required for the mode of action of Cry2Ab. Either the masking or the removal of helices α4 and α5 mediated the pesticidal activity of Cry2Ab. The exposure of helices α4 and α5 did not facilitate the binding of Cry2Ab to P. xylostella midgut receptors but did induce Cry2Ab monomer to aggregate and assemble a 250-kDa prepore oligomer. Site-directed mutagenesis assay was performed to generate Cry2Ab mutants site directed on the helices α4 and α5, and bioassays suggested that some Cry2Ab variants that could not form oligomers had significantly lowered their toxicities against P. xylostella. Taken together, our data highlight the importance of helices α4 and α5 in the mode of action of Cry2Ab and could lead to more detailed studies on the insecticidal activity of Cry2Ab.
Collapse
Affiliation(s)
- Lian Xu
- State Key Laboratory of Cellular Stress Biology, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhi-Zhen Pan
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Cellular Stress Biology, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Li-Yang Niu
- State Key Laboratory of Cellular Stress Biology, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jie Li
- State Key Laboratory of Cellular Stress Biology, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zheng Chen
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, People's Republic of China
| | - Bo Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, People's Republic of China
| | - Yu-Jing Zhu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, People's Republic of China
| | - Qing-Xi Chen
- State Key Laboratory of Cellular Stress Biology, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
29
|
Li X, Zhao F, Qiu X, Ren X, Mo X, Ding X, Xia L, Sun Y. The full-length Cry1Ac protoxin without proteolytic activation exhibits toxicity against insect cell line CF-203. J Invertebr Pathol 2018; 152:25-29. [PMID: 29408155 DOI: 10.1016/j.jip.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/06/2018] [Accepted: 01/17/2018] [Indexed: 11/19/2022]
Abstract
The new dual model for Bacillus thuringiensis insecticidal mechanism proposed that Cry1A protoxins without proteolytic activation could bind to insect midgut receptors to exert toxicity. To evaluate insecticidal potency of Cry1Ac protoxin at precluding interference of midgut proteases, the cytotoxicity of Cry1Ac protoxin against midgut cell line CF-203 derived from Choristoneura fumiferana was analyzed. It was revealed that Cry1Ac protoxin was toxic to CF-203 cells and there existed certain differences in the cytological changes when treated with protoxin and toxin. Our cell-based study provided direct evidence for the proposed dual model and shed light on exploring the difference between two toxic pathways elicited by intact protoxin and activated toxin.
Collapse
Affiliation(s)
- Xiaodi Li
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Feng Zhao
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xianfeng Qiu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xiaomeng Ren
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xiangtao Mo
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xuezhi Ding
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Liqiu Xia
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Yunjun Sun
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
30
|
BenFarhat-Touzri D, Driss F, Jemli S, Tounsi S. Molecular characterization of Cry1D-133 toxin from Bacillus thuringiensis strain HD133 and its toxicity against Spodoptera littoralis. Int J Biol Macromol 2018; 112:1-6. [PMID: 29366893 DOI: 10.1016/j.ijbiomac.2018.01.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
Abstract
Bacillus thuringiensis subsp. aizawai strain HD133, known by its effectiveness against Spodoptera species, produces bipyramidal crystals encompassing the insecticidal proteins Cry1Ab, Cry1Ca and Cry1D-133 in the proportions 60:37:3, respectively. In this study, we dealt with the relevance of the low rate of Cry1D-133. The cry1D-133 gene from HD133 was cloned and sequenced. Both nucleotide and amino acid sequence similarity analyses with the cry1D genes available in the GenBank database revealed that cry1D-133 is a new variant of cry1Da-type genes with 99% identity with cry1Da1. Molecular modeling of the Cry1D-133 toxin showed that its higher toxicity is correlated to a higher number of toxin-receptor interactions. Optimal culture conditions of 4 h post-induction time, 160 rpm agitation and 37 °C post-induction temperature were determined and adopted to overproduce Cry1D-133 toxin at adequate amounts to carryout bioassays. A gradual increase of the proportion of Cry1D-133 to the HD133 insecticidal proteins forming the crystal (Cry1D-133, Cry1Ca and Cry1Ab) showed an improvement of the toxicity against Spodoptera littoralis larvae. Therefore, the potential of Cry1D-133 to enhance HD133 toxicity could promote its combination with other B. thuringiensis insecticidal proteins toxins in order to increase target range or to delay the emergence of resistance.
Collapse
Affiliation(s)
- Dalel BenFarhat-Touzri
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box, "1177", 3018, Sfax, Tunisia
| | - Fatma Driss
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box, "1177", 3018, Sfax, Tunisia.
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzyme Engineering, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box, "1177", 3018, Sfax, Tunisia
| | - Slim Tounsi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box, "1177", 3018, Sfax, Tunisia
| |
Collapse
|
31
|
Soberón M, Monnerat R, Bravo A. Mode of Action of Cry Toxins from Bacillus thuringiensis and Resistance Mechanisms. TOXINOLOGY 2018. [DOI: 10.1007/978-94-007-6449-1_28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Ribeiro TP, Arraes FBM, Lourenço‐Tessutti IT, Silva MS, Lisei‐de‐Sá ME, Lucena WA, Macedo LLP, Lima JN, Santos Amorim RM, Artico S, Alves‐Ferreira M, Mattar Silva MC, Grossi‐de‐Sa MF. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:997-1009. [PMID: 28081289 PMCID: PMC5506659 DOI: 10.1111/pbi.12694] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/05/2017] [Accepted: 01/08/2017] [Indexed: 05/27/2023]
Abstract
Genetically modified (GM) cotton plants that effectively control cotton boll weevil (CBW), which is the most destructive cotton insect pest in South America, are reported here for the first time. This work presents the successful development of a new GM cotton with high resistance to CBW conferred by Cry10Aa toxin, a protein encoded by entomopathogenic Bacillus thuringiensis (Bt) gene. The plant transformation vector harbouring cry10Aa gene driven by the cotton ubiquitination-related promoter uceA1.7 was introduced into a Brazilian cotton cultivar by biolistic transformation. Quantitative PCR (qPCR) assays revealed high transcription levels of cry10Aa in both T0 GM cotton leaf and flower bud tissues. Southern blot and qPCR-based 2-ΔΔCt analyses revealed that T0 GM plants had either one or two transgene copies. Quantitative and qualitative analyses of Cry10Aa protein expression showed variable protein expression levels in both flower buds and leaves tissues of T0 GM cotton plants, ranging from approximately 3.0 to 14.0 μg g-1 fresh tissue. CBW susceptibility bioassays, performed by feeding adults and larvae with T0 GM cotton leaves and flower buds, respectively, demonstrated a significant entomotoxic effect and a high level of CBW mortality (up to 100%). Molecular analysis revealed that transgene stability and entomotoxic effect to CBW were maintained in T1 generation as the Cry10Aa toxin expression levels remained high in both tissues, ranging from 4.05 to 19.57 μg g-1 fresh tissue, and the CBW mortality rate remained around 100%. In conclusion, these Cry10Aa GM cotton plants represent a great advance in the control of the devastating CBW insect pest and can substantially impact cotton agribusiness.
Collapse
Affiliation(s)
- Thuanne Pires Ribeiro
- Brasilia Federal University (UnB)BrasíliaDFBrazil
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
| | | | | | | | - Maria Eugênia Lisei‐de‐Sá
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
- Agricultural Research Company of Minas Gerais StateUberabaMGBrazil
| | - Wagner Alexandre Lucena
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
- Embrapa CottonCampina GrandePBBrazil
| | | | | | | | - Sinara Artico
- Rio de Janeiro Federal UniversityRio de JaneiroRJBrazil
| | | | | | - Maria Fatima Grossi‐de‐Sa
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
- Catholic University of BrasiliaBrasíliaDFBrazil
| |
Collapse
|
33
|
Fortea E, Lemieux V, Potvin L, Chikwana V, Griffin S, Hey T, McCaskill D, Narva K, Tan SY, Xu X, Vachon V, Schwartz JL. Cry6Aa1, a Bacillus thuringiensis nematocidal and insecticidal toxin, forms pores in planar lipid bilayers at extremely low concentrations and without the need of proteolytic processing. J Biol Chem 2017. [PMID: 28623231 DOI: 10.1074/jbc.m116.765941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cry6Aa1 is a Bacillus thuringiensis (Bt) toxin active against nematodes and corn rootworm insects. Its 3D molecular structure, which has been recently elucidated, is unique among those known for other Bt toxins. Typical three-domain Bt toxins permeabilize receptor-free planar lipid bilayers (PLBs) by forming pores at doses in the 1-50 μg/ml range. Solubilization and proteolytic activation are necessary steps for PLB permeabilization. In contrast to other Bt toxins, Cry6Aa1 formed pores in receptor-free bilayers at doses as low as 200 pg/ml in a wide range of pH (5.5-9.5) and without the need of protease treatment. When Cry6Aa1 was preincubated with Western corn rootworm (WCRW) midgut juice or trypsin, 100 fg/ml of the toxin was sufficient to form pores in PLBs. The overall biophysical properties of the pores were similar for all three forms of the toxin (native, midgut juice- and trypsin-treated), with conductances ranging from 28 to 689 pS, except for their ionic selectivity, which was slightly cationic for the native and midgut juice-treated Cry6Aa1, whereas dual selectivity (to cations or anions) was observed for the pores formed by the trypsin-treated toxin. Enrichment of PLBs with WCRW midgut brush-border membrane material resulted in a 2000-fold reduction of the amount of native Cry6Aa1 required to form pores and affected the biophysical properties of both the native and trypsin-treated forms of the toxin. These results indicate that, although Cry6Aa1 forms pores, the molecular determinants of its mode of action are significantly different from those reported for other Bt toxins.
Collapse
Affiliation(s)
- Eva Fortea
- From the Département de pharmacologie et physiologie and Groupe d'étude des protéines membranaires, Université de Montréal, Montreal, Québec H3C 3J7, Canada
| | - Vincent Lemieux
- From the Département de pharmacologie et physiologie and Groupe d'étude des protéines membranaires, Université de Montréal, Montreal, Québec H3C 3J7, Canada.,the Département de biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Léna Potvin
- From the Département de pharmacologie et physiologie and Groupe d'étude des protéines membranaires, Université de Montréal, Montreal, Québec H3C 3J7, Canada
| | | | | | - Timothy Hey
- Dow AgroSciences LLC, Indianapolis, Indiana 46268, and
| | | | - Kenneth Narva
- Dow AgroSciences LLC, Indianapolis, Indiana 46268, and
| | - Sek Yee Tan
- Dow AgroSciences LLC, Indianapolis, Indiana 46268, and
| | - Xiaoping Xu
- Dow AgroSciences LLC, Indianapolis, Indiana 46268, and
| | - Vincent Vachon
- From the Département de pharmacologie et physiologie and Groupe d'étude des protéines membranaires, Université de Montréal, Montreal, Québec H3C 3J7, Canada
| | - Jean-Louis Schwartz
- From the Département de pharmacologie et physiologie and Groupe d'étude des protéines membranaires, Université de Montréal, Montreal, Québec H3C 3J7, Canada, .,the Centre SÈVE de recherche en sciences du végétal, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1 Canada
| |
Collapse
|
34
|
Adalat R, Saleem F, Crickmore N, Naz S, Shakoori AR. In Vivo Crystallization of Three-Domain Cry Toxins. Toxins (Basel) 2017; 9:toxins9030080. [PMID: 28282927 PMCID: PMC5371835 DOI: 10.3390/toxins9030080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/10/2017] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
Bacillus thuringiensis (Bt) is the most successful, environmentally-friendly, and intensively studied microbial insecticide. The major characteristic of Bt is the production of proteinaceous crystals containing toxins with specific activity against many pests including dipteran, lepidopteran, and coleopteran insects, as well as nematodes, protozoa, flukes, and mites. These crystals allow large quantities of the protein toxins to remain stable in the environment until ingested by a susceptible host. It has been previously established that 135 kDa Cry proteins have a crystallization domain at their C-terminal end. In the absence of this domain, Cry proteins often need helper proteins or other factors for crystallization. In this review, we classify the Cry proteins based on their requirements for crystallization.
Collapse
Affiliation(s)
- Rooma Adalat
- Department of Biotechnology, Lahore College for Women University, Lahore 54590, Pakistan.
| | - Faiza Saleem
- Department of Biotechnology, Lahore College for Women University, Lahore 54590, Pakistan.
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK.
| | - Shagufta Naz
- Department of Biotechnology, Lahore College for Women University, Lahore 54590, Pakistan.
| | - Abdul Rauf Shakoori
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
35
|
Insecticidal Specificity of Cry1Ah to Helicoverpa armigera Is Determined by Binding of APN1 via Domain II Loops 2 and 3. Appl Environ Microbiol 2017; 83:AEM.02864-16. [PMID: 27940541 DOI: 10.1128/aem.02864-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022] Open
Abstract
Bacillus thuringiensis Cry1Ah protein is highly toxic against Helicoverpa armigera but shows no toxicity against Bombyx mori larvae. In contrast, the closely related Cry1Ai toxin showed the opposite phenotype: high activity against B. mori but no toxicity against H. armigera. Analysis of binding of Cry1Ah to brush border membrane vesicle (BBMV) proteins from H. armigera and B. mori by surface plasmon resonance revealed association of toxin binding with insect specificity. Pulldown experiments identified aminopeptidase N1 (APN1) as a Cry1Ah binding protein that was not observed in the assays using B. mori BBMV proteins. The APN1 Cry1Ah binding region was narrowed to the region from A548 to S798 (fragment H3) by expressing four different APN1 fragments in Escherichia coli and analyzing Cry1Ah binding by ligand blot. Binding competition experiments of Cry1Ah to APN1 fragment H3 using synthetic peptides corresponding to four predicted domain II loop regions showed that loop 2 and loop 3 have additive effects on binding to APN1 fragment H3. Moreover, switching of loop 2 and loop 3 regions from Cry1Ah to Cry1Ai toxins showed that loop 2 and loop 3 are both involved in specificity and toxicity against H. armigera IMPORTANCE: Domain II loop regions have been shown to be involved in binding to larval gut proteins mediating insect specificity. The modification of loop regions is a direct and effective method to construct new Cry toxin variants to increase toxicity or modify specificity. Our results show that the exchange of loop regions from one toxin into another is a successful scheme for modification of B. thuringiensis Cry toxin specificity.
Collapse
|
36
|
Dementiev A, Board J, Sitaram A, Hey T, Kelker MS, Xu X, Hu Y, Vidal-Quist C, Chikwana V, Griffin S, McCaskill D, Wang NX, Hung SC, Chan MK, Lee MM, Hughes J, Wegener A, Aroian RV, Narva KE, Berry C. The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE-family alpha pore-forming toxins. BMC Biol 2016; 14:71. [PMID: 27576487 PMCID: PMC5004264 DOI: 10.1186/s12915-016-0295-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/10/2016] [Indexed: 12/02/2022] Open
Abstract
Background The Cry6 family of proteins from Bacillus thuringiensis represents a group of powerful toxins with great potential for use in the control of coleopteran insects and of nematode parasites of importance to agriculture. These proteins are unrelated to other insecticidal toxins at the level of their primary sequences and the structure and function of these proteins has been poorly studied to date. This has inhibited our understanding of these toxins and their mode of action, along with our ability to manipulate the proteins to alter their activity to our advantage. To increase our understanding of their mode of action and to facilitate further development of these proteins we have determined the structure of Cry6Aa in protoxin and trypsin-activated forms and demonstrated a pore-forming mechanism of action. Results The two forms of the toxin were resolved to 2.7 Å and 2.0 Å respectively and showed very similar structures. Cry6Aa shows structural homology to a known class of pore-forming toxins including hemolysin E from Escherichia coli and two Bacillus cereus proteins: the hemolytic toxin HblB and the NheA component of the non-hemolytic toxin (pfam05791). Cry6Aa also shows atypical features compared to other members of this family, including internal repeat sequences and small loop regions within major alpha helices. Trypsin processing was found to result in the loss of some internal sequences while the C-terminal region remains disulfide-linked to the main core of the toxin. Based on the structural similarity of Cry6Aa to other toxins, the mechanism of action of the toxin was probed and its ability to form pores in vivo in Caenorhabditis elegans was demonstrated. A non-toxic mutant was also produced, consistent with the proposed pore-forming mode of action. Conclusions Cry6 proteins are members of the alpha helical pore-forming toxins – a structural class not previously recognized among the Cry toxins of B. thuringiensis and representing a new paradigm for nematocidal and insecticidal proteins. Elucidation of both the structure and the pore-forming mechanism of action of Cry6Aa now opens the way to more detailed analysis of toxin specificity and the development of new toxin variants with novel activities. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0295-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jason Board
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF15 8FA, UK
| | - Anand Sitaram
- University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605-2377, USA
| | - Timothy Hey
- Dow AgroSciences, LLC, Indianapolis, IN, USA.,Present address: Indiana State Department of Health Laboratories, Indianapolis, IN, USA
| | - Matthew S Kelker
- Dow AgroSciences, LLC, Indianapolis, IN, USA.,Present address: Xylogenics, LLC, Indianapolis, IN, USA
| | - Xiaoping Xu
- Dow AgroSciences, LLC, Indianapolis, IN, USA
| | - Yan Hu
- University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605-2377, USA
| | - Cristian Vidal-Quist
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF15 8FA, UK.,Present address: Laboratorio de Interacción Planta-Insecto, Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas - CSIC, Madrid, Spain
| | | | | | | | - Nick X Wang
- Dow AgroSciences, LLC, Indianapolis, IN, USA
| | | | - Michael K Chan
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, HK SAR, China
| | - Marianne M Lee
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, HK SAR, China
| | - Jessica Hughes
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF15 8FA, UK.,Present address: Antimicrobial Reference Laboratory, Southmead Hospital, Westbury-on-Trym, Bristol, BS10 5NB, UK
| | - Alice Wegener
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF15 8FA, UK
| | - Raffi V Aroian
- University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605-2377, USA
| | | | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF15 8FA, UK.
| |
Collapse
|
37
|
Zghal RZ, Elleuch J, Ben Ali M, Darriet F, Rebaï A, Chandre F, Jaoua S, Tounsi S. Towards novel Cry toxins with enhanced toxicity/broader: a new chimeric Cry4Ba / Cry1Ac toxin. Appl Microbiol Biotechnol 2016; 101:113-122. [PMID: 27538933 DOI: 10.1007/s00253-016-7766-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
Abstract
Attempts have been made to express or to merge different Cry proteins in order to enhance toxic effects against various insects. Cry1A proteins of Bacillus thuringiensis form a typical bipyramidal parasporal crystal and their protoxins contain a highly conserved C-terminal region. A chimerical gene, called cry(4Ba-1Ac), formed by a fusion of the N-terminus part of cry4Ba and the C-terminus part of cry1Ac, was constructed. Its transformation to an acrystalliferous B. thuringiensis strain showed that it was expressed as a chimerical protein of 116 kDa, assembled in spherical to amorphous parasporal crystals. The chimerical gene cry(4Ba-1Ac) was introduced in a B. thuringiensis kurstaki strain. In the generated crystals of the recombinant strain, the presence of Cry(4Ba-1Ac) was evidenced by MALDI-TOF. The recombinant strain showed an important increase of the toxicity against Culex pipiens larvae (LC50 = 0.84 mg l-1 ± 0.08) compared to the wild type strain through the synergistic activity of Cry2Aa with Cry(4Ba-1Ac). The enhancement of toxicity of B. thuringiensis kurstaki expressing Cry(4Ba-1Ac) compared to that expressing the native toxin Cry4Ba, might be related to its a typical crystallization properties. The developed fusion protein could serve as a potent toxin against different pests of mosquitoes and major crop plants.
Collapse
Affiliation(s)
- Raida Zribi Zghal
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box "1177", 3018, Sfax, Tunisia.
| | - Jihen Elleuch
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box "1177", 3018, Sfax, Tunisia
| | - Mamdouh Ben Ali
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Frédéric Darriet
- Institut de Recherche pour le Développement (IRD), UMR MIVEGEC (UM1-UM2-CNRS 5290-IRD 224) Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Laboratoire de Lutte contre les Insectes Nuisibles (LIN), Montpellier, France
| | - Ahmed Rebaï
- Research Group on Molecular and Cellular Screening Processes, Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Fabrice Chandre
- Institut de Recherche pour le Développement (IRD), UMR MIVEGEC (UM1-UM2-CNRS 5290-IRD 224) Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Laboratoire de Lutte contre les Insectes Nuisibles (LIN), Montpellier, France
| | - Samir Jaoua
- Biological & Environmental Sciences Department, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Slim Tounsi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box "1177", 3018, Sfax, Tunisia
| |
Collapse
|
38
|
Davey L, Halperin SA, Lee SF. Thiol-Disulfide Exchange in Gram-Positive Firmicutes. Trends Microbiol 2016; 24:902-915. [PMID: 27426970 DOI: 10.1016/j.tim.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/08/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022]
Abstract
Extracytoplasmic thiol-disulfide oxidoreductases (TDORs) catalyze the oxidation, reduction, and isomerization of protein disulfide bonds. Although these processes have been characterized in Gram-negative bacteria, the majority of Gram-positive TDORs have only recently been discovered. Results from recent studies have revealed distinct trends in the types of TDOR used by different groups of Gram-positive bacteria, and in their biological functions. Actinobacteria TDORs can be essential for viability, while Firmicute TDORs influence various physiological processes, including protein stability, oxidative stress resistance, bacteriocin production, and virulence. In this review we discuss the diverse extracytoplasmic TDORs used by Gram-positive bacteria, with a focus on Gram-positive Firmicutes.
Collapse
Affiliation(s)
- Lauren Davey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada
| | - Scott A Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada
| | - Song F Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, B3H 4R2 Canada.
| |
Collapse
|
39
|
Use of Redundant Exclusion PCR To Identify a Novel Bacillus thuringiensis Cry8 Toxin Gene from Pooled Genomic DNA. Appl Environ Microbiol 2016; 82:3808-3815. [PMID: 27084017 DOI: 10.1128/aem.00862-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED With the aim of optimizing the cloning of novel genes from a genomic pool containing many previously identified homologous genes, we designed a redundant exclusion PCR (RE-PCR) technique. In RE-PCR, a pair of generic amplification primers are combined with additional primers that are designed to specifically bind to redundant, unwanted genes that are a subset of those copied by the amplification primers. During RE-PCR, the specific primer blocks amplification of the full-length redundant gene. Using this method, we managed to clone a number of cry8 or cry9 toxin genes from a pool of Bacillus thuringiensis genomic DNA while excluding amplicons for cry9Da, cry9Ea, and cry9Eb The method proved to be very efficient at increasing the number of rare genes in the resulting library. One such rare (and novel) cry8-like gene was expressed, and the encoded toxin was shown to be toxic to Anomala corpulenta IMPORTANCE Protein toxins from the bacterium Bacillus thuringiensis are being increasingly used as biopesticides against a wide range of insect pests, yet the search for new or improved toxins is becoming more difficult, as traditional methods for gene discovery routinely isolate previously identified clones. This paper describes an approach that we have developed to increase the success rate for novel toxin gene identification through reducing or eliminating the cloning of previously characterized genes.
Collapse
|
40
|
Tabashnik BE, Zhang M, Fabrick JA, Wu Y, Gao M, Huang F, Wei J, Zhang J, Yelich A, Unnithan GC, Bravo A, Soberón M, Carrière Y, Li X. Dual mode of action of Bt proteins: protoxin efficacy against resistant insects. Sci Rep 2015; 5:15107. [PMID: 26455902 PMCID: PMC4601037 DOI: 10.1038/srep15107] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/16/2015] [Indexed: 01/06/2023] Open
Abstract
Transgenic crops that produce Bacillus thuringiensis (Bt) proteins for pest control are grown extensively, but insect adaptation can reduce their effectiveness. Established mode of action models assert that Bt proteins Cry1Ab and Cry1Ac are produced as inactive protoxins that require conversion to a smaller activated form to exert toxicity. However, contrary to this widely accepted paradigm, we report evidence from seven resistant strains of three major crop pests showing that Cry1Ab and Cry1Ac protoxins were generally more potent than the corresponding activated toxins. Moreover, resistance was higher to activated toxins than protoxins in eight of nine cases evaluated in this study. These data and previously reported results support a new model in which protoxins and activated toxins kill insects via different pathways. Recognizing that protoxins can be more potent than activated toxins against resistant insects may help to enhance and sustain the efficacy of transgenic Bt crops.
Collapse
Affiliation(s)
| | - Min Zhang
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Jeffrey A. Fabrick
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Yidong Wu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Meijing Gao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Jizhen Wei
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100026, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100026, China
| | - Alexander Yelich
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62250, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62250, Morelos, Mexico
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
41
|
Duszenko M, Redecke L, Mudogo CN, Sommer BP, Mogk S, Oberthuer D, Betzel C. In vivo protein crystallization in combination with highly brilliant radiation sources offers novel opportunities for the structural analysis of post-translationally modified eukaryotic proteins. Acta Crystallogr F Struct Biol Commun 2015; 71:929-37. [PMID: 26249677 PMCID: PMC4528919 DOI: 10.1107/s2053230x15011450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/12/2015] [Indexed: 11/11/2022] Open
Abstract
During the last decade, the number of three-dimensional structures solved by X-ray crystallography has increased dramatically. By 2014, it had crossed the landmark of 100 000 biomolecular structures deposited in the Protein Data Bank. This tremendous increase in successfully crystallized proteins is primarily owing to improvements in cloning strategies, the automation of the crystallization process and new innovative approaches to monitor crystallization. However, these improvements are mainly restricted to soluble proteins, while the crystallization and structural analysis of membrane proteins or proteins that undergo major post-translational modifications remains challenging. In addition, the need for relatively large crystals for conventional X-ray crystallography usually prevents the analysis of dynamic processes within cells. Thus, the advent of high-brilliance synchrotron and X-ray free-electron laser (XFEL) sources and the establishment of serial crystallography (SFX) have opened new avenues in structural analysis using crystals that were formerly unusable. The successful structure elucidation of cathepsin B, accomplished by the use of microcrystals obtained by in vivo crystallization in baculovirus-infected Sf9 insect cells, clearly proved that crystals grown intracellularly are very well suited for X-ray analysis. Here, methods by which in vivo crystals can be obtained, isolated and used for structural analysis by novel highly brilliant XFEL and synchrotron-radiation sources are summarized and discussed.
Collapse
Affiliation(s)
- Michael Duszenko
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Lars Redecke
- Institute of Biochemistry, Center for Structural Biology and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Celestin Nzanzu Mudogo
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Benjamin Philip Sommer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| | - Stefan Mogk
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
42
|
Palma L, Muñoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins (Basel) 2014; 6:3296-325. [PMID: 25514092 PMCID: PMC4280536 DOI: 10.3390/toxins6123296] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/07/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities.
Collapse
Affiliation(s)
- Leopoldo Palma
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| | - Delia Muñoz
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - Jesús Murillo
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| |
Collapse
|