1
|
Rodrigues AV, Moriarty NW, Kakumanu R, DeGiovanni A, Pereira JH, Gin JW, Chen Y, Baidoo EEK, Petzold CJ, Adams PD. Characterization of lignin-degrading enzyme PmdC, which catalyzes a key step in the synthesis of polymer precursor 2-pyrone-4,6-dicarboxylic acid. J Biol Chem 2024; 300:107736. [PMID: 39222681 PMCID: PMC11489326 DOI: 10.1016/j.jbc.2024.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Pyrone-2,4-dicarboxylic acid (PDC) is a valuable polymer precursor that can be derived from the microbial degradation of lignin. The key enzyme in the microbial production of PDC is 4-carboxy-2-hydroxymuconate-6-semialdehyde (CHMS) dehydrogenase, which acts on the substrate CHMS. We present the crystal structure of CHMS dehydrogenase (PmdC from Comamonas testosteroni) bound to the cofactor NADP, shedding light on its three-dimensional architecture, and revealing residues responsible for binding NADP. Using a combination of structural homology, molecular docking, and quantum chemistry calculations, we have predicted the binding site of CHMS. Key histidine residues in a conserved sequence are identified as crucial for binding the hydroxyl group of CHMS and facilitating dehydrogenation with NADP. Mutating these histidine residues results in a loss of enzyme activity, leading to a proposed model for the enzyme's mechanism. These findings are expected to help guide efforts in protein and metabolic engineering to enhance PDC yields in biological routes to polymer feedstock synthesis.
Collapse
Affiliation(s)
- Andria V Rodrigues
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States.
| | - Nigel W Moriarty
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Ramu Kakumanu
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Andy DeGiovanni
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Jose Henrique Pereira
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Jennifer W Gin
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Energy Agile BioFoundry, Emeryville, California, United States
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Energy Agile BioFoundry, Emeryville, California, United States
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Energy Agile BioFoundry, Emeryville, California, United States
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Bioengineering, University of California Berkeley, Berkeley, California, United States.
| |
Collapse
|
2
|
Kim H, Mi HTN, Ahn JH, Lee JS, Eser BE, Choi J, Han J. Glycoside-metabolizing oxidoreductase D3dgpA from human gut bacterium. Front Bioeng Biotechnol 2024; 12:1413854. [PMID: 39007053 PMCID: PMC11239390 DOI: 10.3389/fbioe.2024.1413854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 07/16/2024] Open
Abstract
The Gfo/Idh/MocA family enzyme DgpA was known to catalyze the regiospecific oxidation of puerarin to 3"-oxo-puerarin in the presence of 3-oxo-glucose. Here, we discovered that D3dgpA, dgpA cloned from the human gut bacterium Dorea sp. MRG-IFC3, catalyzed the regiospecific oxidation of various C-/O-glycosides, including puerarin, in the presence of methyl β-D-3-oxo-glucopyranoside. While C-glycosides were converted to 3"- and 2"-oxo-products by D3dgpA, O-glycosides resulted in the formation of aglycones and hexose enediolone from the 3"-oxo-products. From DFT calculations, it was found that isomerization of 3"-oxo-puerarin to 2"-oxo-puerarin required a small activation energy of 9.86 kcal/mol, and the O-glycosidic bond cleavage of 3"-oxo-products was also thermodynamically favored with a small activation energy of 3.49 kcal/mol. In addition, the reaction mechanism of D3dgpA was discussed in comparison to those of Gfo/Idh/MocA and GMC family enzymes. The robust reactivity of D3dgpA was proposed as a new general route for derivatization of glycosides.
Collapse
Affiliation(s)
- Heji Kim
- Metalloenzyme Research Group and Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Huynh Thi Ngoc Mi
- Metalloenzyme Research Group and Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Joong-Hoon Ahn
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Jong Suk Lee
- Bio Industry Department, Gyeonggido Business and Science Accelerator (GBSA), Suwon, Gyeonngi-do, Republic of Korea
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Jongkeun Choi
- Department of Chemical Engineering, Chungwoon University, Incheon, Republic of Korea
| | - Jaehong Han
- Metalloenzyme Research Group and Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
3
|
Shi J, Guo X, Liu C, Wang Y, Chen X, Wu G, Ding J, Zhang T. Molecular insight into the potential functional role of pseudoenzyme GFOD1 via interaction with NKIRAS2. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1256-1266. [PMID: 38946427 DOI: 10.3724/abbs.2024105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
The glucose-fructose oxidoreductase/inositol dehydrogenase/rhizopine catabolism protein (Gfo/Idh/MocA) family includes a variety of oxidoreductases with a wide range of substrates that utilize NAD or NADP as redox cofactor. Human contains two members of this family, namely glucose-fructose oxidoreductase domain-containing protein 1 and 2 (GFOD1 and GFOD2). While GFOD1 exhibits low tissue specificity, it is notably expressed in the brain, potentially linked to psychiatric disorders and severe diseases. Nevertheless, the specific function, cofactor preference, and enzymatic activity of GFOD1 remain largely unknown. In this work, we find that GFOD1 does not bind to either NAD or NADP. Crystal structure analysis unveils that GFOD1 exists as a typical homodimer resembling other family members, but lacks essential residues required for cofactor binding, suggesting that it may function as a pseudoenzyme. Exploration of GFOD1-interacting partners in proteomic database identifies NF-κB inhibitor-interacting Ras-like 2 (NKIRAS2) as one potential candidate. Co-immunoprecipitation (co-IP) analysis indicates that GFOD1 interacts with both GTP- and GDP-bound forms of NKIRAS2. The predicted structural model of the GFOD1-NKIRAS2 complex is validated in cells using point mutants and shows that GFOD1 selectively recognizes the interswitch region of NKIRAS2. These findings reveal the distinct structural properties of GFOD1 and shed light on its potential functional role in cellular processes.
Collapse
Affiliation(s)
- Jiawen Shi
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Nantong 226011, China
| | - Xinyi Guo
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Nantong 226011, China
| | - Chan Liu
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Nantong 226011, China
| | - Yilun Wang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Nantong 226011, China
| | - Xiaobao Chen
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Nantong 226011, China
| | - Guihua Wu
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Nantong 226011, China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Tianlong Zhang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Nantong 226011, China
- China-Japan Friendship Medical Research Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Sánchez-Gil JJ, Poppeliers SWM, Vacheron J, Zhang H, Odijk B, Keel C, de Jonge R. The conserved iol gene cluster in Pseudomonas is involved in rhizosphere competence. Curr Biol 2023; 33:3097-3110.e6. [PMID: 37419116 DOI: 10.1016/j.cub.2023.05.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 05/24/2023] [Indexed: 07/09/2023]
Abstract
The Pseudomonas genus has shown great potential as a sustainable solution to support agriculture through its plant-growth-promoting and biocontrol activities. However, their efficacy as bioinoculants is limited by unpredictable colonization in natural conditions. Our study identifies the iol locus, a gene cluster in Pseudomonas involved in inositol catabolism, as a feature enriched among superior root colonizers in natural soil. Further characterization revealed that the iol locus increases competitiveness, potentially caused by an observed induction of swimming motility and the production of fluorescent siderophore in response to inositol, a plant-derived compound. Public data analyses indicate that the iol locus is broadly conserved in the Pseudomonas genus and linked to diverse host-microbe interactions. Together, our findings suggest the iol locus as a potential target for developing more effective bioinoculants for sustainable agriculture.
Collapse
Affiliation(s)
- Juan J Sánchez-Gil
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Sanne W M Poppeliers
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Hao Zhang
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Bart Odijk
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
5
|
Kaur A, Scott NE, Herisse M, Goddard-Borger ED, Pidot S, Williams SJ. Identification of levoglucosan degradation pathways in bacteria and sequence similarity network analysis. Arch Microbiol 2023; 205:155. [PMID: 37000297 PMCID: PMC10066097 DOI: 10.1007/s00203-023-03506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/01/2023]
Abstract
Levoglucosan is produced in the pyrolysis of cellulose and starch, including from bushfires or the burning of biofuels, and is deposited from the atmosphere across the surface of the earth. We describe two levoglucosan degrading Paenarthrobacter spp. (Paenarthrobacter nitrojuajacolis LG01 and Paenarthrobacter histidinolovorans LG02) that were isolated from soil by metabolic enrichment using levoglucosan as the sole carbon source. Genome sequencing and proteomics analysis revealed the expression of a series of genes encoding known levoglucosan degrading enzymes, levoglucosan dehydrogenase (LGDH, LgdA), 3-keto-levoglucosan β -eliminase (LgdB1) and glucose 3-dehydrogenase (LgdC), along with an ABC transporter cassette and an associated solute binding protein. However, no homologues of 3-ketoglucose dehydratase (LgdB2) were evident, while the expressed genes contained a range of putative sugar phosphate isomerases/xylose isomerases with weak similarity to LgdB2. Sequence similarity network analysis of genome neighbours of LgdA revealed that homologues of LgdB1 and LgdC are generally conserved in a range of bacteria in the phyla Firmicutes, Actinobacteria and Proteobacteria. One group of sugar phosphate isomerase/xylose isomerase homologues (named LgdB3) was identified with limited distribution that is mutually exclusive with LgdB2, and we propose that they may fulfil a similar function. LgdB1, LgdB2 and LgdB3 adopt similar predicted 3D folds, suggesting overlapping function in processing intermediates in LG metabolism. Our findings highlight diversity within the LGDH pathway, through which bacteria utilize levoglucosan as a nutrient source.
Collapse
Affiliation(s)
- Arashdeep Kaur
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
| | - Marion Herisse
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
| | - Ethan D Goddard-Borger
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3010, Australia
| | - Sacha Pidot
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
| | - Spencer J Williams
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia.
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
6
|
Zhang Y, Go EB, Perlatti B, Wu L, Bills GF, Ohashi M, Tang Y. Biosynthesis of AS2077715 and Funiculosin: Pathway Reconstitution and Identification of Enzymes that Form the All- cis Cyclopentanetetraol Moiety. J Am Chem Soc 2023; 145:6643-6647. [PMID: 36920241 PMCID: PMC10868378 DOI: 10.1021/jacs.3c01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The complete biosynthetic pathways of the potent antifungals AS2077715 (1) and funiculosin (2) are reconstituted and characterized. A five-enzyme cascade, including a multifunctional flavin-dependent monooxygenease and a repurposed O-methyltransferase, is involved to perform the dearomatization, stereoselective ring contraction, and redox transformations to morph a hydroxyphenyl-containing precursor into the unusual all-cis cyclopentanetetraol moiety.
Collapse
Affiliation(s)
- Yalong Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Eun Bin Go
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Bruno Perlatti
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Lin Wu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Gerald F. Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Ren Y, Eronen V, Blomster Andberg M, Koivula A, Hakulinen N. Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:147. [PMID: 36578086 PMCID: PMC9795676 DOI: 10.1186/s13068-022-02252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as D-xylose and L-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed.
Collapse
Affiliation(s)
- Yaxin Ren
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| | - Veikko Eronen
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| | | | - Anu Koivula
- grid.6324.30000 0004 0400 1852VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Nina Hakulinen
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| |
Collapse
|
8
|
Characterization of L-arabinose/D-galactose 1-dehydrogenase from Thermotoga maritima and its application in galactonate production. World J Microbiol Biotechnol 2022; 38:223. [DOI: 10.1007/s11274-022-03406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
|
9
|
Srivastava J, Balaji PV. Clues to reaction specificity in
PLP
‐dependent fold type I aminotransferases of monosaccharide biosynthesis. Proteins 2022; 90:1247-1258. [DOI: 10.1002/prot.26305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jaya Srivastava
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Mumbai India
| | - Petety V. Balaji
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Mumbai India
| |
Collapse
|
10
|
Mahto JK, Sharma M, Neetu N, Kayastha A, Aggarwal S, Kumar P. Conformational flexibility enables catalysis of phthalate cis-4,5-dihydrodiol dehydrogenase. Arch Biochem Biophys 2022; 727:109314. [DOI: 10.1016/j.abb.2022.109314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
|
11
|
Han T, Zhang K, Tang G, Zhou Q. Characterizing
Post‐PKS
Modifications of
16‐Demethyl
‐rifamycin Revealed Two Dehydrogenases Diverting the Aromatization Mode of Naphthalenic Ring in Ansamycin Biosynthesis. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ting‐Yan Han
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Kai Zhang
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Gong‐Li Tang
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sublane Xiangshan Hangzhou 310024 China
| | - Qiang Zhou
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
12
|
Kaur A, van der Peet PL, Mui JWY, Herisse M, Pidot S, Williams SJ. Genome sequences of Arthrobacter spp. that use a modified sulfoglycolytic Embden-Meyerhof-Parnas pathway. Arch Microbiol 2022; 204:193. [PMID: 35201431 PMCID: PMC8873060 DOI: 10.1007/s00203-022-02803-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022]
Abstract
Sulfoglycolysis pathways enable the breakdown of the sulfosugar sulfoquinovose and environmental recycling of its carbon and sulfur content. The prototypical sulfoglycolytic pathway is a variant of the classical Embden–Meyerhof–Parnas (EMP) pathway that results in formation of 2,3-dihydroxypropanesulfonate and was first described in gram-negative Escherichia coli. We used enrichment cultures to discover new sulfoglycolytic bacteria from Australian soil samples. Two gram-positive Arthrobacter spp. were isolated that produced sulfolactate as the metabolic end-product. Genome sequences identified a modified sulfoglycolytic EMP gene cluster, conserved across a range of other Actinobacteria, that retained the core sulfoglycolysis genes encoding metabolic enzymes but featured the replacement of the gene encoding sulfolactaldehyde (SLA) reductase with SLA dehydrogenase, and the absence of sulfoquinovosidase and sulfoquinovose mutarotase genes. Excretion of sulfolactate by these Arthrobacter spp. is consistent with an aerobic saprophytic lifestyle. This work broadens our knowledge of the sulfo-EMP pathway to include soil bacteria.
Collapse
Affiliation(s)
- Arashdeep Kaur
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Phillip L van der Peet
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Janice W-Y Mui
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Marion Herisse
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Sacha Pidot
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Spencer J Williams
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia. .,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
13
|
Ramesh P, Nagendrappa JH, Shivashankara SKH. Comparative analysis of Rosetta stone events in Klebsiella pneumoniae and Streptococcus pneumoniae for drug target identification. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Drug target identification is a fast-growing field of research in many human diseases. Many strategies have been devised in the post-genomic era to identify new drug targets for infectious diseases. Analysis of protein sequences from different organisms often reveals cases of exon/ORF shuffling in a genome. This results in the fusion of proteins/domains, either in the same genome or that of some other organism, and is termed Rosetta stone sequences. They help link disparate proteins together describing local and global relationships among proteomes. The functional role of proteins is determined mainly by domain-domain interactions and leading to the corresponding signaling mechanism. Putative proteins can be identified as drug targets by re-annotating their functional role through domain-based strategies.
Results
This study has utilized a bioinformatics approach to identify the putative proteins that are ideal drug targets for pneumonia infection by re-annotating the proteins through position-specific iterations. The putative proteome of two pneumonia-causing pathogens was analyzed to identify protein domain abundance and versatility among them. Common domains found in both pathogens were identified, and putative proteins containing these domains were re-annotated. Among many druggable protein targets, the re-annotation of EJJ83173 (which contains the GFO_IDH_MocA domain) showed that its probable function is glucose-fructose oxidoreduction. This protein was found to have sufficient interactor proteins and homolog in both pathogens but no homolog in the host (human), indicating it as an ideal drug target. 3D modeling of the protein showed promising model parameters. The model was utilized for virtual screening which revealed several ligands with inhibitory activity. These ligands included molecules documented in traditional Chinese medicine and currently marketed drugs.
Conclusions
This novel strategy of drug target identification through domain-based putative protein re-annotation presents a prospect to validate the proposed drug target to confer its utility as a typical protein targeting both pneumonia-causing species studied herewith.
Collapse
|
14
|
The putative Escherichia coli dehydrogenase YjhC metabolises two dehydrated forms of N-acetylneuraminate produced by some sialidases. Biosci Rep 2021; 40:225312. [PMID: 32542330 PMCID: PMC7315737 DOI: 10.1042/bsr20200927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 01/24/2023] Open
Abstract
Homologues of the putative dehydrogenase YjhC are found in operons involved in the metabolism of N-acetylneuraminate (Neu5Ac) or related compounds. We observed that purified recombinant YjhC forms Neu5Ac from two dehydrated forms of this compound, 2,7-anhydro-N-acetylneuraminate (2,7-AN) and 2-deoxy-2,3-didehydro-N-acetylneuraminate (2,3-EN) that are produced during the degradation of sialoconjugates by some sialidases. The conversion of 2,7-AN into Neu5Ac is reversible and reaches its equilibrium when the ratio of 2,7-AN to Neu5Ac is ≈1/6. The conversion of 2,3-EN is irreversible, leading to a mixture of Neu5Ac and 2,7-AN. NMR analysis of the reaction catalysed by YjhC on 2,3-EN indicated that Neu5Ac was produced as the α-anomer. All conversions require NAD+ as a cofactor, which is regenerated in the reaction. They appear to involve the formation of keto (presumably 4-keto) intermediates of 2,7-AN, 2,3-EN and Neu5Ac, which were detected by liquid chromatography-mass spectrometry (LC-MS). The proposed reaction mechanism is reminiscent of the one catalysed by family 4 β-glycosidases, which also use NAD+ as a cofactor. Both 2,7-AN and 2,3-EN support the growth of Escherichia coli provided the repressor NanR, which negatively controls the expression of the yjhBC operons, has been inactivated. Inactivation of either YjhC or YjhB in NanR-deficient cells prevents the growth on 2,7-AN and 2,3-EN. This confirms the role of YjhC in 2,7-AN and 2,3-EN metabolism and indicates that transport of 2,7-AN and 2,3-EN is carried out by YjhB, which is homologous to the Neu5Ac transporter NanT.
Collapse
|
15
|
Manissorn J, Sitthiyotha T, Montalban JRE, Chunsrivirot S, Thongnuek P, Wangkanont K. Biochemical and Structural Investigation of GnnA in the Lipopolysaccharide Biosynthesis Pathway of Acidithiobacillus ferrooxidans. ACS Chem Biol 2020; 15:3235-3243. [PMID: 33200610 DOI: 10.1021/acschembio.0c00791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lipopolysaccharide (LPS) is a crucial component in the outer membrane of Gram-negative bacteria that contributes to both pathogenicity as well as immunity against pathogenic bacteria. Typical LPS contains GlcN disaccharide as the core of lipid A. However, some bacteria such as Acidithiobacillus ferrooxidans and Leptospira interrogans contain GlcN3N in lipid A instead. This modification has been shown to dampen the host immune response and increase resistance to antimicrobial peptides. Therefore, investigation of the enzymes responsible for the biosynthesis of GlcN3N has promising applications in the development of vaccines, antibiotics, or usage of the enzymes in chemoenzymatic synthesis of modified LPS. Here, we describe biochemical and structural investigation of GnnA from A. ferrooxidans (AfGnnA) that is responsible for oxidation of UDP-GlcNAc, which subsequently undergoes transamination to produce UDP-GlcNAc3N as a precursor for LPS biosynthesis. AfGnnA is specific for NAD+ and UDP-GlcNAc. The crystal structures of AfGnnA in combination with molecular dynamics simulation and mutational analysis suggest the substrate recognition mode and the catalytic mechanism. K91 or H164 is a potential catalytic base in the oxidation reaction. The results will not only provide insights into the biosynthesis of unusual LPS but will also lay the foundation for development of more immunogenic vaccines, novel antibiotics, or utilization of GnnA in the synthesis of UDP-sugars or modified LPS.
Collapse
Affiliation(s)
- Juthatip Manissorn
- Biomedical Engineering Research Center (BMERC) and Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thassanai Sitthiyotha
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jenny Rose E. Montalban
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila 1008, Philippines
| | - Surasak Chunsrivirot
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapat Thongnuek
- Biomedical Engineering Research Center (BMERC) and Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, and Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
16
|
Kuritani Y, Sato K, Dohra H, Umemura S, Kitaoka M, Fushinobu S, Yoshida N. Conversion of levoglucosan into glucose by the coordination of four enzymes through oxidation, elimination, hydration, and reduction. Sci Rep 2020; 10:20066. [PMID: 33208778 PMCID: PMC7676230 DOI: 10.1038/s41598-020-77133-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/03/2020] [Indexed: 11/25/2022] Open
Abstract
Levoglucosan (LG) is an anhydrosugar produced through glucan pyrolysis and is widely found in nature. We previously isolated an LG-utilizing thermophile, Bacillus smithii S-2701M, and suggested that this bacterium may have a metabolic pathway from LG to glucose, initiated by LG dehydrogenase (LGDH). Here, we completely elucidated the metabolic pathway of LG involving three novel enzymes in addition to LGDH. In the S-2701M genome, three genes expected to be involved in the LG metabolism were found in the vicinity of the LGDH gene locus. These four genes including LGDH gene (lgdA, lgdB1, lgdB2, and lgdC) were expressed in Escherichia coli and purified to obtain functional recombinant proteins. Thin layer chromatography analyses of the reactions with the combination of the four enzymes elucidated the following metabolic pathway: LgdA (LGDH) catalyzes 3-dehydrogenation of LG to produce 3-keto-LG, which undergoes β-elimination of 3-keto-LG by LgdB1, followed by hydration to produce 3-keto-D-glucose by LgdB2; next, LgdC reduces 3-keto-D-glucose to glucose. This sequential reaction mechanism resembles that proposed for an enzyme belonging to glycoside hydrolase family 4, and results in the observational hydrolysis of LG into glucose with coordination of the four enzymes.
Collapse
Affiliation(s)
- Yuya Kuritani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan
| | - Kohei Sato
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan
| | - Hideo Dohra
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | | | - Motomitsu Kitaoka
- Faculty of Agriculture, Niigata University, 8050 Ikarashi 2-no-cho, Niigata, 950-2181, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nobuyuki Yoshida
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan.
| |
Collapse
|
17
|
Liou CS, Sirk SJ, Diaz CAC, Klein AP, Fischer CR, Higginbottom SK, Erez A, Donia MS, Sonnenburg JL, Sattely ES. A Metabolic Pathway for Activation of Dietary Glucosinolates by a Human Gut Symbiont. Cell 2020; 180:717-728.e19. [PMID: 32084341 DOI: 10.1016/j.cell.2020.01.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/04/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Consumption of glucosinolates, pro-drug-like metabolites abundant in Brassica vegetables, has been associated with decreased risk of certain cancers. Gut microbiota have the ability to metabolize glucosinolates, generating chemopreventive isothiocyanates. Here, we identify a genetic and biochemical basis for activation of glucosinolates to isothiocyanates by Bacteroides thetaiotaomicron, a prominent gut commensal species. Using a genome-wide transposon insertion screen, we identified an operon required for glucosinolate metabolism in B. thetaiotaomicron. Expression of BT2159-BT2156 in a non-metabolizing relative, Bacteroides fragilis, resulted in gain of glucosinolate metabolism. We show that isothiocyanate formation requires the action of BT2158 and either BT2156 or BT2157 in vitro. Monocolonization of mice with mutant BtΔ2157 showed reduced isothiocyanate production in the gastrointestinal tract. These data provide insight into the mechanisms by which a common gut bacterium processes an important dietary nutrient.
Collapse
Affiliation(s)
- Catherine S Liou
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shannon J Sirk
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Camil A C Diaz
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Andrew P Klein
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Curt R Fischer
- Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA 94305, USA
| | - Steven K Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amir Erez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Bell A, Severi E, Lee M, Monaco S, Latousakis D, Angulo J, Thomas GH, Naismith JH, Juge N. Uncovering a novel molecular mechanism for scavenging sialic acids in bacteria. J Biol Chem 2020; 295:13724-13736. [PMID: 32669363 PMCID: PMC7535918 DOI: 10.1074/jbc.ra120.014454] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
The human gut symbiont Ruminococcus gnavus scavenges host-derived N-acetylneuraminic acid (Neu5Ac) from mucins by converting it to 2,7-anhydro-Neu5Ac. We previously showed that 2,7-anhydro-Neu5Ac is transported into R. gnavus ATCC 29149 before being converted back to Neu5Ac for further metabolic processing. However, the molecular mechanism leading to the conversion of 2,7-anhydro-Neu5Ac to Neu5Ac remained elusive. Using 1D and 2D NMR, we elucidated the multistep enzymatic mechanism of the oxidoreductase (RgNanOx) that leads to the reversible conversion of 2,7-anhydro-Neu5Ac to Neu5Ac through formation of a 4-keto-2-deoxy-2,3-dehydro-N-acetylneuraminic acid intermediate and NAD+ regeneration. The crystal structure of RgNanOx in complex with the NAD+ cofactor showed a protein dimer with a Rossman fold. Guided by the RgNanOx structure, we identified catalytic residues by site-directed mutagenesis. Bioinformatics analyses revealed the presence of RgNanOx homologues across Gram-negative and Gram-positive bacterial species and co-occurrence with sialic acid transporters. We showed by electrospray ionization spray MS that the Escherichia coli homologue YjhC displayed activity against 2,7-anhydro-Neu5Ac and that E. coli could catabolize 2,7-anhydro-Neu5Ac. Differential scanning fluorimetry analyses confirmed the binding of YjhC to the substrates 2,7-anhydro-Neu5Ac and Neu5Ac, as well as to co-factors NAD and NADH. Finally, using E. coli mutants and complementation growth assays, we demonstrated that 2,7-anhydro-Neu5Ac catabolism in E. coli depended on YjhC and on the predicted sialic acid transporter YjhB. These results revealed the molecular mechanisms of 2,7-anhydro-Neu5Ac catabolism across bacterial species and a novel sialic acid transport and catabolism pathway in E. coli.
Collapse
Affiliation(s)
- Andrew Bell
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Micah Lee
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Dimitrios Latousakis
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom; Departamento de Química Orgánica, Universidad de Sevilla, Sevilla, Spain; Instituto de Investigaciones Químicas (CSIC-US), Sevilla, Spain
| | - Gavin H Thomas
- Department of Biology, University of York, York, United Kingdom
| | - James H Naismith
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Nathalie Juge
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, United Kingdom.
| |
Collapse
|
19
|
Nakamura K, Zhu S, Komatsu K, Hattori M, Iwashima M. Deglycosylation of the Isoflavone C-Glucoside Puerarin by a Combination of Two Recombinant Bacterial Enzymes and 3-Oxo-Glucose. Appl Environ Microbiol 2020; 86:e00607-20. [PMID: 32385077 PMCID: PMC7357486 DOI: 10.1128/aem.00607-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
A human intestinal bacterium strain related to Dorea species, PUE, can metabolize the isoflavone C-glucoside puerarin (daidzein 8-C-glucoside) to daidzein and glucose. We reported previously that 3″-oxo-puerarin is an essential reaction intermediate in enzymatic puerarin degradation, and we characterized a bacterial enzyme, the DgpB-DgpC complex, that cleaved the C-glycosidic bond in 3″-oxo-puerarin. However, the exact enzyme catalyzing the oxidation of the C-3″ hydroxyl in puerarin has not been identified. In this study, we demonstrated that recombinant DgpA, a Gfo/Idh/MocA family oxidoreductase, catalyzed puerarin oxidation in the presence of 3-oxo-glucose as the hydride acceptor. In the redox reaction, NAD(H) functioned as the cofactor, which bound tightly but noncovalently to DgpA. Kinetics analysis of DgpA revealed that the reaction proceeded via a ping-pong mechanism. Enzymatic C-deglycosylation of puerarin was achieved by a combination of recombinant DgpA, the DgpB-DgpC complex, and 3-oxo-glucose. In addition, the metabolite derived from the sugar moiety in the 3″-oxo-puerarin-cleaving reaction catalyzed by the DgpB-DgpC complex was characterized as 1,5-anhydro-d-erythro-hex-1-en-3-ulose, suggesting that the C-glycosidic linkage is cleaved through a β-elimination-like mechanism.IMPORTANCE One important role of the gut microbiota is to metabolize dietary nutrients and supplements such as flavonoid glycosides. Ingested glycosides are metabolized by intestinal bacteria to more-absorbable aglycones and further degradation products that show beneficial effects in humans. Although numerous glycoside hydrolases that catalyze O-deglycosylation have been reported, enzymes responsible for C-deglycosylation are still limited. In this study, we characterized enzymes involved in the C-deglycosylation of puerarin from a human intestinal bacterium, PUE. Here, we report the purification and characterization of a recombinant oxidoreductase involved in C-glucoside degradation. This study provides new insights for the elucidation of mechanisms of enzymatic C-deglycosylation.
Collapse
Affiliation(s)
- Kenichi Nakamura
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Shu Zhu
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Katsuko Komatsu
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Masao Hattori
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Makoto Iwashima
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| |
Collapse
|
20
|
Hara A, Nishinaka T, Abe N, El-Kabbani O, Matsunaga T, Endo S. Dimeric dihydrodiol dehydrogenase is an efficient primate 1,5-anhydro-D-fructose reductase. Biochem Biophys Res Commun 2020; 526:728-732. [PMID: 32253031 DOI: 10.1016/j.bbrc.2020.03.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/28/2020] [Indexed: 11/27/2022]
Abstract
1,5-Anhydro-D-fructose (AF), a metabolite of the anhydrofructose pathway of glycogen metabolism, has recently been shown to react with intracellular proteins and form advanced glycation end-products. The reactive AF is metabolized to non-reactive 1,5-anhydro-D-glucitol by AF reductase in animal tissues and human cells. Pig and mouse AF reductases were characterized, but primate AF reductase remains unknown. Here, we examined the AF-reducing activity of eleven primate NADPH-dependent reductases with broad substrate specificity for carbonyl compounds. AF was reduced by monkey dimeric dihydrodiol dehydrogenase (DHDH), human aldehyde reductase (AKR1A1) and human dicarbonyl/L-xylulose reductase (DCXR). DHDH showed the lowest KM (21 μM) for AF, and its kcat/KM value (1208 s-1mM-1) was much higher than those of AKR1A1 (1.3 s-1mM-1), DCXR (1.1 s-1mM-1) and the pig and mouse AF reductases. AF is a novel substrate with higher affinity and catalytic efficiency than known substrates of DHDH. Docking simulation study suggested that Lys156 in the substrate-binding site of DHDH contributes to the high affinity for AF. Gene database searches identified DHDH homologues (with >95% amino acid sequence identity) in humans and apes. Thus, DHDH acts as an efficient AF reductase in primates.
Collapse
Affiliation(s)
- Akira Hara
- Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Toru Nishinaka
- Faculty of Pharmacy, Osaka-Ohtani University, Osaka, 584-8540, Japan
| | - Naohito Abe
- Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Ossama El-Kabbani
- Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | | | - Satoshi Endo
- Gifu Pharmaceutical University, Gifu, 501-1196, Japan.
| |
Collapse
|
21
|
Suzuki M, Koubara K, Takenoya M, Fukano K, Ito S, Sasaki Y, Nakamura A, Yajima S. Single amino acid mutation altered substrate specificity for L-glucose and inositol in scyllo-inositol dehydrogenase isolated from Paracoccus laeviglucosivorans. Biosci Biotechnol Biochem 2019; 84:734-742. [PMID: 31842701 DOI: 10.1080/09168451.2019.1702870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
scyllo-inositol dehydrogenase, isolated from Paracoccus laeviglucosivorans (Pl-sIDH), exhibits a broad substrate specificity: it oxidizes scyllo- and myo-inositols as well as L-glucose, converting L-glucose to L-glucono-1,5-lactone. Based on the crystal structures previously reported, Arg178 residue, located at the entry port of the catalytic site, seemed to be important for accepting substrates. Here, we report the role of Arg178 by using an alanine-substituted mutant for kinetic analysis as well as to determine the crystal structures. The wild-type Pl-sIDH exhibits the activity for scyllo-inositol most preferably followed by myo-inositol and L-glucose. On the contrary, the R178A mutant abolished the activities for both inositols, but remained active for L-glucose to the same extent as its wild-type. Based on the crystal structures of the mutant, the side chain of Asp191 flipped out of the substrate binding site. Therefore, Arg178 is important in positioning Asp191 correctly to exert its catalytic activities.Abbreviations: IDH: inositol dehydrogenase; LB: Luria-Bertani; kcat: catalyst rate constant; Km: Michaelis constant; NAD: nicotinamide dinucleotide; NADH: nicotinamide dinucleotide reduced form; PDB; Protein Data Bank; PDB entry: 6KTJ, 6KTK, 6KTL.
Collapse
Affiliation(s)
- Mayu Suzuki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kairi Koubara
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Mihoko Takenoya
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kazuhiro Fukano
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shinsaku Ito
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yasuyuki Sasaki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Akira Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Ibaraki, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
22
|
Horne CR, Kind L, Davies JS, Dobson RCJ. On the structure and function of Escherichia coli YjhC: An oxidoreductase involved in bacterial sialic acid metabolism. Proteins 2019; 88:654-668. [PMID: 31697432 DOI: 10.1002/prot.25846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/11/2019] [Accepted: 11/03/2019] [Indexed: 11/06/2022]
Abstract
Human pathogenic and commensal bacteria have evolved the ability to scavenge host-derived sialic acids and subsequently degrade them as a source of nutrition. Expression of the Escherichia coli yjhBC operon is controlled by the repressor protein nanR, which regulates the core machinery responsible for the import and catabolic processing of sialic acid. The role of the yjhBC encoded proteins is not known-here, we demonstrate that the enzyme YjhC is an oxidoreductase/dehydrogenase involved in bacterial sialic acid degradation. First, we demonstrate in vivo using knockout experiments that YjhC is broadly involved in carbohydrate metabolism, including that of N-acetyl-d-glucosamine, N-acetyl-d-galactosamine and N-acetylneuraminic acid. Differential scanning fluorimetry demonstrates that YjhC binds N-acetylneuraminic acid and its lactone variant, along with NAD(H), which is consistent with its role as an oxidoreductase. Next, we solved the crystal structure of YjhC in complex with the NAD(H) cofactor to 1.35 Å resolution. The protein fold belongs to the Gfo/Idh/MocA protein family. The dimeric assembly observed in the crystal form is confirmed through solution studies. Ensemble refinement reveals a flexible loop region that may play a key role during catalysis, providing essential contacts to stabilize the substrate-a unique feature to YjhC among closely related structures. Guided by the structure, in silico docking experiments support the binding of sialic acid and several common derivatives in the binding pocket, which has an overall positive charge distribution. Taken together, our results verify the role of YjhC as a bona fide oxidoreductase/dehydrogenase and provide the first evidence to support its involvement in sialic acid metabolism.
Collapse
Affiliation(s)
- Christopher R Horne
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Laura Kind
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - James S Davies
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Wagschal K, Jordan DB, Hart-Cooper WM, Chan VJ. Penicillium camemberti galacturonate reductase: C-1 oxidation/reduction of uronic acids and substrate inhibition mitigation by aldonic acids. Int J Biol Macromol 2019; 153:1090-1098. [PMID: 31756465 DOI: 10.1016/j.ijbiomac.2019.10.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 11/24/2022]
Abstract
The enzyme galacturonate oxidoreductase PcGOR from Penicillium camemberti reduces the C-1 carbon of D-glucuronate and C-4 epimer D-galacturonate to their corresponding aldonic acids, important reactions in both pectin catabolism and ascorbate biosynthesis. PcGOR was active on both glucuronic acid and galacturonic acid, with similar substrate specificities (kcat/Km) using the preferred co-substrate NADPH. Substrate acceptance extended to lactone congeners, and D-glucurono-3,6-lactone was converted to L-gulono-1,4-lactone, an immediate precursor of ascorbate. Reaction with glucuronate showed only minor substrate inhibition, and the product L-gulonate and L-gulono-1,4-lactone were both found to be competitive inhibitors with Ki in the low mM range. In contrast, reaction with C-4 epimer galacturonate displayed marked substrate inhibition. Moreover, the product L-galactonate and L-galactono-1,4-lactone were observed to mitigate substrate inhibition by galacturonate, with the lactone having a greater effect than the acid.
Collapse
Affiliation(s)
- Kurt Wagschal
- USDA Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | - Douglas B Jordan
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - William M Hart-Cooper
- USDA Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| | - Victor J Chan
- USDA Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| |
Collapse
|
24
|
de Araújo NC, Bury PDS, Tavares MT, Huang F, Parise-Filho R, Leadlay P, Dias MVB. Crystal Structure of GenD2, an NAD-Dependent Oxidoreductase Involved in the Biosynthesis of Gentamicin. ACS Chem Biol 2019; 14:925-933. [PMID: 30995396 DOI: 10.1021/acschembio.9b00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gentamicins are clinically relevant aminoglycoside antibiotics produced by several Micromonospora species. Gentamicins are highly methylated and functionalized molecules, and their biosynthesis include glycosyltransferases, dehydratase/oxidoreductases, aminotransferases, and methyltransferases. The biosynthesis of gentamicin A from gentamicin A2 involves three enzymatic steps that modify the hydroxyl group at position 3″ of the unusual garosamine sugar to provide its substitution for an amino group, followed by an N-methylation. The first of these reactions is catalyzed by GenD2, an oxidoreductase from the Gfo/Idh/MocA protein family, which reduces the hydroxyl at the C3″ of gentamicin A to produce 3''-dehydro-3''-oxo-gentamicin A2 (DOA2). In this work, we solved the structure of GenD2 in complex with NAD+. Although the structure of GenD2 has a similar fold to other members of the Gfo/Idh/MocA family, this enzyme has several new features, including a 3D-domain swapping of two β-strands that are involved in a novel oligomerization interface for this protein family. In addition, the active site of this enzyme also has several specialties which are possibly involved in the substrate specificity, including a number of aromatic residues and a negatively charged region, which is complementary to the polycationic aminoglycoside-substrate. Therefore, docking simulations provided insights into the recognition of gentamicin A2 and into the catalytic mechanism of GenD2. This is the first report describing the structure of an oxidoreductase involved in aminoglycoside biosynthesis and could open perspectives into producing new aminoglycoside derivatives by protein engineering.
Collapse
Affiliation(s)
- Natalia Cerrone de Araújo
- Department of Microbiology, Institute of Biomedical Science , University of São Paulo , Avenida Prof. Lineu Prestes 1374 , 05508-900 São Paulo , Brazil
| | - Priscila Dos Santos Bury
- Department of Microbiology, Institute of Biomedical Science , University of São Paulo , Avenida Prof. Lineu Prestes 1374 , 05508-900 São Paulo , Brazil
| | - Maurício Temotheo Tavares
- Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo , Prof. Lineu Prestes Avenue 580 , 05508-900 São Paulo , Brazil
| | - Fanglu Huang
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge CB2 1GA , U.K
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo , Prof. Lineu Prestes Avenue 580 , 05508-900 São Paulo , Brazil
| | - Peter Leadlay
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge CB2 1GA , U.K
| | - Marcio Vinicius Bertacine Dias
- Department of Microbiology, Institute of Biomedical Science , University of São Paulo , Avenida Prof. Lineu Prestes 1374 , 05508-900 São Paulo , Brazil.,Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| |
Collapse
|
25
|
Watanabe Y, Iga C, Watanabe Y, Watanabe S. Structural insights into the catalytic and substrate recognition mechanisms of bacterial l-arabinose 1-dehydrogenase. FEBS Lett 2019; 593:1257-1266. [PMID: 31058311 DOI: 10.1002/1873-3468.13424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 11/09/2022]
Abstract
In Azospirillum brasilense, a gram-negative nitrogen-fixing bacterium, l-arabinose is converted to α-ketoglutarate through a nonphosphorylative metabolic pathway. In the first step in the pathway, l-arabinose is oxidized to l-arabino-γ-lactone by NAD(P)-dependent l-arabinose 1-dehydrogenase (AraDH) belonging to the glucose-fructose oxidoreductase/inositol dehydrogenase/rhizopine catabolism protein (Gfo/Idh/MocA) family. Here, we determined the crystal structures of apo- and NADP-bound AraDH at 1.5 and 2.2 Å resolutions, respectively. A docking model of l-arabinose and NADP-bound AraDH and structure-based mutational analyses suggest that Lys91 or Asp169 serves as a catalytic base and that Glu147, His153, and Asn173 are responsible for substrate recognition. In particular, Asn173 may play a role in the discrimination between l-arabinose and d-xylose, the C4 epimer of l-arabinose.
Collapse
Affiliation(s)
- Yasunori Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Chinatsu Iga
- Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Yasuo Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Seiya Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Faculty of Agriculture, Ehime University, Matsuyama, Japan.,Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| |
Collapse
|
26
|
Mukherjee K, Huddleston JP, Narindoshvili T, Nemmara VV, Raushel FM. Functional Characterization of the ycjQRS Gene Cluster from Escherichia coli: A Novel Pathway for the Transformation of d-Gulosides to d-Glucosides. Biochemistry 2019; 58:1388-1399. [PMID: 30742415 DOI: 10.1021/acs.biochem.8b01278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A combination of bioinformatics, steady-state kinetics, and NMR spectroscopy has revealed the catalytic functions of YcjQ, YcjS, and YcjR from the ycj gene cluster in Escherichia coli K-12. YcjS was determined to be a 3-keto-d-glucoside dehydrogenase with a kcat = 22 s-1 and kcat/ Km = 2.3 × 104 M-1 s-1 for the reduction of methyl α-3-keto-d-glucopyranoside at pH 7.0 with NADH. YcjS also exhibited catalytic activity for the NAD+-dependent oxidation of d-glucose, methyl β-d-glucopyranoside, and 1,5-anhydro-d-glucitol. YcjQ was determined to be a 3-keto-d-guloside dehydrogenase with kcat = 18 s-1 and kcat/ Km = 2.0 × 103 M-1 s-1 for the reduction of methyl α-3-keto-gulopyranoside. This is the first reported dehydrogenase for the oxidation of d-gulose. YcjQ also exhibited catalytic activity with d-gulose and methyl β-d-gulopyranoside. The 3-keto products from both dehydrogenases were found to be extremely labile under alkaline conditions. The function of YcjR was demonstrated to be a C4 epimerase that interconverts 3-keto-d-gulopyranosides to 3-keto-d-glucopyranosides. These three enzymes, YcjQ, YcjR, and YcjS, thus constitute a previously unrecognized metabolic pathway for the transformation of d-gulosides to d-glucosides via the intermediate formation of 3-keto-d-guloside and 3-keto-d-glucoside.
Collapse
Affiliation(s)
- Keya Mukherjee
- Department of Biochemistry & Biophysics , Texas A&M University , College Station , Texas 77844 , United States
| | - Jamison P Huddleston
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Tamari Narindoshvili
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Venkatesh V Nemmara
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Frank M Raushel
- Department of Biochemistry & Biophysics , Texas A&M University , College Station , Texas 77844 , United States.,Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| |
Collapse
|
27
|
Sugiura M, Nakahara M, Yamada C, Arakawa T, Kitaoka M, Fushinobu S. Identification, functional characterization, and crystal structure determination of bacterial levoglucosan dehydrogenase. J Biol Chem 2018; 293:17375-17386. [PMID: 30224354 PMCID: PMC6231136 DOI: 10.1074/jbc.ra118.004963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/14/2018] [Indexed: 01/30/2023] Open
Abstract
Levoglucosan is the 1,6-anhydrosugar of d-glucose formed by pyrolysis of glucans and is found in the environment and industrial waste. Two types of microbial levoglucosan metabolic pathways are known. Although the eukaryotic pathway involving levoglucosan kinase has been well-studied, the bacterial pathway involving levoglucosan dehydrogenase (LGDH) has not been well-investigated. Here, we identified and cloned the lgdh gene from the bacterium Pseudarthrobacter phenanthrenivorans and characterized the recombinant protein. The enzyme exhibited high substrate specificity toward levoglucosan and NAD+ for the oxidative reaction and was confirmed to be LGDH. LGDH also showed weak activities (∼4%) toward l-sorbose and 1,5-anhydro-d-glucitol. The reverse (reductive) reaction using 3-keto-levoglucosan and NADH exhibited significantly lower Km and higher kcat values than those of the forward reaction. The crystal structures of LGDH in the apo and complex forms with NADH, NADH + levoglucosan, and NADH + l-sorbose revealed that LGDH has a typical fold of Gfo/Idh/MocA family proteins, similar to those of scyllo-inositol dehydrogenase, aldose-aldose oxidoreductase, 1,5-anhydro-d-fructose reductase, and glucose-fructose oxidoreductase. The crystal structures also disclosed that the active site of LGDH is distinct from those of these enzymes. The LGDH active site extensively recognized the levoglucosan molecule with six hydrogen bonds, and the C3 atom of levoglucosan was closely located to the C4 atom of NADH nicotinamide. Our study is the first molecular characterization of LGDH, providing evidence for C3-specific oxidation and representing a starting point for future biotechnological use of LGDH and levoglucosan-metabolizing bacteria.
Collapse
Affiliation(s)
| | | | - Chihaya Yamada
- From the Department of Biotechnology and
- Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 and
| | - Takatoshi Arakawa
- From the Department of Biotechnology and
- Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 and
| | - Motomitsu Kitaoka
- the Food Research Institute, National Agriculture and Food Research Organization, Tsukuba 305-8642, Japan
| | - Shinya Fushinobu
- From the Department of Biotechnology and
- Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 and
| |
Collapse
|
28
|
Aamudalapalli HB, Bertwistle D, Palmer DRJ, Sanders DAR. myo-Inositol dehydrogenase and scyllo-inositol dehydrogenase from Lactobacillus casei BL23 bind their substrates in very different orientations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1115-1124. [PMID: 30282609 DOI: 10.1016/j.bbapap.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
Abstract
Many bacteria can use myo-inositol as the sole carbon source using enzymes encoded in the iol operon. The first step is catalyzed by the well-characterized myo-inositol dehydrogenase (mIDH), which oxidizes the axial hydroxyl group of the substrate to form scyllo-inosose. Some bacteria, including Lactobacillus casei, contain more than one apparent mIDH-encoding gene in the iol operon, but such redundant enzymes have not been investigated. scyllo-Inositol, a stereoisomer of myo-inositol, is not a substrate for mIDH, but scyllo-inositol dehydrogenase (sIDH) enzymes have been reported, though never observed to be encoded within the iol operon. Sequences indicate these enzymes are related, but the structural basis by which they distinguish their substrates has not been determined. Here we report the substrate selectivity, kinetics, and high-resolution crystal structures of the proteins encoded by iolG1 and iolG2 from L. casei BL23, which we show encode a mIDH and sIDH, respectively. Comparison of the ternary complex of each enzyme with its preferred substrate reveals the key variations allowing for oxidation of an equatorial versus an axial hydroxyl group. Despite the overall similarity of the active site residues, scyllo-inositol is bound in an inverted, tilted orientation by sIDH relative to the orientation of myo-inositol by mIDH.
Collapse
Affiliation(s)
| | - Drew Bertwistle
- Department of Physics and Engineering Physics, University of Saskatchewan, Canada; Canadian Light Source, University of Saskatchewan, Canada
| | | | | |
Collapse
|
29
|
Hirayama A, Chu J, Goto E, Kudo F, Eguchi T. NAD+
-Dependent Dehydrogenase PctP and Pyridoxal 5′-Phosphate Dependent Aminotransferase PctC Catalyze the First Postglycosylation Modification of the Sugar Intermediate in Pactamycin Biosynthesis. Chembiochem 2017; 19:126-130. [DOI: 10.1002/cbic.201700483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Akane Hirayama
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Jinmiao Chu
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Ena Goto
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Fumitaka Kudo
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Tadashi Eguchi
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
30
|
Vetter ND, Palmer DRJ. Simultaneous Measurement of Glucose-6-phosphate 3-Dehydrogenase (NtdC) Catalysis and the Nonenzymatic Reaction of Its Product: Kinetics and Isotope Effects on the First Step in Kanosamine Biosynthesis. Biochemistry 2017; 56:2001-2009. [PMID: 28353336 DOI: 10.1021/acs.biochem.7b00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glucose-6-phosphate 3-dehydrogenase (NtdC) is an NAD-dependent oxidoreductase encoded in the NTD operon of Bacillus subtilis. The oxidation of glucose 6-phosphate by NtdC is the first step in kanosamine biosynthesis. The product, 3-oxo-d-glucose 6-phosphate (3oG6P), has never been synthesized or isolated. The NtdC-catalyzed reaction is very slow at low and neutral pH, and its rate increases to a maximum near pH 9.5. However, under alkaline conditions, the product is not stable because of ring opening followed by deprotonation of the 1,3-dicarbonyl compound. The absorbance band due to this enolate at 310 nm overlaps with that of the other enzymatic product, NADH, complicating kinetic measurements. We report the deconvolution of the resulting spectra of the reaction to determine the rate constants and likely kinetic mechanism. In doing so, we were able to determine the extinction coefficient of the enolate of 3oG6P (23000 M-1 cm-1), which allowed the measurement of the first-order rate constant (5.51 × 10-3 s-1) and activation energy (93 kJ mol-1) of nonenzymatic enolate formation. Using deuterium-labeled substrates, we show that hydride transfer from carbon 3 is partially rate-limiting in the enzymatic reaction, and deuterium substitution on carbon 2 has no significant effect on the enzymatic reaction but lowers the rate of deprotonation of 3oG6P 4-fold. These experiments clearly establish the regiochemistry of the reactions. Coupling of the NtdC reaction with the subsequent step in the pathway, NtdA-catalyzed glutamate-dependent amino transfer, has a small but significant effect on the rate of NAD reduction, consistent with these enzymes working together to process the unstable metabolite.
Collapse
Affiliation(s)
- Natasha D Vetter
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, SK, Canada S7N 5C9
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, SK, Canada S7N 5C9
| |
Collapse
|
31
|
Kang DM, Tanaka K, Takenaka S, Ishikawa S, Yoshida KI. Bacillus subtilis iolU encodes an additional NADP +-dependent scyllo-inositol dehydrogenase. Biosci Biotechnol Biochem 2017; 81:1026-1032. [PMID: 28043209 DOI: 10.1080/09168451.2016.1268043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bacillus subtilis genes iolG, iolW, iolX, ntdC, yfiI, yrbE, yteT, and yulF belong to the Gfo/Idh/MocA family. The functions of iolG, iolW, iolX, and ntdC are known; however, the functions of the others are unknown. We previously reported the B. subtilis cell factory simultaneously overexpressing iolG and iolW to achieve bioconversion of myo-inositol (MI) into scyllo-inositol (SI). YulF shares a significant similarity with IolW, the NADP+-dependent SI dehydrogenase. Transcriptional abundance of yulF did not correlate to that of iol genes involved in inositol metabolism. However, when yulF was overexpressed instead of iolW in the B. subtilis cell factory, SI was produced from MI, suggesting a similar function to iolW. In addition, we demonstrated that recombinant His6-tagged YulF converted scyllo-inosose into SI in an NADPH-dependent manner. We have thus identified yulF encoding an additional NADP+-dependent SI dehydrogenase, which we propose to rename iolU.
Collapse
Affiliation(s)
- Dong-Min Kang
- a Department of Agrobioscience , Graduate School of Agricultural Science, Kobe University , Kobe , Japan
| | - Kosei Tanaka
- b Organization of Advanced Science and Technology , Kobe University , Kobe , Japan
| | - Shinji Takenaka
- a Department of Agrobioscience , Graduate School of Agricultural Science, Kobe University , Kobe , Japan.,b Organization of Advanced Science and Technology , Kobe University , Kobe , Japan
| | - Shu Ishikawa
- c Department of Science, Technology and Innovation, Graduate School of Science, Technology and Innovation , Kobe University , Kobe , Japan
| | - Ken-Ichi Yoshida
- b Organization of Advanced Science and Technology , Kobe University , Kobe , Japan.,c Department of Science, Technology and Innovation, Graduate School of Science, Technology and Innovation , Kobe University , Kobe , Japan
| |
Collapse
|